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Regular Paper

HyperLS for Parameter Estimation in Geometric Fitting

Kenichi Kanatani,†1 Prasanna Rangarajan,†2

Yasuyuki Sugaya†3 and Hirotaka Niitsuma†1

We present a general framework of a special type of least squares (LS) es-
timator, which we call “HyperLS,” for parametiper estimation that frequently
arises in computer vision applications. It minimizes the algebraic distance un-
der a special scale normalization, which is derived by a detailed error analysis
in such a way that statistical bias is removed up to second order noise terms.
We discuss in detail many theoretical issues involved in its derivation. By nu-
merical experiments, we show that HyperLS is far superior to the standard LS
and comparable in accuracy to maximum likelihood (ML), which is known to
produce highly accurate results but may fail to converge if poorly initialized.
We conclude that HyperLS is a perfect candidate for ML initialization.

1. Introduction

An important task in computer vision is the extraction of 2-D/3-D geometric
information from image data7),8), for which we often need to estimate parame-
ters from observations that should satisfy implicit polynomials in the absence of
noise. For such a problem, maximum likelihood (ML) is known to produce highly
accurate solutions, achieving the theoretical accuracy limit to a first approxima-
tion in the noise level3),8),10). However, ML requires iterative search, which does
not always converge unless started from a value sufficiently close to the solu-
tion. For this reason, various numerical schemes that can produce reasonably
accurate approximations have been extensively studied7). The simplest of such
schemes is algebraic distance minimization, or simply least squares (LS), which
minimizes the sum of the squares of polynomials that should be zero in the ab-
sence of noise. However, the accuracy of LS is very much limited. Recently, a
new approach for increasing the accuracy of LS has been proposed in several
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applications1),12),22)–24). In this paper, we call it HyperLS and present a unified
formulation and clarify various theoretical issues that have not been fully studied
so far.

Section 2 defines the mathematical framework of the problem with illustrating
examples. Section 3 introduces a statistical model of observation. In Section 4,
we discuss various issues of ML. Section 5 describes a general framework of al-
gebraic fitting. In Sections 6 and 7, we do a detailed error analysis of algebraic
fitting in general and in Section 8 derive expressions of covariance and bias of the
solution. In Section 9, we define HyperLS by choosing the scale normalization
that eliminates the bias up to second order noise terms. In Section 10, we do
numerical experiments to show that HyperLS is far superior to the standard LS
and is comparable in accuracy to ML, which implies that HyperLS is a perfect
candidate for initializing the ML iterations. In Section 11, we conclude.

2. Geometric Fitting

The term “image data” in this paper refers to values extracted from images
by image processing operations such as edge filters and interest point detectors.
An example of image data includes the locations of points that have special
characteristics in the images or the lines that separate image regions having
different properties. We say that image data are “noisy” in the sense that image
processing operations for detecting them entail uncertainty to some extent. Let
x1, . . . xN be noisy image data, which we regard as perturbations in their true
values x̄1, . . ., x̄N that satisfy implicit geometric constraints of the form

F (k)(x;θ) = 0, k = 1, . . . , L. (1)

The unknown parameter θ allows us to infer the 2-D/3-D shape and motion of
the objects observed in the images7),8). We call this type of problem geometric
fitting8). In many vision applications, we can reparameterize the problem to
make the functions F (k)(x; θ) linear in θ (but generally nonlinear in x), allowing
us to write Eq. (1) as

(ξ(k)(x), θ) = 0, k = 1, . . . , L, (2)

where and hereafter (a, b) denotes the inner product of vectors a and b. The
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Fig. 1 (a) Fitting an ellipse to a point sequence. (b) Computing the fundamental matrix from corresponding points between two
images. (c) Computing a homography between two images.

vector ξ(k)(x) represents a nonlinear mapping of x.
Example 1 (Ellipse fitting). Given a point sequence (xα, yα), α = 1, . . . N ,
we wish to fit an ellipse of the form

Ax2 + 2Bxy + Cy2 + 2(Dx + Ey) + F = 0. (3)
(Fig. 1(a)). If we let

ξ = (x2, 2xy, y2, 2x, 2y, 1)>, θ = (A,B,C,D,E, F )>, (4)

the constraint in Eq. (3) has the form of Eq. (2) with L = 1.
Example 2 (Fundamental matrix computation). Corresponding points
(x, y) and (x′, y′) in two images of the same 3-D scene taken from different posi-
tions satisfy the epipolar equation7)

(x, Fx′) = 0, x ≡ (x, y, 1)>, x′ ≡ (x′, y′, 1′)>, (5)

where F is called the fundamental matrix , from which we can compute the camera
positions and the 3-D structure of the scene7),8) (Fig. 1(b)). If we let

ξ = (xx′, xy′, x, yx′, yy′, y, x′, y′, 1)>,

θ = (F11, F12, F13, F21, F22, F23, F31, F32, F33)>, (6)

the constraint in Eq. (5) has the form of Eq. (2) with L = 1.
Example 3 (Homography computation). Two images of a planar or in-
finitely far away scene are related by a homography of the form

x′ ' Hx, x ≡ (x, y, 1)>, x′ ≡ (x′, y′, 1′)>, (7)

where H is a nonsingular matrix, and ' denotes equality up to a nonzero mul-

tiplier7),8) (Fig. 1(c)). We can alternatively express Eq. (7) as the vector product
equality

x′ × Hx = 0. (8)
If we let

ξ(1) = (0, 0, 0,−x,−y,−1, xy′, yy′, y′)>,

ξ(2) = (x, y, 1, 0, 0, 0,−xx′,−yx′,−x′)>,

ξ(3) = (−xy′,−yy′,−y′, xx′, yx′, x′, 0, 0, 0)>, (9)
θ = (H11,H12,H13,H21,H22,H23,H31,H32,H33)>, (10)

the three components of Eq. (8) have the form of Eq. (2) with L = 3. Note
that ξ(1), ξ(2), and ξ(3) in Eq. (9) are linearly dependent; only two of them are
independent.

