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Abstract: The technique of “renormalization” for geometric estimation attracted much attention when it appeared in
early 1990s for having higher accuracy than any other then known methods. The key fact is that it directly specifies
equations to solve, rather than minimizing some cost function. This paper expounds this “non-minimization approach”
in detail and exploits this principle to modify renormalization so that it outperforms the standard reprojection error
minimization. Doing a precise error analysis in the most general situation, we derive a formula that maximizes the
accuracy of the solution; we call it hyper-renormalization. Applying it to ellipse fitting, fundamental matrix compu-
tation, and homography computation, we confirm its accuracy and efficiency for sufficiently small noise. Our emphasis
is on the general principle, rather than on individual methods for particular problems.
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1. Introduction

One of the most fundamental tasks of computer vision is to com-
pute 2-D and 3-D shapes of objects from noisy observations based
on “geometric constraints,” by which we mean properties that
can be described by relatively simple equations such as the ob-
jects being lines or planes, their being parallel or orthogonal, and
the camera imaging geometry being perspective projection. Many
problems are formulated as follows. We observe N vector data x1,
. . ., xN , whose true values x̄1, . . ., x̄N are supposed to satisfy
equations in the form

F (k)(x; θ) = 0, k = 1, . . . , L, (1)

where θ is an unknown parameter vector which we want to esti-
mate. We call this type of problem simply “geometric estimation.”
In the traditional domains of statistics such as agriculture, phar-
maceutics, and economics, observations are regarded as repeated
“samples” from a parameterized probability density pθ(x), which
explains the underlying data generating mechanism; the task is to
estimate the parameter θ. We call this type of problem “statis-
tical estimation,” for which the minimization principle has been
a major tool. Namely, one chooses the value that minimizes a
specified cost function. The best known approach is maximum
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likelihood (ML), which minimizes the negative log-likelihood l =
−
PN

α=1 log pθ(xα). Recently, an alternative approach is more
and more in use: one directly solves specified equations, called
estimating equations [5], in the form of g(x1, . . . , xN , θ) = 0.
This approach can be viewed as an extension of the minimization
principle; ML corresponds to g(x1, . . . , xN , θ) = ∇θl, known as
the score. However, the estimating equations need not be the
gradient of any function; one can modify g(x1, . . . , xN , θ) as one
likes so that the resulting solution θ should have desirable proper-
ties (unbiasedness, consistency, efficiency, etc.). In this sense, the
estimating equation approach is more general and flexible, having
the possibility of providing a better solution than the minimiza-
tion principle.

In the domain of computer vision, the minimization principle, in
particular reprojection error minimization, is currently the norm
and called the Gold Standard [7]. A notable exception is renor-
malization of Kanatani [8], [9]: instead of minimizing some cost
function, it iteratively removes bias of weighted least squares. It
attracted much attention because it exhibited higher accuracy
than any other then known methods. However, questions were
repeatedly raised as to what it minimizes, perhaps out of the deep-
rooted preconception that optimal estimation should minimize
something. One answer was given by Chojnacki et al. [4], who
proposed an iterative scheme similar to renormalization, which
they called FNS (Fundamental Numerical Scheme), for mini-
mizing what is now referred to as the Sampson error [7]. Choj-
nacki et al. [3] argued that renormalization can be “rationalized”
if viewed as approximately minimizing the Sampson error. Leedan
and Meer [19] and Matei and Meer [20] also proposed a different it-
erative scheme, which they called HEIV (Heteroscedastic Errors-
in-Variables), for minimizing the Sampson error. Kanatani and
Sugaya [17] pointed out that the reprojection error can be min-
imized by repeated applications of Sampson error minimization:
the Sampson error is iteratively modified so that it agrees with
the reprojection error in the end. However, reprojection error

c© 2014 Information Processing Society of Japan 143



IPSJ Transactions on Computer Vision and Applications Vol.6 143–159 (Dec. 2014)

minimization, which is ML in statistical terms, still has some
bias. Kanatani [10], [11] and Kanatani and Sugaya [18] analyti-
cally evaluated the bias of the FNS solution and subtracted it; he
called his scheme hyperaccurate correction. Okatani and Deguchi
removed the bias of ML of particular types by analyzing the hy-
persurface defined by the constraint [21] and by using the method
of projected scores [22].

However, bias correction is already a departure from the mini-
mization principle. Namely, we correct the θ̂ that minimizes the
cost function so that it approaches the true value θ̄ in expectation.
As a result, the value of the cost function increases (Fig. 1).
Then, why not directly compute, by some means, that optimal
value from the beginning? This is the motivation of the “non-
minimization approach,” directly specifying equations to solve
rather than minimizing some cost function. In this paper, we
expound this principle in detail and modify renormalization so
that it outperforms the standard reprojection error minimization.
Doing a precise high order error analysis using the perturbation
technique of Kanatani [11] and Al-Sharadqah and Chernov [1], we
derive a formula that maximizes the accuracy of the solution; we
call it hyper-renormalization. Partly, this has already been done
in the single constraint case, such as ellipse fitting, by Kanatani
et al. [12]. Here, we extend this principle to the most general
multiple constraint case.

In Section 2, we summarize the fundamentals of geometric esti-
mation. In Section 3, we state our noise modeling and in Section
4 introduce our non-minimization approach. In Section 5, we de-
scribe the iterative reweight, the most primitive form of the non-
minimization approach. In Section 6, we reformulate Kanatani’s
renormalization, which can be interpreted as an iterative improve-
ment of the method of Taubin [26]. In Sections 7 and 8, we do
a detailed error analysis of the problem. In Section 9, we derive
the procedure of hyper-renormalization as an iterative improve-
ment of what is called HyperLS [13], [14], [24]. In Section 10,
we summarize the non-minimization approach. In Section 11, we
apply our technique to ellipse fitting, fundamental matrix com-
putation, and homography computation to demonstrate that it
indeed outperforms reprojection error minimization. In Section
12, we conclude that hyper-renormalization is the best strategy
we can take in terms of accuracy and efficiency for sufficiently
small noise. Our emphasis is on the general principle, rather than
on individual methods for particular problems.

2. Geometric Estimation

The functions F (k)(x; θ) in Eq. (1) is generally nonlinear in x
and θ, but in many practical problems the problem can be repa-
rameterized so that F (k)(x; θ) linear in θ (but nonlinear in x),
allowing us to write Eq. (1) as

θ
θθ

J(θ)

Fig. 1 If the value θ̂ that minimizes the cost function J(θ) is biased

from the true value θ̄, we correct θ̂ so that it approaches θ̄ in
expectation. As a result, the value of J(θ) increases.

(ξ(k)(x), θ) = 0, k = 1, . . . , L, (2)

where and hereafter (a, b) denotes the inner product of vectors
a and b. This is made possible by regarding the “coefficients” of
multiple nonlinear terms in F (k)(x; θ) as the unknown parameter
vector θ (see the examples below). The vector ξ(k)(x) is some
nonlinear mapping of x from Rm to Rn, where m and n are the
dimensions of the data xα and the parameter θ, respectively, and
the ith component ξ

(k)
i (x) of ξ(k)(x) is the term in Eq. (1) that

is multiplied by the ith component θi of θ. Those terms that
do not involve θ are regarded as multiplied by a constant, which
we also regard as one component of θ, as shown in the examples
below. We further assume that the L vectors ξ(k)(x) need not be
linearly independent. We call the number r of independent ones
the rank of the constraint. Since the vector θ in Eq. (2) has scale
indeterminacy, we normalize it to unit norm: ‖θ‖ = 1.

Example 1 (Ellipse fitting). Given a point sequence (xα, yα),
α = 1, . . ., N , we wish to fit an ellipse of the form (Fig. 2(a))

Ax2 + 2Bxy + Cy2 + 2f0(Dx + Ey) + f2
0 F = 0, (3)

where f0 is a fixed constant. If we let

ξ = (x2, 2xy, y2, 2f0x, 2f0y, f2
0 )>, θ = (A, B, C, D, E, F )>,

(4)

the ellipse equation has the form of Eq. (2) with L = 1.

Example 2 (Fundamental matrix computation). Corre-
sponding points (x, y) and (x′, y′) in two images of the same 3-D
scene taken from different positions satisfy the epipolar equation
[7]
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where F is a matrix of rank 2 called the fundamental matrix ,
from which we can compute the camera positions and the 3-D
structure of the scene [9] (Fig. 2(b)), and f0 is a fixed constant. If
we let

ξ=(xx′, xy′, f0x, yx′, yy′, f0y, f0x
′, f0y

′, f2
0 )>,

θ=(F11, F12, F13, F21, F22, F23, F31, F32, F33)>, (6)

the epipolar equation has the form of Eq. (2) with L = 1.

Example 3 (Homography computation). Two images of a
planar or infinitely far away scene are related by a homography of
the form

x′ = f0
h11x + h12y + h13f0

h31x + h32y + h33f0
, y′ = f0

h21x + h22y + h23f0

h31x + h32y + h33f0
,

(7)

where f0 is a fixed constant. In matrix form, Eq. (7) is equiva-
lently rewritten as
0
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Fig. 2 (a) Fitting an ellipse to a point sequence. (b) Computing the fundamental matrix from cor-
responding points between two images. (c) Computing a homography between two images.

where ' denotes equality up to a nonzero multiplier. Noting that
Eq. (8) means that the vectors on both sides are parallel to each
other, we can alternatively write
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If we let

ξ(1)=(0, 0, 0,−f0x,−f0y,−f2
0 , xy′, yy′, f0y

′)>,

ξ(2)=(f0x, f0y, f2
0 , 0, 0, 0,−xx′,−yx′,−f0x

′)>,

ξ(3)=(−xy′,−yy′,−f0y
′, xx′, yx′, f0x

′, 0, 0, 0)>, (10)

θ = (h11 h12 h13 h21 h22 h23 h31 h32 h33)>, (11)

the three components of Eq. (9) have the form of Eq. (2) with
L = 3. Note that ξ(1), ξ(2), and ξ(3) in Eq. (10) are linearly
dependent ; only two of them are independent, so the rank is r =
2.

In the above examples, the constant f0 is a reference length to
stabilize numerical computation. It has been well known that care
is necessary to minimize the inevitable information loss caused by
computation with a limited number of significant digits. A widely
known rule of thumb is to subtract a common value from the data
so that each datum has as many different digits as possible and to
measure all physical quantities relative to a fixed reference scale
so that the values used in the computation have approximately
the same order of magnitude. This was reiterated by Hartley [6]
for fundamental matrix computation. Here, we choose f0 to be of
the approximate magnitude of the data xα and yα, for which we
define an xy image coordinate system with origin at the center of
the frame.

Note that our analysis is based on a particular description of
the problem at hand with particular parameterization in the form
of Eq. (2). For example, an ellipse can be described in many dif-
ferent forms other than Eq. (3), e.g., in polar coordinates, and we
may be able to do better estimation with another description. In
this paper, however, we start our analysis with a given description
and try to obtain a solution as accurately as possible for that de-
scription. We do not go into the issue of how we can best describe
the problem; we merely adopt forms commonly used in practice.

3. Noise Modeling

The goal of our geometric estimation is to infer the values that
we would obtain if observation were noiseless based on the ge-
ometric constraints and the statistical properties of the noise.
Hence, the assumption on the noise is essential. In the context
of image analysis, however, “noise” means uncertainty of image

processing operations, rather than random fluctuations over time
or space as commonly understood in physics and communications.
This reflects the fact that available image processing operations
are not perfect and do not necessarily output exactly what we are
looking for.

In this paper, we assume that data acquisition using image pro-
cessing operations such as feature extraction and edge detection
is, although not perfect, fairly accurate and obtained data con-
centrate around their true values. In other words, we assume that
the noise is fairly small. We model such situations by regarding
each datum xα as deviated from its true value x̄α by indepen-
dent Gaussian noise of mean 0 and covariance matrix V [xα] =
σ2V0[xα], where V0[xα] is a known matrix that specifies the direc-
tional dependence of the noise and σ is an unknown constant that
specifies the absolute magnitude; we call V0[xα] the normalized
covariance matrix , and σ the noise level .

The separation of V [xα] into σ2 and V0[xα] is merely a matter
of convenience; there is no fixed rule. This convention is moti-
vated by the fact that estimation of the absolute magnitude of
data uncertainty is very difficult in practice, while optimal esti-
mation can be done, as shown shortly, only from the knowledge
of V0[xα]. If the noise distribution is homogeneous, i.e., the same
for all xα, and isotropic, i.e. the same for all directions, we can
let V0[xα] = I (the identity).

In real applications, there are many situations to which the
Gaussian noise modeling does not apply. In fact, data uncer-
tainty may not be modelled by any probability distribution, and
we need to consider erroneous measurements generally known as
“outliers.” In situations where all the data are fairly accurate, on
the other hand, we may safely regard the uncertainty as having
Gaussian or approximately Gaussian distributions. In this paper,
we consider such situations and do not go into the issue of outliers.

4. Non-minimization Approach

We reiterate our goal: appropriately assuming the statistical
properties of the noise, we infer from noisy observations the val-
ues that should satisfy given constraints in the absence of noise.
This problem could be reduced to minimization of some cost func-
tion J(θ), but we need not necessarily do so.

The minimization approach relies on the knowledge that the
value θ that minimizes the given cost function J(θ) is expected,
either theoretically or experimentally, to be close to the true value
θ̄. However, how close it is is determined by the function J(θ)
and is not of our control. In contrast, the non-minimization ap-
proach directly gives a procedure for computing θ, for which the
following three stages are involved:
( 1 ) Devise a scheme for computing θ̄ from the data xα, assuming

that they have noiseless values x̄α.
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( 2 ) Substitute xα = x̄α + ∆xα in the scheme and evaluate the
error ∆θ of the computed value θ = θ̄ + ∆θ in terms of the
noise components ∆xα.

( 3 ) Modify the scheme so that ∆θ is minimized in some sense,
e.g., reducing its RMS and/or bias.

The core is Stage 1, which makes the non-minimization approach
possible, because geometry is exact if the observation is exact .
Namely, we can compute the true geometry for exact data. This
is a big contrast to the traditional statistical domains, such as
agriculture, pharmaceutics, and economics, in which what is go-
ing on is uncertain from the beginning, hence statistical inference
is called for. As a result, such concepts as “exact observation”
and “exact solution” do not make sense.

Stage 2 can be done by the well kwon perturbation analysis,
also called “error propergation,” because we know the underlying
exact geometry , although usually tedious and messy calculus is
required. The perturbation analysis is done by expanding quanti-
ties in the noise level σ and omitting higher order terms in σ. This
is justified because we are focusing on the uncertainty behavior in
a small noise range.

Stage 3 is not obvious and is the most difficult part; we need to
introduce ingenious and clever tricks. For example, if the scheme
contains a constant that does not affect the final result if all the
data are exact yet influences the computation in the presence of
noise, its value is optimally chosen so that the highest accuracy
is achieved.

One side effect is this non-minimization formalism based on
error analysis is that when the final computational procedure is
presented, it is often difficult to grasp its intuitive meaning, as
we will see later. Perhaps, this is the main reason that this ap-
proach has been not so popular or widely accepted in the domain
of computer vision.

Since we write the constraint in the form of Eq. (2), we work
in the domain of ξ(x) rather than x. Let us write ξ(xα) simply
as ξα. It can be expanded in the form

ξ(k)
α = ξ̄

(k)
α + ∆1ξ

(k)
α + ∆2ξ

(k)
α + · · · , (12)

where and hereafter bars indicate terms without noise and the
symbol ∆m means mth order terms O(σm). Using the Jacobian
matrix of the mapping ξ(k)(x), we can express the first order noise
term ∆1ξ

(k)
α in terms of the original noise terms ∆xα as follows:

∆1ξ
(k)
α = T (k)

α ∆xα, T (k)
α ≡ ∂ξ(k)(x)

∂x

˛

˛

˛

˛

˛

x=x̄α

. (13)

We define the covariance matrix V (kl)[ξα] between ξ(k)
α and ξ(l)

α

by

V (kl)[ξα] = E[∆1ξ
(k)
α ∆1ξ

(l)>
α ] = σ2V

(kl)
0 [ξα], (14)

where E[ · ] denotes expectation over data uncertainty. We have

V
(kl)
0 [ξα] = T (k)

α V0[xα]T (l)>
α . (15)

Example 4 (Ellipse fitting). The first order noise term ∆1ξα

is

∆1ξα = T α

 

∆xα

∆yα

!

, T α = 2

 

x̄α ȳα 0 f0 0 0
0 x̄α ȳα 0 f0 0

!>

.

(16)

The second order noise term ∆2ξα is

∆2ξα = (∆x2
α, 2∆xα∆yα, ∆y2

α, 0, 0, 0)>. (17)

Example 5 (Fundamental matrix computation). The first
order noise term ∆1ξα is

∆1ξα =T α(∆xα, ∆yα, ∆x′
α, ∆y′

α)>,

T α =
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. (18)

The second order noise term ∆2ξα is

∆2ξα = (∆xα∆x′
α, ∆xα∆y′

α, 0, ∆yα∆x′
α, ∆yα∆y′

α, 0, 0, 0, 0)>.

(19)

Example 6 (Homography computation). The first order
noise terms ∆1ξ

(k)
α are

∆1ξ
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α =T (k)
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α)>,
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T (3)
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The second order noise terms ∆2ξ
(k)
α are

∆2ξ
(1)
α =(0, 0, 0, 0, 0, 0, ∆xα∆y′

α, ∆yα∆y′
α, 0)>,

∆2ξ
(2)
α =(0, 0, 0, 0, 0, 0,−∆x′

α∆xα,−∆x′
α∆yα, 0)>,

∆2ξ
(3)
α =(−∆y′

α∆xα,−∆y′
α∆yα, 0, ∆x′

α∆xα, ∆x′
α∆yα,

0, 0, 0, 0)>. (21)

Note that the true values x̄α are used in Eq. (15). In actual
computation, they are replaced by their observations xα. It has
been confirmed by many experiments that this does not affect the
final result of practical problems. Also, V

(kl)
0 [ξα] takes only the

first order noise terms into account via the Jacobian matrix, but
it has been confirmed by many experiments that incorporation of
higher order terms does not affect the final result.