3. Statistical Model of Observation

Before proceeding to the error analysis of the above problems, we need to intro-
duce a statistical model of observation. We regard each datum xα as perturbed
from its true value x̄α by ∆xα, which we assume to be independent Gaussian
noise of mean 0 and covariance matrix V [xα]. We do not impose any restrictions
on the true values x̄α except that they should satisfy Eq. (1). This is known
as a functional model. We could alternatively introduce some statistical model
according to which the true values x̄α are sampled. Then, the model is called
structural . This distinction is crucial when we consider limiting processes in the
following sense10).

Conventional statistical analysis mainly focuses on the asymptotic behavior as
the number of observations increases to ∞. This is based on the reasoning that
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the mechanism underlying noisy observations would better reveal itself as the
number of observations increases (the law of large numbers) while the number of
available data is limited in practice. So, the estimation accuracy vs. the number
of data is a major concern. In this light, efforts have been made to obtain a con-
sistent estimator for fitting an ellipse to noisy data or computing the fundamental
matrix from noisy point correspondences such that the solution approaches its
true value in the limit N → ∞ of the number N of the data17),18).

In image processing applications, in contrast, one cannot “repeat” observa-
tions. One makes an inference given a single set of images, and how many times
one applies image processing operations, the result is always the same, because
standard image processing algorithms are deterministic; no randomness is in-
volved. This is in a stark contrast to conventional statistical problems, where
we view observations as “samples” from potentially infinitely many possibilities
and could obtain, by repeating observations, different values originating from
unknown, uncontrollable, or unmodeled causes, which we call “noise” as a whole.

In image-based applications, the accuracy of inference deteriorates as the un-
certainty of image processing operations increases. Thus, the inference accuracy
vs. the uncertainty of image operations, which we call “noise” for simplicity, is a
major concern. Usually, the noise is very small, often subpixel levels. In light of
this observation, it has been pointed out that in image domains the “consistency”
of estimators should more appropriately be defined by the behavior in the limit
σ → 0 of the noise level σ3),10).

In this paper, we are interested in image processing applications and focus on
the perturbation analysis around σ = 0 with the number N of data fixed. Thus,
the functional model suits our purpose. If we want to analyze the error behavior
in the limit of N → ∞, we need to assume some structural model that specifies
how the statistical characteristics of the data depend on N . The derivation of
consistent estimators for N → ∞ is based on such an assumption17),18). However,
it is difficult to predict the noise characteristics for different N . Image processing
filters usually output a list of points or lines or their correspondences along with
their confidence values, from which we use only those with high confidence. If
we want to collect a lot of data, we necessarily need to include those with low
confidence, but their statistical properties are hard to estimate, since such data

are possibly misdetections. This is the most different aspect of image processing
from laboratory experiments, in which any number of data can be collected by
repeated trials.

4. Maximum Likelihood for Geometric Fitting

Under the Gaussian noise model, maximum likelihood (ML) of our problem
can be written as the minimization of the Mahalanobis distance

I =
N∑

α=1

(x̄α − xα, V [xα]−1(x̄α − xα)), (11)

with respect to x̄α subject to the constraint that

(ξ(k)(x̄α), θ) = 0, k = 1, . . . , L, (12)

for some θ. If the noise is homogeneous and isotropic, Eq. (11) is the sum of the
squares of the geometric distances between the observations xα and their true
values x̄α, often referred to as the reprojection error7). That name originates
from the following intuition: We infer the 3-D structure of the scene from its
projected images, and when the inferred 3-D structure is “reprojected” onto the
images, Eq. (11) measures the discrepancy between the “reprojections” of our
solution and the actual observations.

In statisitcs, ML is criticized for its lack of consistency17),18). In fact, estimation
of the true values x̄α, called nuisance parameters when viewed as parameters,
is not consistent as N → ∞ in the ML framework, as pointed out by Neyman
and Scott21) as early as in 1948. As discussed in the preceding section, however,
the lack of consistency has no realistic meaning in vision applications. On the
contrary, ML has very desirable properties in the limit σ → 0 of the noise level
σ: the solution is “consistent” in the sense that it converges to the true value
as σ → 0 and “efficient” in the sense that its covariance matrix approaches a
theoretical lower bound as σ → 03),8),10).

According to the experience of many vision researchers, ML is known to pro-
duce highly accurate solutions7), and no necessity is felt for further accuracy
improvement. Rather, a major concern is its computational burden, because ML
usually requires complicated nonlinear optimization.
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The standard approach is to introduce some auxiliary parameters to express
each of x̄α explicitly in terms of θ and the auxiliary parameters. After they are
substituted back into Eq. (11), the Mahalanobis distance I becomes a function of
θ and the auxiliary parameters. Then, this joint parameter space, which usually
has very high dimensions, is searched for the minimum. This approach is called
bundle adjustment7),27), a term originally used by photogrammetrists. This is
very time consuming, in particular if one seeks a globally optimal solution by
searching the entire parameter space exhaustively6).

A popular alternative to bundle adjustment is minimization of a function of θ

alone, called the Sampson error7), which approximates the minimum of Eq. (11)
for a given θ (the actual expression is shown in Section 6). Kanatani and Sug-
aya16) showed that the exact ML solution can be obtained by repeating Sampson
error minimization, each time modifying the Sampson error so that in the end
the modified Sampson error coincides with the Mahalanobis distance. It turns
out that in many practical applications the solution that minimizes the Sampson
error coincides with the exact ML solution up to several significant digits; usually,
two or three rounds of Sampson error modification are sufficient11),14),15).