5. Iterative Reweight

The oldest method that is not based on minimization is iterative
reweight , which can be formulated as follows:
( 1 ) Let W

(kl)
α = δkl (the Kronecker delta), α = 1, . . ., N , and

θ0 = 0.
( 2 ) Compute the following matrix M :

M =
1
N

N
X

α=1

L
X

k,l=1

W (kl)
α ξ(k)

α ξ(l)>
α . (22)
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( 3 ) Solve the eigenvalue problem

Mθ = λθ, (23)

and compute the unit eigenvector θ for the smallest eigen-
value λ.

( 4 ) If θ ≈ θ0 up to sign, return θ and stop. Else, let

W (kl)
α ←

“

(θ, V
(kl)
0 [ξα]θ)

”−

r
, θ0 ← θ, (24)

and go back to Step 2.

The expression
“

(θ, V
(kl)
0 [ξα]θ)

”−

r
in Eq. (24) denotes the (kl)

element of the pseudoinverse of truncated rank r of the matrix
whose (kl) element is (θ, V

(kl)
0 [ξα]θ); “truncated rank” r means

that all eigenvalues except the largest r are replaced by 0 in the
spectral decomposition.

The motivation of this method is the weighted least squares
that minimizes

1
N

N
X

α=1

L
X

k,l=1

W (kl)
α (ξ(k)

α , θ)(ξ(l)
α , θ)

=
1
N

N
X

α=1

L
X

k,l=1

W (kl)
α θ(k)>ξ(k)

α ξ(l)>
α θ = (θ, Mθ). (25)

This is minimized by the unit eigenvector θ of the matrix M for
the smallest eigenvalue. Note that the weight W

(ki)
α does not af-

fect the final result if all the data are exact yet influences the
computation in the presence of noise. According to statistics,
the optimal choice of the weight W

(kl)
α in the presence of noise

is the inverse of the covariance of that term up to scale. Since
(ξ(k)

α , θ) = (∆1ξ
(k)
α , θ) + · · · , the leading term of the covariance

is

E[(∆1ξ
(k)
α , θ)(∆1ξ

(l)
α , θ)] = E[θ>∆1ξ

(k)
α ∆1ξ

(l)>
α θ]

=(θ, E[∆1ξ
(k)
α ∆1ξ

(l)>
α ]θ) = σ2(θ, V

(kl)
0 [ξα]θ). (26)

Hence, we should choose W
(kl)
α to be the (kl) element of the in-

verse of the matrix whose (kl) element is the above expression.
However, the inverse does not exist if the L constraint equations
are not independent. In the presence of noise, the L equations
are independent in appearance, so we choose r (= the number of
independent equations in the absence of noise) from among the L
equations. This is equivalent to computing the pseudoinverse of
truncated rank r. However, θ is not known. So, we do iterations,
determining the weight W

(kl)
α from the value of θ in the preceding

step.
Let us call the first value of θ computed with W

(kl)
α = δkl

the “initial solution.” It minimizes
PN

α=1

PL
k=1(ξ

(k)
α , θ)2, corre-

sponding to what is known as least squares (LS ), algebraic dis-
tance minimization, and many other names [7]. Thus, iterative
reweight is an iterative improvement of LS .

It appears at first sight that the above procedure minimizes

J =
1
N

N
X

α=1

L
X

k,l=1

W (kl)
α (θ)(ξ(k)

α , θ)(ξ(l)
α , θ), (27)

where

W (kl)
α (θ) =

“

(θ, V
(kl)
0 [ξα]θ)

”−

r
. (28)

The function in Eq. (27) is known today as the Sampson error
[7]. This name stems from the classical ellipse fitting scheme of
P. D. Sampson [25]. However, iterative reweight does not min-
imize the Sampson error, because we compute at each step the
value of θ that minimizes J for a fixed value W

(kl)
α (θ) with the θ

determined in the preceding step.
The perturbation analysis by Kanatani [11] shows that the co-

variance matrix V [θ] of the resulting solution θ agrees with a the-
oretical accuracy limit, called the KCR (Kanatani-Cramer-Rao)
lower bound [2], [9], [11], up to O(σ4). Hence, further covariance
reduction is practically impossible. However, it has been widely
known that the iterative reweight solution has a large bias [9].
For ellipse fitting, for example, it almost always returns a smaller
ellipse than the true shape. Thus, the following strategies were
introduced to improve iterative reweight:
• Remove the bias of the solution.
• Exactly minimize the Sampson error in Eq. (27).

The former is Kanatani’s renormalization [8], [9] and the latter is
the FNS of Chojnacki et al. [4] and the HEIV of Leedan and Meer
[19] and Matei and Meer [20].

6. Renormalization

Kanatani’s renormalization [8], [9] can be described as follows:
( 1 ) Let W

(kl)
α = δkl, α = 1, . . ., N , and θ0 = 0.

( 2 ) Compute the following matrices M and N :

M =
1
N

N
X

α=1

L
X

k,l=1

W (kl)
α ξ(k)

α ξ(l)>
α , (29)

N =
1
N

N
X

α=1

L
X

k,l=1

W (kl)
α V

(kl)
0 [ξα]. (30)

( 3 ) Solve the generalized eigenvalue problem

Mθ = λNθ, (31)

and compute the unit eigenvector θ for the smallest eigen-
value λ in absolute value.

( 4 ) If θ ≈ θ0 up to sign, return θ and stop. Else, let

W (kl)
α ←

“

(θ, V
(kl)
0 [ξα]θ)

”−

r
, θ0 ← θ, (32)

and go back to Step 2.
This procedure has a different appearance from those in Ref. [9], in
which the generalized eigenvalue problem is reduced to the stan-
dard eigenvalue problem, but the resulting solution is the same.

The motivation of renormalization is as follows. Let M̄ be the
true value of the matrix M in Eq. (29) defined by the true values
ξ̄
(k)
α . Since (ξ̄(k)

α , θ) = 0, we have M̄θ = 0. Hence, θ is the
eigenvector of M̄ for eigenvalue 0, but M̄ is unknown. So, we
estimate it. Since E[∆1ξ

(k)
α ] = 0, the expectation of M is to a

first approximation

E[M ] = E[
1
N

N
X

α=1

L
X

k,l=1

W (kl)
α (ξ̄(k)

α + ∆1ξ
(k)
α )(ξ̄(l)

α + ∆1ξ
(l)
α )>]

=M̄ +
1
N

N
X

α=1

L
X

k,l=1

W (kl)
α E[∆1ξ

(k)
α ∆1ξ

(l)>
α ]

=M̄ +
σ2

N

N
X

α=1

L
X

k,l=1

W (kl)
α V

(kl)
0 [ξα] = M̄ +σ2N, (33)
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where the weights W
(kl)
α are regarded as constants. Thus, M̄

= E[M ] − σ2N ≈ M − σ2N , so instead of M̄θ = 0 we solve
(M − σ2N)θ = 0, or Mθ = σ2Nθ. Assuming that σ2 is small,
we regard it as the eigenvalue λ closest to 0. As in the case of
iterative reweight, we iteratively update the weight W

(kl)
α so that

it approaches
“

(θ, V
(kl)
0 [ξα]θ)

”−

r
.

Note that if L = 1, the initial solution with Wα = 1 solves
“

PN
α=1 ξαξ>

α

”

θ = λ
“

PN
α=1 V0[ξα]

”

θ, which is nothing but the
method of Taubin [26], known to be fairly accurate among alge-
braic methods that do not require iterations. The corresponding
method for L > 1 has not been described, but it can be viewed as
an extension of the Taubin method to multiple constraints. For
simplicity, we call this extension also the Taubin method .

Thus, renormalization is an iterative improvement of the
Taubin solution. According to many experiments, renormaliza-
tion is shown to be more accurate than the Taubin method with
nearly comparable accuracy with the FNS and the HEIV. The
accuracy of renormalization is analytically evaluated by Kanatani
[11], showing that the covariance matrix V [θ] of the solution θ
agrees with the KCR lower bound up to O(σ4) just as iterative
reweight, but the bias is much smaller.

Very small it may be, the bias is not 0. The error analysis by
Kanatani [11] shows that the bias expression involves the matrix
N . Note that the matrix N does not affect the final result if all
the data are exact yet influences the computation in the presence
of noise. This observation leads to the idea of optimizing the ma-
trix N in Eq. (30) to N = (1/N)

PN
α=1

PL
k,l=1 W

(kl)
α V

(kl)
0 [ξα]+

· · · so that the bias is zero up to high order noise terms. For this,
we need higher order error analysis, taking the effect of the weights
W

(kl)
α into consideration as well.

7. Error Analysis

Our goal is to devise an algorithm which produces a value θ that
is as close to its true value θ̄ as possible. Since we are viewing the
data as random variables, the solution θ is also a random vari-
able. Hence, we require it to be close to θ in the root-mean-square

(RMS) sense, i.e.,
q

E[‖θ − θ̄‖2] be small. This means that our
analysis depends on the representation and parameterization of
the problem, as pointed out at the end of Section 2.