However, minimizing the Sampson error is not straightforward. Many numer-
ical schemes have been proposed, including the FNS (Fundamental Numerical
Scheme) of Chojnacki et al.4), the HEIV (Heteroscedastic Errors-in-Variable) of
Leedan and Meer19) and Matei and Meer20), and the projective Gauss-Newton
iterations of Kanatani and Sugaya13). All these rely on local search, but the iter-
ations do not always converge if not started from a value sufficiently close to the
solution. Hence, accurate approximation schemes that do not require iterations
are very much desired, even though the solution may not be optimal, and various
algebraic methods have been studied in the past.

5. Algebraic Fitting

For the sake of brevity, we abbreviate ξ(k)(xα) as ξ(k)
α . Algebraic fitting refers

to minimizing the algebraic distance

J =
1
N

N∑
α=1

L∑
k=1

(ξ(k)
α , θ)2 =

1
N

N∑
α=1

L∑
k=1

θ>ξ(k)
α ξ(k)>

α θ = (θ,Mθ), (13)

where we define

M =
1
N

N∑
α=1

L∑
k=1

ξ(k)
α ξ(k)>

α . (14)

Equation (13) is trivially minimized by θ = 0 unless some scale normalization
is imposed on θ. The most common normalization is ‖θ‖ = 1, which we call
the standard LS . However, the solution depends on the normalization. So, we
naturally ask: What normalization will maximize the accuracy of the solution?
This question was raised first by Al-Sharadqah and Chernov1) and Rangarajan
and Kanatani23) for circle fitting, then by Kanatani and Rangarajan12) for ellipse
fitting and by Niitsuma et al.22) for homography computation. In this paper, we
generalize these results to an arbitrary number of constraints. Following these
authors1),12),22),23), we consider the class of normalizations

(θ, Nθ) = c, (15)
with some symmetric matrix N for a nonzero constant c. In Eq. (15), θ is the
optimization parameter and N is an unknown matrix to be determined, while the
constant c is fixed for the problem. We need not specify the value of c, because N

is unknown. Since Eq. (15) can be written as (θ, (N/c)θ) = 1, we may determine
N ′ = N/c instead of N , but the form of Eq. (15) with c unspecified is more
convenient in our analysis.

Traditionally, the matrix N is positive definite or semidefinite, but in the fol-
lowing, we allow N to be nondefinite (i.e., neither positive nor negative definite),
so the constant c in Eq. (15) is not necessarily positive. The standard treatment
of algebraic fitting goes as follows. Given the matrix N , the solution θ that
minimizes Eq. (13) subject to Eq. (15), if it exists, is given by the solution of the
generalized eigenvalue problem

Mθ = λNθ. (16)
Note that M is always positive semidefinite from its definition in Eq. (14). If
there is no noise in the data, we have (θ, ξ(k)

α ) = 0 for all k and α. Hence, Eq. (14)
implies Mθ = 0, so λ = 0. In the presence of noise, M is positive definite, so
λ is positive whether N is positive definite or semidefinite. The corresponding
solution is obtained as the eigenvector θ for the smallest λ. For the standard LS,
for which N = I, Eq. (16) becomes an ordinary eigenvalue problem
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Mθ = λθ, (17)
and the solution is the unit eigenvector θ of M for the smallest eigenvalue λ.

This is the traditional treatment of algebraic fitting, but the situation is slightly
different here: N is not yet given and can be nondefinite, and the eigenvalues of
Eq. (16) may not be all positive. So, we face the problem of which eigenvalues
and eigenvectors of Eq. (16) to choose as a solution. In the following, we do
perturbation analysis10) of Eq. (16) by assuming that λ ≈ 0 and choose the solu-
tion to be the eigenvector θ for the λ with the smallest absolute value, although
in theory there remains a possibility that another choice happens to produce a
better result in some cases. We also regard Eq. (16) as the definition of “alge-
braic fitting,” rather than Eq. (13) and Eq. (15). This is because, while Eq. (16)
always has a solution, Eq. (13) may not be minimized subject to Eq. (15) by a
finite θ. This can occur, for example, when the contour of (θ, Mθ), which is a
hyperellipsoid in the space of θ, happens to be elongated in a direction in the null
space of N . Then, the minimum of (θ, Mθ) could be reached in the limit of ‖θ‖
→ ∞. Note that Eq. (15) is unable to normalize the norm ‖θ‖ into a finite value
if N has a null space. Theoretically, such an anomaly can always occur because
M is a random variable defined by noisy data, and if the probability of such
an occurrence is nearly 0, it may still lead to E[‖θ̂‖] = ∞2). Once the problem
is converted to Eq. (16), for which eigenvectors θ have scale indeterminacy, we
can adopt normalization ‖θ‖ = 1 rather than Eq. (13). Then, the solution θ is
always a unit vector.

6. Error Analysis

We can expand each ξ(k)
α in the form

ξ(k)
α = ξ̄

(k)
α + ∆1ξ

(k)
α + ∆2ξ

(k)
α + · · · , (18)

where ξ̄
(k)
α is the noiseless value, and ∆iξ

(k)
α is the ith order term in ∆xα. The

first order term is written as

∆1ξ
(k)
α = T (k)

α ∆xα, T (k)
α ≡ ∂ξ(k)(x)

∂x

∣∣∣∣∣
x=x̄α

. (19)

We define the covariance matrices of ξ(k)
α , k = 1, . . ., L, by

V (kl)[ξα] ≡ E[∆1ξ
(k)
α ∆1ξ

(l)>
α ] = T (k)

α E[∆xα∆x>
α ]T (l)>

α = T (k)
α V [xα]T (l)>

α ,

(20)

where E[ · ] denotes expectation.
The Sampson error that we mentioned in Section 4, which approximates the

minimum of the Mahalanobis distance in Eq. (11) subject to the constraints in
Eq. (12), has the following form7),8):

K(θ) =
1
N

N∑
α=1

L∑
k,l,=1

W (kl)
α (ξ(k)

α , θ)(ξ(l)
α , θ). (21)

Here, W
(kl)
α is the (kl) element of (V α)−r , and V α is the matrix whose (kl)

element is

V α =
(
(θ, V (kl)[ξα]θ)

)
, (22)

where the true data values x̄α in the definition of V (kl)[ξα] are replaced by their
observations xα. The operation ( · )−r denotes the pseudoinverse of truncated
rank r (i.e., with all eigenvalues except the largest r replaced by 0 in the spectral
decomposition), and r is the rank (the number of independent equations) of
the constraint in Eq. (12). The name “Sampson error” stems from the classical
ellipse fitting scheme of Sampson25). For given x

(k)
α , Eq. (21) can be minimized

by various means including the FNS4), HEIV19),20), and the projective Gauss-
Newton iteration13).