Substituting Eq. (12) into the definition of the matrix M in
Eq. (29), we can expand it in the form

M = M̄ + ∆1M + ∆2M + · · · , (34)

where ∆1M and ∆2M are given by

∆1M =
1
N

N
X

α=1

L
X

k,l=1

W̄ (kl)
α

“

∆1ξ
(k)
α ξ̄

(l)>
α + ξ̄

(k)
α ∆1ξ

(l)>
α

”

+
1
N

N
X

α=1

L
X

k,l=1

∆1W̄
(kl)
α ξ̄

(k)
α ξ̄

(l)>
α , (35)

∆2M =
1
N

N
X

α=1

L
X

k,l=1

W̄ (kl)
α

“

∆1ξ
(k)
α ∆1ξ

(l)>
α + ∆2ξ

(k)
α ξ̄

(l)>
α

+ξ̄
(k)
α ∆2ξ

(l)>
α

”

+
1
N

N
X

α=1

L
X

k,l=1

∆1W
(kl)
α (∆1ξ

(k)
α ξ̄

(l)>
α

+ξ̄
(k)
α ∆1ξ

(l)>
α ) +

1
N

N
X

α=1

L
X

k,l=1

∆2W
(kl)
α ξ̄

(k)
α ξ̄

(l)>
α . (36)

Let θ = θ̄ + ∆1θ + ∆2θ + · · · be the corresponding expansion
of the resulting θ. At the time of convergence, we have W

(kl)
α =

“

(θ, V
(kl)
0 [ξα]θ)

”−

r
. Substituting the expansion of θ, we obtain

the expansion W
(kl)
α = W̄

(kl)
α +∆1W

(kl)
α +∆2W

(kl)
α + · · · , where

∆1W
(kl)
α = −2

L
X

m,n=1

W̄ (km)
α W̄ (ln)

α (∆1θ, V
(mn)
0 [ξα]θ̄), (37)

∆2W
(kl)
α =

L
X

m,n=1

∆1W
(km)
α ∆1W

(ln)
α (θ̄, V

(mn)
0 [ξα]θ̄)

−
L
X

m,n=1

W̄ (km)
α W̄ (ln)

α

“

(∆1θ, V
(mn)
0 [ξα]∆1θ)

+2(∆2θ, V
(mn)
0 [ξα]θ̄)

”

. (38)

(See Appendix A.1 for the derivation.) Similarly expanding the
eigenvalue λ and the matrix N yet to be determined, the gener-
alized eigenvalue problem in Eq. (31) has the form

(M̄ + ∆1M + ∆2M + · · · )(θ̄ + ∆1θ + ∆2θ + · · · )
=(λ̄ + ∆1λ + ∆2λ + · · · )(N̄ + ∆1N + ∆2N + · · · )

(θ̄ + ∆1θ + ∆2θ + · · · ). (39)

Equating the noiseless terms on both sides, we have M̄θ̄ = λ̄N̄θ̄,
but since M̄θ̄ = 0, we have λ̄ = 0 (we assume that N̄θ̄ 6= 0 for
the N̄ to be determined). Equating the first and the second order
terms on both sides, we obtain the following relationships:

M̄∆1θ + ∆1Mθ̄ = ∆1λN̄θ̄, (40)
M̄∆2θ + ∆1M∆1θ + ∆2Mθ̄ = ∆2λN̄θ̄. (41)

8. Covariance and Bias

Computing the inner product of Eq. (40) and θ̄ on both sides,
we have

(θ̄, M̄∆1θ) + (θ̄, ∆1Mθ̄) = ∆1λ(θ̄, N̄θ̄), (42)

but (θ̄, M̄∆1θ) = (M̄θ̄, ∆1θ) = 0 and Eq. (35) implies
(θ̄, ∆1Mθ̄) = 0, so ∆1λ = 0 (recall that we are assuming that
(θ̄, N̄θ̄) 6= 0). The matrix M̄ has rank n−1, (n is the dimension
of θ), θ̄ being its null vector. Hence, the product M̄

−
M̄ equals

the projection matrix P θ̄ in the direction of θ̄. It follows that
by multiplying both sides of Eq. (40) by M̄

− from left, ∆1θ is
expressed as follows:

∆1θ = −M̄
−∆1Mθ̄. (43)

Here, we have noted that since θ is normalized to unit norm,
∆1θ is orthogonal to θ̄ so P θ̄∆1θ = ∆1θ. From Eq. (43), we
obtain the covariance matrix V [θ] of the solution θ is to a first
approximation

V [θ] = E[∆1θ∆1θ
>] =

σ2

N
M̄

−
. (44)

(See Appendix A.2.) This coincides with the KCR lower bound
[2], [9], [11]. Since this is a theoretical accuracy limit and since it
does not include the matrix N̄ , we are unable to effectively reduce
the covariance by adjusting N̄ . However, the total error consists
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θ

∆ θ

θ

O

Fig. 3 The true value θ̄, the computed value θ, and its orthogonal
component ∆⊥θ of θ̄.

of the covariance terms and the bias terms, both O(σ2), so we
concentrate on the bias.

Substituting Eq. (43) into Eq. (41), we obtain

∆2λN̄θ̄ = M̄∆2θ −∆1MM̄
−∆1Mθ̄ + ∆2Mθ̄

=M̄∆2θ + T θ̄, (45)

where we define the matrix T to be

T ≡ ∆2M −∆1MM̄
−∆1M . (46)

Because θ is a unit vector, it has no error in the direction of itself;
we are interested in the error orthogonal to it. So, we define the
second order error of θ to be its orthogonal component (Fig. 3)

∆⊥
2 θ ≡ P θ̄∆2θ = M̄

−
M̄∆2θ. (47)

Note that the first order error ∆1θ in Eq. (43) is itself orthogonal
to θ̄. Multiplying Eq. (45) by M̄

− on both sides from left, we
obtain ∆⊥

2 θ in the following form:

∆⊥
2 θ = M̄

−(∆2λN̄ − T )θ̄. (48)

Computing the inner product of Eq. (45) and θ̄ on both sides and
noting that (θ̄, M̄∆2θ) = 0, we obtain ∆2λ in the form

∆2λ =
(θ̄, T θ̄)
(θ̄, N̄θ̄)

. (49)

Hence, Eq. (48) is rewritten as follows:

∆⊥
2 θ = M̄

−
“ (θ̄, T θ̄)

(θ̄, N̄θ̄)
N̄θ̄ − T θ̄

”

. (50)

From Eq. (43), we see that E[∆1θ] = 0, i.e., the first order bias
is 0, so the bias is

E[∆⊥
2 θ] = M̄

−
“ (θ̄, E[T θ̄])

(θ̄, N̄θ̄)
N̄θ̄ − E[T θ̄]

”

. (51)

9. Hyper-renormalization

From Eq. (51), we find a crucial fact: If we can choose such an
N that its noiseless value N̄ satisfied E[T θ̄] = cN̄θ̄ for some
constant c, we will have

E[∆⊥
2 θ] = M̄

−
“ (θ̄, cN̄θ)

(θ̄, N̄θ̄)
N̄θ̄ − cN̄θ̄

”

= 0. (52)

Then, the bias will be O(σ4), because the expectation of odd-
order noise terms is zero. In order to choose such an N , we need
to evaluate the expectation E[T θ̄]. After a lengthy analysis (Ap-
pendix A.3), we find that E[T θ̄] = σ2N̄θ̄ holds if we define

N̄ =
1
N

N
X

α=1

L
X

k,l=1

W̄ (kl)
α

“

V
(kl)
0 [ξα] + 2S[ξ̄(k)

α e(l)>
α ]

”

− 1
N2

N
X

α=1

L
X

k,l,m,n=1

W̄ (kl)
α W̄ (mn)

α

“

(ξ̄(k)
α , M̄

−
ξ̄
(m)
α )V (ln)

0 [ξα]

+2S[V (km)
0 [ξα]M̄−

ξ̄
(l)
α ξ̄

(n)>
α ]

”

, (53)

where S[ · ] denotes symmetrization (S[A] = (A + A>)/2) and
the vectors e

(k)
α are defined via

E[∆2ξ
(k)
α ] = σ2e(k)

α . (54)

From this result, we obtain the following hyper-renormalization:
( 1 ) Let W

(kl)
α = δkl, α = 1, . . ., N , and θ0 = 0.

( 2 ) Compute the following matrices M and N :

M =
1
N

N
X

α=1

L
X

k,l=1

W (kl)
α ξ(k)

α ξ(l)>
α , (55)

N =
1
N

N
X

α=1

L
X

k,l=1

W (kl)
α

“

V
(kl)
0 [ξα] + 2S[ξ(k)

α e(l)>
α ]

”

− 1
N2

N
X

α=1

L
X

k,l,m,n=1

W (kl)
α W (mn)

α

“

(ξ(k)
α , M−

n−1ξ
(m)
α )

V
(ln)
0 [ξα] + 2S[V (km)

0 [ξα]M−
n−1ξ

(l)
α ξ(n)>

α ]
”

. (56)

Here, M−
n−1 is the pseudoinverse of M of truncated rank

n− 1.
( 3 ) Solve the generalized eigenvalue problem

Mθ = λNθ, (57)

and compute the unit eigenvector θ for the smallest eigen-
value λ in absolute value.

( 4 ) If θ ≈ θ0 up to sign, return θ and stop. Else, let

W (kl)
α ←

“

(θ, V
(kl)
0 [ξα]θ)

”−

r
, θ0 ← θ, (58)

and go back to Step 2.
In Eq. (56), the rank-truncated pseudoinverse is used, because al-
though the true value M̄ should have rank n − 1, the computed
value M generally has full rank.