Example 4 (Ellipse fitting). For the ellipse fitting in Example 1, the first
order error ∆1ξ is written as

∆1ξα = 2

(
x̄α ȳα 0 1 0 0
0 x̄α ȳα 0 1 0

)> (
∆xα

∆yα

)
. (23)

The second order error ∆2ξα has the following form:

∆2ξα = (∆x2
α, 2∆xα∆yα, ∆y2

α, 0, 0, 0)>. (24)

Example 5 (Fundamental matrix computation). For the fundamental ma-
trix computation in Example 2, the first order error ∆1ξ is written as
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∆1ξα =


x̄′

α ȳ′
α 1 0 0 0 0 0 0

0 0 0 x̄′
α ȳ′

α 1 0 0 0
x̄α 0 0 ȳα 0 0 1 0 0
0 x̄α 0 0 ȳα 0 0 1 0


> 

∆xα

∆yα

∆x′
α

∆y′
α

 . (25)

The second order error ∆2ξα has the following form:

∆2ξα = (∆xα∆x′
α, ∆xα∆y′

α, 0, ∆yα∆x′
α, ∆yα∆y′

α, 0, 0, 0, 0)>. (26)

Example 6 (Homography computation). For the fundamental matrix com-
putation in Example 2, the first order error ∆1ξ is written as

∆1ξ
(1)
α =


0 0 0 −1 0 0 ȳ′

α 0 0
0 0 0 0 −1 0 0 ȳ′

α 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x̄α ȳα 1


> 

∆xα

∆yα

∆x′
α

∆y′
α

 ,

∆1ξ
(2)
α =


1 0 0 0 0 0 −x̄′

α 0 0
0 1 0 0 0 0 0 −x̄′

α 0
0 0 0 0 0 0 −x̄α −ȳα −1
0 0 0 0 0 0 0 0 0


> 

∆xα

∆yα

∆x′
α

∆y′
α

 ,

∆1ξ
(3)
α =


−ȳ′

α 0 0 x̄′
α 0 0 0 0 0

0 −ȳ′
α 0 0 x̄′

α 0 0 0 0
0 0 0 x̄α ȳα 1 0 0 0

−x̄α −ȳα −1 0 0 0 0 0 0


> 

∆xα

∆yα

∆x′
α

∆y′
α

 . (27)

The second order error ∆2ξ
(k)
α has the following form:

∆2ξ
(1)
α = (0, 0, 0, 0, 0, 0,∆xα∆y′

α, ∆yα∆y′
α, 0)>,

∆2ξ
(2)
α = (0, 0, 0, 0, 0, 0,−∆x′

α∆xα,−∆x′
α∆yα, 0)>,

∆2ξ
(3)
α = (−∆y′

α∆xα,−∆y′
α∆yα, 0, ∆x′

α∆xα,∆x′
α∆yα, 0, 0, 0, 0)>. (28)

7. Perturbation Analysis

Substituting Eq. (18) into Eq. (14), we obtain
M = M̄ + ∆1M + ∆2M + · · · , (29)

where

M̄ =
1
N

N∑
α=1

L∑
k=1

ξ̄
(k)
α ξ̄

(k)>
α , (30)

∆1M =
1
N

N∑
α=1

L∑
k=1

(ξ̄(k)
α ∆1ξ

(k)>
α + ∆1ξ

(k)
α ξ̄

(k)>
α ), (31)

∆2M =
1
N

N∑
α=1

L∑
k=1

(ξ̄(k)
α ∆2ξ

(k)>
α + ∆1ξ

(k)
α ∆1ξ

(k)>
α + ∆2ξ

(k)
α ξ̄

(k)>
α ). (32)

We also expand the solution θ and λ of Eq. (16) in the form
θ = θ̄ + ∆1θ + ∆2θ + · · · , λ = λ̄ + ∆1λ + ∆2λ + · · · . (33)

Substituting Eq. (29) and Eq. (33) into Eq. (16), we have
(M̄ + ∆1M + ∆2M + · · ·)(θ̄ + ∆1θ + ∆2θ + · · ·)
= (λ̄ + ∆1λ + ∆2λ + · · ·)N(θ̄ + ∆1θ + ∆2θ + · · ·). (34)

Note that N is a variable to be determined, not a given function of observations,
so it is not expanded. Since we consider perturbations near the true values, the
resulting matrix N may be a function of the true data values. In that event, we
replace the true data values by their observations and do an a posteriori analysis
to see how this affects the accuracy. For the moment, we regard N as an unknown
variable. From a strictly mathematical point of view, the two sides of Eq. (34)
may not define an absolutely convergent series expansion. Here, we do not go into
such a theoretical question; we simply test the usefulness of the final results by
experiments a posteriori, as commonly done in physics and engineering. At any
rate, we are concerned with only up to the second order terms in the subsequent
analysis.

Equating terms of the same order in Eq. (34), we obtain
M̄θ̄ = λ̄Nθ̄, (35)
M̄∆1θ + ∆1Mθ̄ = λ̄N∆1θ + ∆1λNθ̄, (36)
M̄∆2θ + ∆1M∆1θ + ∆2Mθ̄ = λ̄N∆2θ + ∆1λN∆1θ + ∆2λNθ̄. (37)

We have M̄θ̄ = 0 for the true values, so λ̄ = 0. From Eq. (31), we have
(θ̄, ∆1M̄θ̄) = 0. Computing the inner product of Eq. (36) and θ̄ on both sides,
we see that ∆1λ = 0. Multiplying Eq. (36) by the pseudoinverse M̄

− of M̄ from
left, we obtain
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∆1θ = −M̄
−∆1Mθ̄. (38)

Note that since M̄θ̄ = 0, the matrix M̄
−

M̄ (≡ P θ̄) is the projection operator
in the direction orthogonal to θ̄. Also, equating the first order terms in the
expansion ‖θ̄ + ∆1θ + ∆2θ + · · · ‖2 = 1 shows (θ̄, ∆1θ) = 010), hence P θ̄∆1θ =
∆1θ. Substituting Eq. (38) into Eq. (37) and computing its inner product with
θ̄ on both sides, we obtain

∆2λ =
(θ̄, ∆2Mθ̄) − (θ̄, ∆1MM̄

−∆1Mθ̄)
(θ̄, Nθ̄)

=
(θ̄, T θ̄)
(θ̄, Nθ̄)

, (39)

where we put

T = ∆2M − ∆1MM̄
−∆1M . (40)

Next, we consider the second order error ∆2θ. Since θ is normalized to unit
norm, we are interested in the error component orthogonal to θ̄. So, we consider

∆⊥
2 θ ≡ P θ̄∆2θ (= M̄

−
M̄∆2θ). (41)

Multiplying Eq. (37) by M̄
− from left and substituting Eq. (38), we obtain

∆⊥
2 θ = ∆2λM̄

−
Nθ̄ + M̄

−∆1MM̄
−∆1Mθ̄ − M̄

−∆2Mθ̄

=
(θ̄,T θ̄)
(θ̄, Nθ̄)

M̄
−

Nθ̄ − M̄
−

T θ̄. (42)

8. Covariance and Bias

8.1 Covariance Analysis
From Eq. (38), the covariance matrix V [θ] of the solution θ has the leading

term

V [θ] = E[∆1θ∆1θ
>] =

1
N2

M̄
−

E[(∆1Mθ)(∆1Mθ)>]M̄−

=
1

N2
M̄

−
E

[ N∑
α=1

L∑
k=1

(∆ξ(k)
α , θ)ξ̄(k)

α

N∑
β=1

L∑
l=1

(∆ξ
(l)
β , θ)ξ̄(l)>

β

]
M̄

−

=
1

N2
M̄

−
N∑

α,β=1

L∑
k,l=1

(θ, E[∆ξ(k)
α ∆ξ

(l)>
β ]θ)ξ̄(k)

α ξ̄
(l)>
β M̄

−

=
1

N2
M̄

−
( N∑

α=1

L∑
k,l=1

(θ, V (kl)[ξα]θ)ξ̄(k)
α ξ̄

(l)>
α

)
M̄

−

=
1
N

M̄
−

M̄
′
M̄

−
, (43)

where we define

M̄
′ =

1
N

N∑
α=1

L∑
k,l=1

(θ, V (kl)[ξα]θ)ξ̄(k)
α ξ̄

(l)>
α (44)

In the above derivation, we have noted that from our noise assumption we have
E[∆1ξ

(k)
α ∆1ξ

(l)>
β ] = δαβV (kl)[ξα], where δαβ is the Kronecker delta.

8.2 Bias Analysis
The important observation is that the covariance matrix V [θ] does not contain

N . Thus, all algebraic methods have the same covariance matrix in the leading
order , as pointed out by Al-Sharadqah and Chernov1) for circle fitting. This
observation leads us to focus on the bias. We now seek an N that reduces the
bias as much as possible. It would be desirable if we could find such an N that
minimizes the total mean square error E[‖∆1θ+∆2θ+· · · ‖2], but at the moment
this seems to be an intractable problem; minimizing the bias alone is a practical
compromise, whose effectiveness is tested by experiments a posteriori.

From Eq. (38), we see that the first order bias E[∆1θ] is 0, hence the leading
bias is E[∆⊥

2 θ]. From Eq. (42), we have

E[∆⊥
2 θ] =

(θ̄, E[T ]θ̄)
(θ̄, Nθ̄)

M̄
−

Nθ̄ − M̄
−

E[T ]θ̄. (45)

We now evaluate the expectation E[T ] of T in Eq. (40). From Eq. (32), we see
that E[∆2M ] is given by

E[∆2M ] =
1
N

N∑
α=1

L∑
k=1

(
ξ̄

(k)
α E[∆2ξ

(k)
α ]>+E[∆1ξ

(k)
α ∆1ξ

(k)>
α ]+E[∆2ξ

(k)
α ]ξ̄(k)>

α

)
=

1
N

N∑
α=1

L∑
k=1

(
V (kk)[ξα]+2S[ξ̄(k)

α e(k)>
α ]

)
, (46)
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where we have used Eq. (20) and defined

e(k)
α ≡ E[∆2ξ

(k)
α ]. (47)

The operator S[ · ] denotes symmetrization (S[A] = (A + A>)/2). The expecta-
tion E[∆1MM̄

−∆1M ] has the following form (see Appendix):

E[∆1MM̄
−∆1M ] =

1
N2

N∑
α=1

L∑
k,l=1

(
tr[M̄−

V (kl)[ξα]]ξ̄(k)
α ξ̄

(l)>
α

+(ξ̄(k)
α , M̄

−
ξ̄

(l)
α )V (kl)[ξα] + 2S[V (kl)[ξα]M̄−

ξ̄
(k)
α ξ̄

(l)>
α ]

)
. (48)

From Eq. (46) and Eq. (48), the expectation of T is

E[T ] = NT − 1
N2

N∑
α=1

L∑
k,l=1

(
tr[M̄−

V (kl)[ξα]]ξ̄(k)
α ξ̄

(l)>
α

+(ξ̄(k)
α ,M̄

−
ξ̄

(l)
α )V (kl)[ξα] + 2S[V (kl)[ξα]M̄−

ξ̄
(k)
α ξ̄

(l)>
α ]