It turns out that the initial solution with W
(kl)
α = δkl coincides

with what is called HyperLS [13], [14], [24], which is derived so
that the bias is removed up to second order noise terms within the
framework of algebraic methods without iterations. The expres-
sion of Eq. (56) with W

(kl)
α = δkl lacks one term as compared with

the corresponding expression of HyperLS, but the same solution is
produced. Thus, hyper-renormalization is an iterative improve-
ment of HyperLS . We omit the details, but all the intermediate
solutions θ in the hyper-renormalization are free of second oder
bias.

10. Summary of the Approach

We have seen that iterative reweight, renormalization, and
hyper-renormalization do not minimize any cost function. In fact,
irrespective of their original motivations, these are the methods
for computing the “solution” θ of the nonlinear equation

Mθ = λNθ, (59)
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θ
θ

θ
θ

(a) (b)

Fig. 4 (a) The matrix M determines the covariance of the solution.
(b) The matrix N controls the bias of the solution.

Table 1 Summary of the non-minimization approach.

initial solution final solution
least squares −→ iterative reweight

Taubin −→ renormalization
HyperLS −→ hyper-renormalization

where M , N , and λ are functions of θ. Note that Eq. (59) is a
vector equation. Hence, although we can specify the symmetric
matrices M and N as arbitrarily functions of θ, the scalar λ is
indirectly determined so that Eq. (59) admits a solution; we need
not specify it. Multiple values exist for such λ, and we choose
the one closest to 0, because Eq. (59) is so defined that λ = 0
in the absence of noise (recall that assuming small noise, we do
perturbation expansion of the function λ, see Eq. (39)).

Thus, iterating generalized eigenvalue computation is merely
a matter of convenience; any method that solves Eq. (59) can
do. In this sense, Eq. (59) corresponds to the estimating equation
for statistical estimation, although in the traditional statistics do-
main it is usually a set of scalar equations, for which all terms are
user specified functions. Since the data are regarded as random
variables, the computed θ is also a random variable, so it has a
probability distribution p(θ). The important observation is:
• The matrix M determines the covariance of the computed θ

(Fig. 4(a)).
• The matrix N controls the bias of the computed θ (Fig. 4(b)).
The analysis in Appendix A.2 applies to any method that solves

Eq. (59), so the KCR lower bound is achieved up to O(σ4) if M
is chosen to be Eqs. (22), (29), and (55). The matrix N is chosen
to be

N =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

I, iterative reweight

1
N

N
X

α=1

L
X

k,l=1

W (kl)
α V

(kl)
0 [ξα], renormalization

1
N

N
X

α=1

L
X

k,l=1

W (kl)
α

“

V
(kl)
0 [ξα] + · · ·

hyper-renormalization

(60)

We have shown that the last choice, i.e., Eq. (56), eliminates the
bias up to O(σ4). If we iteratively solve Eq. (59), the initial
solution with W

(kl)
α = δkl corresponds to the least squares, the

(extended) method of Taubin [26], and HyperLS [13], [14], [24],
respectively. In other words, iterative reweight, renormalization,
and hyper-renormalization can be viewed as an iterative improve-
ment of least squares, the Taubin method, and HyperLS, respec-
tively (Table 1).

Standard linear algebra routines for solving the generalized
eigenvalue problem in Eq. (59) assume that N is positive defi-
nite, but the matrix N in Eq. (56) has both positive and negative
eigenvalues. For the Taubin method and renormalization, the
matrix N in Eq. (30) is positive semidefinite having eigenvalue 0.

This, however, causes no difficulty, because the problem can be
rewritten as

Nθ =
1
λ

Mθ. (61)

The matrix M in Eq. (55) is positive definite for noisy data, so
we can use a standard routine to compute the eigenvector θ for
the largest eigenvalue in absolute value. If the matrix M happens
to have eigenvalue 0, it indicates that the data are all exact, so
its null vector is the exact solution.

From Eq. (17), the vector e(k) defined by Eq. (5) is
(1, 0, 1, 0, 0, 0)> for ellipse fitting, but we see from Eqs. (19) and
(21) that it is 0 for fundamental matrix and homography compu-
tation. In general, e(k) = 0 for multilinear constraints, such as
the epipolar, trifocal, and quadrifocal constraints, that are linear
in each variable, because we usually assume that noise in differ-
ent images are uncorrelated. Homographies are expressed as the
linear fractional equations of Eq. (7), but it can be converted to
the multilinear form of Eq. (9). A notable example of e(k) 6= 0
is ellipse fitting, but its effect is negligible. We have confirmed
by experiments that the results is practically unchanged if we let
e(k) = 0. This has also been observed in the case of ellipse fitting
by HyperLS [13].

11. Experiments

11.1 Accuracy Comparison

Since the computed θ and its true value θ̄ are both unit vectors,
we measure the discrepancy ∆θ between them by the orthogonal
component to θ̄ (Fig. 3),

∆⊥θ = P θ̄θ, P θ̄ ≡ I − θ̄θ̄
>

, (62)

where P θ̄ is the projection matrix along θ̄. We generate M in-
dependent noise instances and evaluate the bias B and the RMS
error D defined by

B =
‚

‚

‚

1
M

M
X

a=1

∆⊥θ(a)
‚

‚

‚

, D =

v

u

u

t

1
M

M
X

a=1

‖∆⊥θ(a)‖2, (63)

where θ(a) is the solution in the ath trial. The KCR lower bound
of Eq. (44) implies that the RMS error D is bounded by

D ≥ σ√
N

q

trM̄−
, (64)

where tr denotes the matrix trace. We compared the accuracy of
the following eight methods:
( 1 ) LS,
( 2 ) iterative reweight,
( 3 ) Taubin method,
( 4 ) renormalization,
( 5 ) HyperLS,
( 6 ) hyper-renormalization,
( 7 ) ML,
( 8 ) ML with hyperaccurate correction.
For ML, we used the FNS of Chojnacki et al. [4]. According to our
experiments, the FNS solution agrees with the ML solution up to
three or four significant digits, as also observed by Kanatani and
Sugaya [11], [16], so FNS can be practically identified with ML.
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(a)

1
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6 3 4

1
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4 6 7 8

(b) (c)

method 2 4 6 7/8

number of (a) 4 4 4 9
iterations (b) 4 4 4 8

Fig. 5 (a) Thirty points on an ellipse. (b), (c) Fitted ellipses (σ = 0.5
pixels). 1) LS, 2) iterative reweight, 3) Taubin, 4) renormaliza-
tion, 5) HyperLS, 6) hyper-renormalization, 7) ML, 8) ML with
hyperaccurate correction. The dotted lines indicate the true
shape. The table lists the number of iterations for methods 2, 4,
6, and 7/8 (methods 1, 3, and 5 are noniterative, and methods
7 and 8 have the same complexity).

For hyperaccurate correction, we used the scheme of Kanatani
and Sugaya [18], which extends the scheme of Kanatani [10], [11]
to multiple constraints.

The purpose of this experiment is to confirm our theoretical
predictions. As shown in Eq. (44), the covariance matrix V [θ] of
hyper-renormalization, as well as for iterative reweight and renor-
malization that use the same M , coincides with the KCR lower
bound up to O(σ4). It is known that ML also has the same or-
der of covariance matrix [11]. However, ML has bias of O(σ2)
[11], while hyper-renormalization has bias O(σ4). Hence, hyper-
renormalization should have smaller RMS error than ML. We nu-
merically confirm if this is indeed the case. On the other hand, the
hyperaccurate correction of Kanatani and Sugaya [18] removes, a
posteriori, the bias of O(σ2) from the ML solution, so it should
have the same order of accuracy as hyper-renormalization, and
comparing these two is also the purpose of this experiment. We
also observe the convergence behavior for moderate and realistic
ranges of the noise level in which our experiment is conducted.

11.2 Ellipse Fitting

We define 30 equidistant points on the ellipse shown in
Fig. 5(a). The major and minor axis are set to 100 and 50 pixels,
respectively. We add independent Gaussian noise of mean 0 and
standard deviation σ (pixels) to the x and y coordinates of each
point and fit an ellipse by different methods.

Figure 5(b), (c) show fitted ellipses for σ = 0.5 pixels; although
the noise magnitude is the same, the resulting ellipses are dif-
ferent for different noise. The true shape is indicated by dotted
lines. We can see that LS and iterative reweight have large bias,
producing much smaller ellipses than the true shape. The closest
ellipse is given by hyper-renormalization in Fig. 5(b) and by ML
with hyperaccurate correction in Fig. 5(c).

The number of iterations for each method is also shown there.
We see that ML with/without hypercorrection requires about
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Fig. 6 The bias (a) and the RMS error (b) of the fitted ellipse for
the standard deviation σ of the noise added to the data in
Fig. 5(a) over 10,000 independent trials. 1) LS, 2) iterative
reweight, 3) Taubin, 4) renormalization, 5) HyperLS, 6) hyper-
renormalization, 7) ML, 8) ML with hyperaccurate correction.
The dotted line in (b) indicates the KCR lower bound.

twice as many iterations for convergence as iterative reweight,
renormalization, and hyper-renormalization; Taubin and HyperLS
are noniterative algebraic methods, while hyperaccurate correc-
tion is an analytical procedure after ML has converged. The fast
convergence of hyper-renormalization is a result of its initializa-
tion by HyperLS (see Table 1), while ML by FNS starts by default
(i.e., by letting θ = 0) from LS, as we did in our experiment. Evi-
dently, FNS or other ML scheme such as the Levenberg-Marquadt
method [23] should converge fast if initialized by HyperLS.

Note that all the ellipses in Fig. 5(b), (c) fit fairly well to the
data points, meaning that not much difference exists among their
reprojection errors, i.e., the sums of the square distances of the
data points from the fitted ellipse. However, the deviation is large
in the part where no data points exist . Since θ expresses the coef-
ficients of the ellipse equation (see Eqs. (3) and (4)), the error ∆θ

evaluates how the “ellipse equation,” i.e., the ellipse itself, differs.
This implies that the reprojection error is not a good measure of
ellipse fitting; we need to evaluate the error in θ. This was also
pointed out by Kanatani et al. [14] in relation to HyperLS.

Figure 6(a), (b) plot the bias B and the RMS error D, re-
spectively, defined in Eq. (63) over 10,000 independent trials for
each σ. The dotted line in Fig. 6(b) is the KCR lower bound of
Eq. (64). The interrupted plots in Fig. 6 for iterative reweight,
ML with/without hyperaccurate correction indicates that FNS
did not converge beyond that noise level. Our convergence cri-
terion is ‖θ − θ0‖ < 10−6 for the current value θ and the value
θ0 in the preceding iteration; their signs are adjusted before sub-
traction. If this criterion is not satisfied after 100 iterations, we
stopped. For each σ, we regarded the iterations as not convergent
if any among the 10,000 trials did not converge.

This disruption can be avoided by using other ML scheme such
as the Levenberg-Marquadt method [23] with good initialization
or even by using FNS with HyperLS initialization. If the noise is
very large, however, all methods may fail or, even if they do not,
convergence may be very slow, and the convergence behavior is
very difficult to predict; it is beyond the scope of this paper. Here,
we only point out that in our experimented noise range, which we
regard as reasonable, hyper-renormalization performs very well as
compared with ML with hypercorrection using FNS.

Figure 7 enlarges Fig. 6 for the small σ part. We can see
from Fig. 6(a) and Fig. 7(a) that LS and iterative reweight have
very large bias, in contrast to which the bias is very small for
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Fig. 7 (a) Enlargement of Fig. 6(a). (b) Enlargement of Fig. 6(b).
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Fig. 8 (a) An edge image of a scene with a circular object. An ellipse is
fitted to the 160 edge points indicated. (b) Fitted ellipses super-
imposed on the original image. The occluded part is artificially
composed for visual ease. 1) LS, 2) iterative reweight, 3) Taubin,
4) renormalization, 5) HyperLS, 6) hyper-renormalization, 7)
ML, 8) ML with hyperaccurate correction.

the Taubin method and renormalization. The bias of HyperLS
and hyper-renormalization is still smaller and even smaller than
ML. Note that the RMS error D of Eq. (63) is a measure of the
distance from the true value θ, while the first order covariance
matrix of Eq. (44) measure the “width” of the bell-shaped distri-
bution from its center (see Fig. 4(a)), which is common to iterative
reweight, renormalization, and hyper-renormalization. Hence, the
difference in the RMS error in Fig. 6(b) and Fig. 7(b) is a direct
consequence of the bias difference shown in Fig. 6(a) and Fig. 7(a).

A close examination of the small σ part (Fig. 6(b)) reveals that
hyper-renormalization outperforms ML. The highest accuracy is
achieved, although the difference is very small, by hyperaccurate
correction of ML. However, it first requires the ML solution, and
the FNS iterations for its computation may not converge above a
certain noise level, as shown in Fig. 6.

We also studied the effect of e
(k)
α defined by Eq. (49) on hyper-

renormalization and hyperaccurate correction of ML. We let e
(k)
α

= 0 and did the same experiments but found that the plots in
Figs. 6 and 7 are unchanged.

Figure 8(a) is an edge image of a scene with a circular object.
We fitted an ellipse to the 160 edge points indicated there, using
various methods. Figure 8(b) shows the fitted ellipses superim-
posed on the original image, where the occluded part is artifi-
cially composed for visual ease. We can see that LS and iterative
reweight produce much smaller ellipses than the true shape as in
Fig. 5(b), (c). All other fits are very close to the true ellipse, and
ML gives the best fit in this particular instance. The number
of iterations before convergence for each method is also shown in
Fig. 8. Again, FNS for ML with/without hypercorrection required

Fig. 9 Simulated images of a curved grid surface viewed from two di-
rections.
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Fig. 10 The bias (a) and the RMS error (b) of the computed funda-
mental matrix for the standard deviation σ of the noise added
to the data in Fig. 9 over 10,000 independent trials. 1) LS, 2)
iterative reweight, 3) Taubin, 4) renormalization, 5) HyperLS,
6) hyper-renormalization, 7) ML, 8) ML with hyperaccurate
correction. The dotted line in (b) indicates the KCR lower
bound.

about twice as many iterations as other methods.

11.3 Fundamental Matrix Computation
Figure 9 shows simulated images of a curved grid surface

viewed from two directions. The image size is 600 × 600 pixels,
and the focal length is 600 pixels. We add Gaussian noise of mean
0 and standard deviation σ (pixels) to the x and y coordinates of
each grid point independently and compute the fundamental ma-
trix F . The fundamental matrix F has rank 2, so it is constrained
to be det F = 0 [7]. Basically, the following three approaches exist
for imposing this rank constraint [16]:
( 1 ) A posteriori correction: The matrix F is optimally computed

without considering the rank constraint and then optimally
corrected so that it is satisfied.

( 2 ) Internal access: The matrix F is parameterized so that the
rank constraint is identically satisfied and then optimized
within the resulting smaller parameter space.

( 3 ) External access: Iterations are done in the space of uncon-
strained F in such a way the rank constraint is automatically
satisfied at the time of convergence.

Here, we adopt the a posteriori correction approach and compare
the accuracy of various methods without considering the rank
constraint.

Figure 10(a), (b) plot the bias B and the RMS error D, re-
spectively, defined in Eq. (63) over 10,000 independent trials for
each σ. The dotted line in Fig. 10(b) is the KCR lower bound of
Eq. (64). As we can see from Fig. 10(a), LS and iterative reweight
have very large bias. As in the case of ellipse fitting, the leading
covariance is common to iterative reweight, renormalization, and
hyper-renormalization, and hence the RMS error reflects the in-
fluence of the bias as shown in Fig. 10(b). As seen from Fig. 10(a),
ML has considerable bias, which is largely removed by the hyper-
accurate correction, and hyper-renormalization directly computes
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Fig. 11 Simulated images of a planar grid surface viewed from two
directions.
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Fig. 12 The bias (a) and the RMS error (b) of the computed homog-
raphy for the standard deviation σ of the noise added to the
data in Fig. 11 over 10,000 independent trials. 1) LS, 2) it-
erative reweight, 3) Taubin, 4) renormalization, 5) HyperLS,
6) hyper-renormalization, 7) ML, 8) ML with hyperaccurate
correction. The dotted line in (b) indicates the KCR lower
bound.

solutions with as small bias. However, all methods except LS and
iterative reweight nearly achieve the KCR lower bound, as seen
from Fig. 10(b). Hence, the effect of bias reduction has little in-
fluence on the RMS error. As in the case of ellipse fitting, the
best performance is obtained by hyper-renormalization and ML
with hyperaccurate correction, although the difference from other
methods is very small.

11.4 Homography Computation
Figure 11 shows simulated images of a planar grid surface

viewed from two directions. The image size is 800 × 800 pixels,
and the focal length is 600 pixels. We add Gaussian noise of mean
0 and standard deviation σ (pixels) to the x and y coordinates
of each grid point independently and compute the homography
between the two images.

Figure 12(a), (b) plot the bias B and the RMS error D, re-
spectively, defined in Eq. (63) over 10,000 independent trials for
each σ. The dotted line in Fig. 12(b) is the KCR lower bound of
Eq. (64). As in the case of ellipse fitting and fundamental ma-
trix computation, LS and iterative reweight have very large bias,
resulting in large RMS errors. However, all other methods have
small bias of similar magnitude, so bias reduction has little influ-
ence on their RMS errors, which nearly achieve the KCR lower
bound as seen from Fig. 12(b). Yet, the best performance is ob-
tained by hyper-renormalization and ML with hyperaccurate cor-
rection, although the difference from other methods is very small.
Like ellipse fitting, however, the iterations for ML computation
using FNS does not converge for large noise, although this does
not occur in the noise range of Fig. 12(a), (b); the iterations did
not necessarily converge beyond σ = 25 pixels. The convergence
criterion is the same as in the case of ellipse fitting. In contrast,
hyper-renormalization converges even in that noise range.

Homography is a fundamental tool for panoramic image genera-
tion by image mosaicing: images of a far away scene are seamlessly

pasted together after warped according to the homographies be-
tween images. Usually, the images overlap very well in the part
where matching points are extracted, but a large deviation may
appear in the far away part with no matching points. In such
applications, the reprojection error, i.e., the sum of the square
distances between the points to be matched, is more or less the
same among different methods as pointed out by Kanatani et
al. [14]. Hence, the error in θ, which expresses the coefficients of
the homography equation (see Eqs. (7) and (11)), is a better mea-
sure for evaluating the mapping deviation, although it depends
on how we express the homography equation.