)
, (49)

where we put

NT =
1
N

N∑
α=1

L∑
k=1

(
V (kk)[ξα] + 2S[ξ̄(k)

α e(k)>
α ]

)
. (50)

9. HyperLS

Now, let us choose N to be the expression E[T ] in Eq. (49) itself, namely,

N = NT−
1

N2

N∑
α=1

L∑
k,l=1

(
tr[M̄−

V (kl)[ξα]]ξ̄(k)
α ξ̄

(l)>
α +(ξ̄(k)

α , M̄
−

ξ̄
(l)
α )V (kl)[ξα]

+2S[V (kl)[ξα]M̄−
ξ̄

(k)
α ξ̄

(l)>
α ]

)
, (51)

Letting N = E[T ] in Eq. (45), we see that

E[∆⊥
2 θ] = M̄

−
( (θ̄, Nθ̄)

(θ̄, Nθ̄)
N − N

)
θ̄ = 0. (52)

Since the right-hand side of Eq. (49) contains the true values ξ̄α and M̄ , we
replace x̄α in their definition by the observation xα. This does not affect the

result, since the odd order noise terms have expectation 0 and hence the resulting
error in E[∆⊥

2 θ] is of the fourth order. Thus, the second order bias is exactly 0.
In fitting a circle to a point sequence, Al-Sharadqah and Chernov1) proposed

to choose N = NT and showed that the second order bias E[∆⊥
2 θ] is zero up to

O(1/N2). They called their method Hyper . What we have shown here is that
the second order bias is completely removed by including the second term on the
right-hand side of Eq. (51). We call our scheme HyperLS .

Note that N has scale indeterminacy: If N is multiplied by c (6= 0), Eq. (16)
has the same solution θ; only λ is divided by c. Thus, the noise characteristics
V (kl)[ξα] in Eq. (20) and hence V [xα] need to be known only up to scale; we need
not know the absolute magnitude of the noise.

For numerical computation, standard linear algebra routines for solving the
generalized eigenvalue problem of Eq. (16) assume that N is positive definite,
but here N is nondefinite. This causes no problem, because Eq. (16) can be
written as

Nθ =
1
λ

Mθ. (53)

As mentioned earlier, the matrix M in Eq. (14) is positive definite for noisy
data, so we can solve Eq. (53) instead, using a standard routine. If the smallest
eigenvalue of M happens to be 0, it indicates that the data are all exact, so
any method, e.g., the standard LS, gives an exact solution. For noisy data, the
solution θ is given by the eigenvector of Eq. (53) for the eigenvalue 1/λ with the
largest absolute value.

Example 7 (Ellipse fitting). If the noise in (xα, yα) is independent and Gaus-
sian with mean 0 and standard deviation σ, the vector eα (= e(1)) in Eq. (47) is
given by

eα = σ2(1, 0, 1, 0, 0, 0)>. (54)

Hence, the matrix NT in Eq. (50) is given by

87



NT =
σ2

N

N∑
α=1



6x2
α 6xαyα x2

α + y2
α 6xα 2yα 1

6xαyα 4(x2
α + y2

α) 6xαyα 4yα 4xα 0
x2

α + y2
α 6xαyα 6y2

α 2xα 6yα 1
6xα 4yα 2xα 4 0 0
2yα 4xα 6yα 0 4 0
1 0 1 0 0 0


. (55)

The Taubin method26) is to use as N

NTaubin =
4σ2

N

N∑
α=1



x2
α xαyα 0 xα 0 0

xαyα x2
α + y2

α xαyα yα xα 0
0 xαyα y2

α 0 yα 0
xα yα 0 1 0 0
0 xα yα 0 1 0
0 0 0 0 0 0


, (56)

which we see is obtained by letting eα = 0 in Eq. (50). As pointed out earlier,
the value of σ in Eq. (55) and Eq. (56) need not be known. Hence, we can simply
let σ = 1 in Eq. (16) and Eq. (53) in actual computation.

Example 8 (Fundamental matrix computation). If the noise in (xα, yα)
and (x′

α, y′
α) is independent and Gaussian with mean 0 and standard deviation

σ, the vector eα (= e(1)) in Eq. (47) is 0, so the NT in Eq. (50) becomes

NT =
σ2

N

N∑
α=1



x2
α + x′2

α x′
αy′

α x′
α xαyα 0 0 xα 0 0

x′
αy′

α x2
α + y′2

α y′
α 0 xαyα 0 0 xα 0

x′
α y′

α 1 0 0 0 0 0 0
xαyα 0 0 y2

α + x′2
α x′

αy′
α x′

α yα 0 0
0 xαyα 0 x′

αy′
α y2

α + y′2
α y′

α 0 yα 0
0 0 0 x′

α y′
α 1 0 0 0

xα 0 0 yα 0 0 1 0 0
0 xα 0 0 yα 0 0 1 0
0 0 0 0 0 0 0 0 0


.

(57)

It turns out that the use of this matrix NT coincides with the well known Taubin
method26). As in ellipse fitting, we can let σ = 1 in Eq. (57) in actual computa-
tion.

Example 9 (Homography computation). If the noise in (xα, yα) and (x′
α, y′

α)
is independent and Gaussian with mean 0 and standard deviation σ, the vectors
e

(k)
α in Eq. (47) are all 0, so the NT in Eq. (50) becomes

NT =
σ2

N

N∑
α=1



x2
α + y′2

α + 1 xαyα xα −x′
αy′

α 0
xαyα y2

α + y′2
α + 1 yα 0 −x′

αy′
α

xα yα 1 0 0
−x′

αy′
α 0 0 x2

α + x′2
α + 1 xαyα

0 −x′
αy′

α 0 xαyα y2
α + x′2

α + 1
0 0 0 xα yα

−x′
α 0 0 −y′

α 0
0 −x′

α 0 0 −x′
α

0 0 0 0 0

0 −x′
α 0 0

0 0 −x′
α 0

0 0 0 0
xα −y′

α 0 0
yα 0 −y′

α 0
1 0 0 0
0 x2

α + x′2
α + y′2

α 2xαyα 2xα

0 2xαyα y2
α + x′2

α + y′2
α 2yα

0 2xα 2yα 2


, (58)

For homography computation, the constraint is a vector equation in Eq. (8).
Hence, the Taubin method26), which is defined for a single constraint equation,
cannot be applied. However, the use of the above NT as N plays the same role
of the Taubin method26) for ellipse fitting and fundamental matrix computation,
as first pointed out by Rangarajan and Papamichalis24). As before, we can let σ

= 1 in the matrix NT in actual computation.

In the following, we call the use of NT as N the Taubin approximation. For
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fundamental matrix computation, it coincides with the Taubin method26), but
for homography computation the Taubin method was not defined. For ellipse
fitting, the Taubin method and the Taubin approximation are slightly different;
the Taubin method is equivalent to use only the first term on the right hand
side of Eq. (50). For circle fitting, the Taubin approximation is the same as the
“Hyper” of Al-Sharadqah and Chernov1).

10. Numerical Experiments

We did the following three experiments:
Ellipse fitting: We fit an ellipse to the point sequence shown in Fig. 2(a). We

took 31 equidistant points on the first quadrant of an ellipse with major and
minor axes 100 and 50 pixels, respectively.

Fundamental matrix computation: We compute the fundamental matrix
between the two images shown in Fig. 2(b), which view a cylindrical grid
surface from two directions. The image size is assumed to be 600 × 600
(pixels) with focal lengths 600 pixels for both. The 91 grid points are used
as corresponding points.

Homography computation: We compute the homography relating the two
images shown in Fig. 2(c), which view a planar grid surface from two direc-
tions. The image size is assumed to be 800 × 800 (pixels) with focal lengths
600 pixels for both. The 45 grid points are used as corresponding points.

In all experiments, we divided the data coordinate values by 600 (pixels) (i.e., we
used 600 pixels as the unit of length) to make all the data values within the range
of about ±1. This is for stabilizing numerical computation with finite precision

(a) (b) (c)

Fig. 2 (a) 31 points on an ellipse. (b) Two views of a curved grid. (c) Two views of a planar grid.

θ

∆ θ

θ

O

Fig. 3 The true value θ̄, the computed value θ, and its
orthogonal component ∆θ to θ̄.

length; without this data scale normalization, serious accuracy loss is incurred,
as pointed out by Hartley5) for fundamental matrix computation.

For each example, we compared the standard LS, HyperLS, its Taubin approx-
imation, and ML, for which we used the FNS of Chojnacki et al.4) for ellipse
fitting and fundamental matrix computation and the multiconstraint FNS of Ni-
itsuma et al.22) for homography computation. As mentioned in Section 4, FNS
minimizes not directly Eq. (11) but the Sampson error in Eq. (21), and the exact
ML solution can be obtained by repeated Sampson error minimization16). The
the solution that minimizes the Sampson error usually agrees with the ML solu-
tion up to several significant digits11),14),15). Hence, FNS can safely be regarded
as minimizing Eq. (11).

Let θ̄ be the true value of the parameter θ, and θ̂ its computed value. We
consider the following error:

∆⊥θ = P θ̄θ̂, P θ̄ ≡ I − θ̄θ̄
>

. (59)

The matrix P θ̄ represents the orthogonal projection onto the space orthogonal
to θ̄. Since the computed value θ̂ is normalized to a unit vector, it distributes
around θ̄ on the unit sphere. Hence, the meaningful deviation is its component
orthogonal to θ̄, so we measure the error component in the tangent space to the
unit sphere at θ̄ (Fig. 3).

We added independent Gaussian noise of mean 0 and standard deviation σ to
the x and y coordinates of data each point and repeated the fitting M times for
each σ, using different noise. We let M = 10000 for ellipse fitting and fundamen-
tal matrix computation and M = 1000 for homography computation. Then, we
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Fig. 4 RMS error vs. the standard deviation σ of the noise added to each point: 1. standard LS, 2. Taubin approximation, 3.
HyperLS, 4. ML. The dotted lines indicate the KCR lower bound. (a) Ellipse fitting. (b) Fundamental matrix computation.
(c) Homography computation.

evaluated the root-mean-square (RMS) error

E =

√√√√ 1
M

M∑
a=1

‖∆⊥θ(a)‖2, (60)

where ∆θ(a) is the value of ∆θ in the ath trial. The theoretical accuracy limit,
called the KCR lower bound3),8),10), is given by

E[∆⊥θ∆⊥θ>] Â σ2

N

( 1
N

N∑
α=1

L∑
k,l=1

W̄ (kl)
α ξ̄

(k)
α ξ̄

(l)>
α

)−
≡ VKCR[θ], (61)

where W̄
(kl)
α is the value of W

(kl)
α in Eq. (21) evaluated by assuming σ = 1 and

using the true values θ̄ and ξ̄
(kl)
α . The relation Â means that the left-hand side

minus the right-hand side is a positive semidefinite symmetric matrix, and the
operation ( · )− denotes pseudoinverse. We compared the RMS error in Eq. (60)
with the trace Eq. (61):√

E[‖∆⊥θ‖2] ≥
√

trVKCR[θ]. (62)

Figure 4 plots for σ the RMS error of Eq. (60) for each method and the KCR
lower bound of Eq. (62).

We also compared the reprojection error for different methods. According to
statistics, the reprojection error I in Eq. (11) for ML is subject to a χ2 distribu-

tion with rN −d degrees of freedom, where r is the codimension of the constraint
and d is the dimension of the parameters8). Hence, if ML is computed by assum-
ing σ = 1, the square root of the average reprojection error per datum is expected
to be σ

√
r − d/N . Figure 5 plots the square root of the average, per datum, of

the computed reprojection error, which was approximated by the Sampson error
K(θ) in Eq. (21), along with the theoretical expectation.