12. Conclusions

We have reformulated iterative reweight and renormalization of
Kanatani [8], [9] as geometric estimation techniques not based on
the minimization principle. We discussed our non-minimization
approach in detail and did a precise error analysis in the most
general situation with multiple constraints. From our analysis,
we obtained a scheme which we call “hyper-renormalization” that
optimizes the matrices M and N in the computation so that the
covariance of the solution achieves the KCR lower bound up to
O(σ4) and the bias is zero up to O(σ4) in the noise level σ. Doing
experiments of ellipse fitting, fundamental matrix computation,
and homography computation, we observed that
( 1 ) Iterative reweight is an iterative improvement of LS. The

leading covariance of the solution agrees with the KCR lower
bound [2], [9], [11], but the bias is very large, hence the ac-
curacy is low.

( 2 ) Renormalization is an iterative improvement of the method
of Taubin [26]. The leading covariance of the solution agrees
with the KCR lower bound, and the bias is very small, hence
the accuracy is high.

( 3 ) Hyper-renormalization is an iterative improvement of Hy-
perLS [13], [14], [24]. The leading covariance of the solution
agrees with the KCR lower bound with no bias up to O(σ4).
It outperforms ML.

( 4 ) Although the difference is very small, ML with hyperaccurate
correction of Kanatani [10], [11], [18] exhibits the highest ac-
curacy. However, if FNS is used for ML computation, the
iterations may not converge in the presence of large noise,
while hyper-renormalization has a higher noise tolerance.

We conclude that hyper-renormalization is the best strategy for
practical computations in terms of accuracy and efficiency in mod-
erate noise ranges.

As we remarked earlier, our non-minimization approach de-
pends on a particular representation and parameterization of the
problem, so that we first need to fix the way the problem is spec-
ified. Also, our error analysis is based on Gaussian noise mod-
eling, which only applies to fairly accurate data. Despite these
limitations, our non-minimization approach is expected to play
an important role in building accurate computer vision systems
for various applications.
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Appendix

A.1 Derivation of Eqs. (37) and (38)

Let W α and V α be the matrices whose (kl) element is W
(kl)
α and

(θ̄, V
(kl)
0 [ξα]θ̄), respectively. Since W α = (V α)−r by definition, the

identity V αW αV α = V α holds. Expanding this, we obtain

(V̄ α + ∆1V α + ∆2V α + · · · )(W̄ α + ∆1W α + ∆2W α

+ · · · )(V̄ α + ∆1V α + ∆2V α + · · · )

=(V̄ α + ∆1V α + ∆2V α + · · · ). (A.1)

We can derive Eqs. (37) and (38) by equating the terms of the same
order on both sides.

Equating the first order terms on both sides, we obtain

∆1V αW̄ αV̄ α + V̄ α∆1W αV̄ α + V̄ αW̄ α∆1V α = ∆1V α. (A.2)

Multiplying this by W̄ α from left and right, we have

W̄ α∆1V αW̄ αV̄ αW̄ α + W̄ αV̄ α∆1W αV̄ αW̄ α

+W̄ αV̄ αW̄ α∆1V αW̄ α = W̄ α∆1V αW̄ α. (A.3)

Note that the product V̄ αW̄ α = W̄ αV̄ α operates as the projection
onto the orthogonal complement of the (common) null space of V̄ α

and W̄ α and that the variations ∆1V α and ∆1W α take place within
that domain. We also note the identities of the generalized inverse
W̄ αV̄ αW̄ α =　 W̄ α and V̄ αW̄ αV̄ α =　 V̄ α hold. Hence, we ob-
tain from Eq. (A.3)

W̄ α∆1V αW̄ α + ∆1W α + W̄ α∆1V αW̄ α = W̄ α∆1V αW̄ α,

(A.4)

from which we obtain ∆1W α in the form

∆1W α = −W̄ α∆1V αW̄ α. (A.5)

Its (kl) element is written as

∆1W
(kl)
α = −

L
X

m,n=1

W̄ (km)
α W̄ ln

α ∆1V
(mn)
α

=−2
L
X

m,n=1

W̄ (km)
α W̄ (ln)

α (∆1θ, V
(mn)
0 [ξα]θ̄). (A.6)

Thus, we obtain Eq. (37).
Equating the second order terms from both sides of Eq. (A.1), we

have

∆2V αW̄ αV̄ α + V̄ α∆2W αV̄ α + V̄ αW̄ α∆2V α

+V̄ α∆1W α∆1V α + ∆1V αW̄ α∆1V α + ∆1V α∆1W αV̄ α

= ∆2V α. (A.7)

Multiplying this by W̄ α from left and right, we obtain

W̄ α∆2V αW̄ αV̄ αW̄ α + W̄ αV̄ α∆2W αV̄ αW̄ α

+W̄ αV̄ αW̄ α∆2V αW̄ α + W̄ αV̄ α∆1W α∆1V αW̄ α

+W̄ α∆1V αW̄ α∆1V αW̄ α + W̄ α∆1V α∆1W αV̄ αW̄ α

= W̄ α∆2V αW̄ α, (A.8)

which is rewritten as

W̄ α∆2V αW̄ α + ∆2W α + W̄ α∆2V αW̄ α

+∆1W α∆1V αW̄ α + W̄ α∆1V αW̄ α∆1V αW̄ α

+W̄ α∆1V α∆1W α = W̄ α∆2V αW̄ α. (A.9)

This is further rewritten as follows:
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W̄ α∆2V αW̄ α + ∆2W α + W̄ α∆2V αW̄ α

+∆1W α(V̄ αW̄ α)∆1V αW̄ α

+W̄ α∆1V αW̄ α(V̄ αW̄ α)∆1V αW̄ α

+W̄ α∆1V α(W̄ αV̄ α)∆1W α = W̄ α∆2V αW̄ α. (A.10)

Substituting Eq. (A.5), we obtain

W̄ α∆2V αW̄ α + ∆2W α + W̄ α∆2V αW̄ α

−∆1W αV̄ α∆1W α + ∆1W αV̄ α∆1W α

−∆1W αV̄ α∆1W α = W̄ α∆2V αW̄ α. (A.11)

Hence, ∆2W α is written as

∆2W α = ∆1W αV̄ α∆1W α − W̄ α∆2V αW̄ α, (A.12)

whose (kl) element is

∆2W
(kl)
α =

L
X

m,n=1

∆1W
(km)
α V̄ (mn)

α ∆1W
(nl)
α

−
L
X

m,n=1

W̄ (km)
α ∆2V

(mn)
α W̄ (nl)

α

=
L
X

m,n=1

∆1W
(km)
α ∆1W

(ln)
α (θ̄, V

(mn)
0 [ξα]θ̄)

−
L
X

m,n=1

W̄ (km)
α W̄ (ln)

α

“

(∆1θ, V
(mn)
0 [ξα]∆1θ)

+2(∆2θ, V
(mn)
0 [ξα]θ̄)

”

. (A.13)

Thus, we obtain Eq. (38).

A.2 Covariance Matrix of the Solution

Substituting Eq. (35) into Eq. (43) and noting that ξ(k)>
α θ = 0, we

can write ∆1θ as follows:

∆1θ = −M̄
−∆1Mθ̄

=−M̄
−
“ 1

N

N
X

α=1

L
X

k,l=1

W̄ (kl)
α (∆1ξ

(l)
α , θ̄)ξ̄(k)

α

”

. (A.14)

We can evaluate V [θ] = E[∆1θ∆1θ
>], the covariance matrix of θ to

a first approximation, by eliminating ∆1ξ
(k)
α in the expectation, using

our assumption that the noise in ξ(k)
α is independent for each α and

hence

E[∆1ξ
(k)
α ∆1ξ

(l)>
β ] = δαβV

(kl)
0 [ξα], (A.15)

where δαβ is the Kronecker delta. We also use the identity

L
X

l,n=1

W̄ (kl)
α (θ̄, V

(ln)
0 [ξα]θ̄)W̄ (mn)

α = W̄ (km)
α , (A.16)

which means W̄ αW̄
−
α W̄ α = W̄ α in the matrix form, to simplify the

expression.
Using Eq. (A.15), we see that

V [θ] = E[∆1θ∆1θ
>]

=E[M̄−
“ 1

N

N
X

α=1

L
X

k,l=1

W̄ (kl)
α (∆1ξ

(l)
α , θ̄)ξ̄(k)

α

1
N

N
X

β=1

L
X

m,n=1

W̄
(mn)
β (∆1ξ

(n)
β , θ̄)ξ̄(m)>

β

”

M̄
−]

=E[M̄−
“ 1

N2

N
X

α,β=1

L
X

k,l,m,n=1

W̄ (kl)
α W̄

(mn)
β

(θ̄, ∆1ξ
(l)
α )(∆1ξ

(n)
β , θ̄)ξ̄(k)

α ξ̄
(m)>
β

”

M̄
−]

=M̄
−
“ 1

N2

N
X

α,β=1

L
X

k,l,m,n=1

W̄ (kl)
α W̄

(mn)
β

(θ̄, E[∆1ξ
(l)
α ∆1ξ

>(n)
β ]θ̄)ξ̄(k)

α ξ̄
(m)>
β

”

M̄
−

=M̄
−
“ 1

N2

N
X

α,β=1

L
X

k,l,m,n=1

W̄ (kl)
α W̄

(mn)
β

(θ̄, σ2δαβV
(ln)
0 [ξα]θ̄)ξ̄(k)

α ξ̄
(m)>
β

”

M̄
−

=M̄
−
“

σ2

N2

N
X

α=1

L
X

k,m=1

“

L
X

l,n=1

W̄ (kl)
α (θ̄, V

(ln)
0 [ξα]θ̄)

W̄ (mn)
α

”

ξ̄
(k)
α ξ̄

(m)>
α

”

M̄
−

=
σ2

N
M̄

−
“ 1

N

N
X

α=1

L
X

k,m=1

W̄ (km)
α ξ̄

(k)
α ξ̄

(m)>
α

”

M̄
−

=
σ2

N
M̄

−
M̄M̄

− =
σ2

N
M̄

−
. (A.17)

A.3 Evaluation of E[T θ̄]
We evaluate the expectation of T θ̄ = ∆2Mθ̄ − ∆1MM̄

−∆1Mθ̄

term by term. The basic strategy is elimination of ∆1ξ
(k)
α and ∆2ξ

(k)
α

in the expectation by using Eqs. (A.15) and (54), respectively. We also
use Eq. (A.16) for simplifying the expression.