We observe the following:
Ellipse fitting: The standard LS performs poorly, while ML exhibits the high-

est accuracy, almost reaching the KCR lower bound. However, ML compu-
tation fails to converge above a certain noise level. In contrast, HyperLS
produces, without iterations, an accurate solution close to ML. The accuracy
of its Taubin approximation is practically the same as the traditional Taubin
method and is slightly lower than HyperLS. Since r = 1, d = 5, the square
root of the average reprojection error per datum has theoretical expectation
σ
√

1 − 5/N to a first approximation. We see that the computed value almost
coincides with the expected value expect for the standard LS.

Fundamental matrix computation: Again, the standard LS is poor, while
ML has the highest accuracy, almost reaching the KCR lower bound. The
accuracy of HyperLS is very close to ML. Its Taubin approximation (= the
traditional Taubin method) has practically the same accuracy as HyperLS.
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Fig. 5 Root square average reprojection error per datum vs. the standard deviation σ of the noise added to each point: 1. standard
LS, 2. Taubin approximation, 3. HyperLS, 4. ML. The dotted lines indicate theoretical expectation. (a) Ellipse fitting.
(b) Fundamental matrix computation. (c) Homography computation.

The fundamental matrix has the constraint that its rank be 2. The compari-
son here is done before the rank constraint is imposed. Hence, r = 1, d = 8,
and the square root of the average reprojection error per datum is expected
to be σ

√
1 − 8/N . We see that the computed value almost coincides with

the expected value expect for the standard LS.
Homography computation: In this case, too, the standard LS is poor, while

ML has the highest accuracy, almost reaching the KCR lower bound. How-
ever, ML computation fails to converge above a certain noise level. The
accuracy of HyperLS is very close to ML. Its Taubin approximation has prac-
tically the same accuracy as HyperLS. Since r = 2, d = 4, the square root of
the average reprojection error per datum is expected to be σ

√
2(1 − 4/N).

We see that the computed value almost coincides with the expected value
expect for the standard LS.

In all examples, the standard LS performs poorly, while ML provides the highest
accuracy. Note that the differences among different methods are more marked
when measured in the RMS error than in the reprojection error. This is because
the RMS error measures the error of the parameters of the equation, while the
reprojection error measures the closeness of the fit to the data. For ellipse fit-
ting, for example, the RMS error compares the fitted ellipse equation and the
true ellipse equation, while the reprojection error measures how close the fitted
ellipse is to the data. As a result, even if two ellipse have nearly the same dis-

tances to the data, their shapes can be very different. This difference becomes
more conspicuous as the data cover a shorter segment of the ellipse. The same
observation can be done for fundamental matrix computation and homography
computation.

We also see from our experiments that ML computation may fail in the presence
of large noise. The convergence of ML critically depends on the accuracy of the
initialization. In the above experiments, we used the standard LS to start the
FNS iterations. We confirmed that the use of HyperLS to start the iterations
significantly extends the noise range of convergence, though the computation fails
sooner or later. On the other hand, HyperLS is algebraic and hence immune to
the convergence problem, producing a solution close in accuracy to ML in any
noise level.

The Taubin approximation is clearly inferior to HyperLS for ellipse fitting but is
almost equivalent to HyperLS for fundamental matrices and homographies. This
reflects the fact that while ξ is quadratic in x and y for ellipses (see Eq. (4)),
the corresponding ξ and ξ(k) are bilinear in x, y, x′, and y′ for fundamental
matrices (see Eq. (6)) and homographies (see Eq. (9)), so e

(k)
α in Eq. (47) is 0.

In structure-from-motion applications, we frequently do inference from multiple
images based on “multilinear” constraints involving homographies, fundamental
matrices, trifocal tensors, and other geometric quantities7). For such problems,
the constraint itself is nonlinear but is linear in observations of each image.
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Then, e
(k)
α = 0, because noise in different images are assumed to be independent.

In such a problem, the accuracy of HyperLS is nearly the same as its Taubin
approximation. However, HyperLS is clearly superior in a situation where the
constraint involves nonlinear terms in observations of the same image, e.g., ellipse
fitting.

11. Concluding Remarks

We have presented a general formulation for a special type of least squares
(LS) estimator, which we call “HyperLS,” for geometric problems that frequently
appear in vision applications. We described the problem in the most general
terms and discussed various theoretical issues that have not been fully studied
so far. In particular, we pointed out that the characteristics of image-based
inference is very different to the conventional statistical domains and discussed
in detail various issues related to ML and algebraic fitting. Then, we derived
HyperLS by introducing a normalization that eliminates statistical bias of LS up
to second order noise terms.

It would be ideal if we could minimize the total mean squares error by taking
all higher order terms into account. Due to technical difficulties, we limited our
attention to the bias up to the second order. Also, we introduced in our deriva-
tion several assumptions about the choice of the eigenvalues and the convergence
of series expansion. However, the purpose of this paper is not to establish math-
ematical theorems with formal proofs. Our aim is to derive techniques that are
useful in practical problems; the usefulness is to be tested by experiments.

Our numerical experiments for computing ellipses, fundamental matrices, and
homographies showed that HyperLS yields a solution far superior to the stan-
dard LS and comparable in accuracy to ML, which is known to produce highly
accurate solutions but may fail to converge if poorly initialized. Thus, HyperLS
is a perfect candidate for ML initialization. We compared the performance of
HyperLS and its Taubin approximation and attributed the performance differ-
ences to the structure of the problem. In this paper, we did not show real image
demos, concentrating on the general mathematical framework, because particular
applications have been shown elsewhere1),12),22),23).
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Appendix

The term E[∆1MM̄
−∆1M ] is computed as follows:
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Thus, Eq. (48) is obtained.
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