A.3.1 Evaluation of E[∆2Mθ̄]
Consider the expectation of ∆2Mθ̄. From (ξ̄α, θ̄) = 0 and Eq. (36),

we obtain

∆2Mθ̄ =
1
N

N
X

α=1

L
X

k,l=1

W̄ (kl)
α

“

∆1ξ
(k)
α ∆1ξ

(l)>
α +∆2ξ

(k)
α ξ̄

(l)>
α

+ξ̄
(k)
α ∆2ξ

(l)>
α

”

θ̄ +
1
N

N
X

α=1

L
X

k,l=1

∆1W
(kl)
α (∆1ξ

(k)
α ξ̄

(l)>
α

+ξ̄
(k)
α ∆1ξ

(l)>
α )θ̄ +

1
N

N
X

α=1

L
X

k,l=1

∆2W
(kl)
α ξ̄

(k)
α ξ̄

(l)>
α θ̄

=
1
N

N
X

α=1

L
X

k,l=1

W̄ (kl)
α ((∆1ξ

(l)
α , θ̄)∆1ξ

(k)
α +(∆2ξ

(l)
α , θ̄)ξ̄(k)

α )

+
1
N

N
X

α=1

L
X

k,l=1

∆1W
(kl)
α (∆1ξ

(l)
α , θ̄)ξ̄(k)

α . (A.18)

Hence,

E[∆2Mθ̄] =
1
N

N
X

α=1

L
X

k,l=1

W̄ (kl)
α

“

E[∆1ξ
(k)
α ∆1ξ

(l)>
α ]θ̄

+(E[∆2ξ
(l)
α ], θ̄)ξ̄(k)

α

”

+
1
N

N
X

α=1

L
X

k,l=1

(E[∆1W
(kl)
α ∆1ξ

(l)
α ], θ̄)ξ̄(k)

α
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=
σ2

N

N
X

α=1

L
X

k,l=1

W̄ (kl)
α

“

V
(kl)
0 [ξα]θ̄ + (e(l)

α , θ̄)ξ̄(k)
α

”

+
1
N

N
X

α=1

L
X

k,l=1

(E[∆1W
(kl)
α ∆1ξ

(l)
α ], θ̄)ξ̄(k)

α . (A.19)

Consider the expectation of ∆1Wα∆1ξα. From Eqs. (35), (37), and
(43), we see that

∆1W
(kl)
α = −2

L
X

m,n=1

W̄ (km)
α W̄ (ln)

α (∆1θ, V
(mn)
0 [ξα]θ̄)

=2
L
X

m,n=1

W̄ (km)
α W̄ (ln)

α (M̄−∆1Mθ̄, V
(mn)
0 [ξα]θ̄)

=2
L
X

m,n=1

W̄ (km)
α W̄ (ln)

α (M̄−
“ 1

N

N
X

β=1

L
X

p,q=1

W̄
(pq)
β

“

∆1ξ
(p)
β ξ̄

(q)>
β + ξ̄

(p)
β ∆1ξ

(q)>
β

”

+
1
N

N
X

β=1

L
X

p,q=1

∆1W̄
(pq)
β ξ̄

(p)
β ξ̄

(q)>
β

”

θ̄, V
(mn)
0 [ξα]θ̄)

=2
L
X

m,n=1

W̄ (km)
α W̄ (ln)

α (M̄−
“ 1

N

N
X

β=1

L
X

p,q=1

W̄
(pq)
β ξ̄

(p)
β

(∆1ξ
(q)
β , θ̄)

”

, V
(mn)
0 [ξα]θ̄)

=
2
N

N
X

β=1

L
X

m,n,p,q=1

W̄ (km)
α W̄ (ln)

α W̄
(pq)
β (∆1ξ

(q)
β , θ̄)

(M̄−
ξ̄
(p)
β , V

(mn)
0 [ξα]θ̄)

=
2
N

N
X

β=1

L
X

m,n,p,q=1

W̄ (km)
α W̄ (ln)

α W̄
(pq)
β (ξ̄(p)

β ,

M̄
−

V
(mn)
0 [ξα]θ̄)(∆1ξ

(q)
β , θ̄). (A.20)

Hence,

E[∆1W
(kl)
α ∆1ξ

(l)
α ]

=E[
2
N

N
X

β=1

L
X

m,n,p,q=1

W̄ (km)
α W̄ (ln)

α W̄
(pq)
β (ξ̄(p)

β ,

M̄
−

V
(mn)
0 [ξα]θ̄)(∆1ξ

(q)
β , θ̄)∆1ξ

(l)
α ]

=
2
N

N
X

β=1

L
X

m,n,p,q=1

W̄ (km)
α W̄ (ln)

α W̄
(pq)
β (ξ̄(p)

β ,

M̄
−

V
(mn)
0 [ξα]θ̄)E[∆1ξ

(l)
α ∆1ξ

(q)>
β ]θ̄

=
2
N

N
X

β=1

L
X

m,n,p,q=1

W̄ (km)
α W̄ (ln)

α W̄
(pq)
β (ξ̄(p)

β ,

M̄
−

V
(mn)
0 [ξα]θ̄)σ2δαβV

(lq)
0 [ξα]θ̄

=
2σ2

N

L
X

m,n,p,q=1

W̄ (km)
α W̄ (ln)

α W̄ (pq)
α (ξ̄(p)

α ,

M̄
−

V
(mn)
0 [ξα]θ̄)V (lq)

0 [ξα]θ̄. (A.21)

It follows that

1
N

N
X

α=1

L
X

k,l=1

(E[∆1W
(kl)
α ∆1ξ

(l)
α ], θ̄)ξ̄(k)

α

=
1
N

N
X

α=1

L
X

k,l=1

(
“2σ2

N

L
X

m,n,p,q=1

W̄ (km)
α W̄ (ln)

α W̄ (pq)
α (ξ̄(p)

α ,

M̄
−

V
(mn)
0 [ξα]θ̄)V (lq)

0 [ξα]θ̄
”

, θ̄)ξ̄(k)
α

=
2σ2

N2

N
X

α=1

L
X

k,l,m,n,p,q=1

W̄ (km)
α W̄ (ln)

α W̄ (pq)
α (ξ̄(p)

α ,

M̄
−

V
(mn)
0 [ξα]θ̄)(θ̄, V

(lq)
0 [ξα]θ̄)ξ̄(k)

α

=
2σ2

N2

N
X

α=1

L
X

k,m,n,p=1

W̄ (km)
α (ξ̄(p)

α , M̄
−

V
(mn)
0 [ξα]θ̄)

“

L
X

l,q=1

W̄ (nl)
α (θ̄, V

(lq)
0 [ξα]θ̄)W̄ (qp)

α

”

ξ̄
(k)
α

=
2σ2

N2

N
X

α=1

L
X

k,m,n,p=1

W̄ (km)
α (ξ̄(p)

α , M̄
−

V
(mn)
0 [ξα]θ̄)W̄ (np)

α ξ̄
(k)
α

=
2σ2

N2

N
X

α=1

L
X

k,m,n,p=1

W̄ (km)
α W̄ (np)

α (ξ̄(p)
α , M̄

−
V

(mn)
0 [ξα]θ̄)ξ̄(k)

α .

(A.22)

Substituting Eq. (A.22) into Eq. (A.19), we obtain the following ex-
pression for E[∆2Mθ̄]:

E[∆2Mθ̄] =
σ2

N

N
X

α=1

L
X

k,l=1

W̄ (kl)
α

“

V
(kl)
0 [ξα]θ̄ + (e(l)

α , θ̄)ξ̄(k)
α

”

+
2σ2

N2

N
X

α=1

L
X

k,m,n,p=1

W̄ (km)
α W̄ (np)

α (ξ̄(p)
α , M̄

−
V

(mn)
0 [ξα]θ̄)ξ̄(k)

α .

(A.23)

A.3.2 Evaluation of E[∆1MM̄
−

∆1Mθ̄]
We evaluate the expectation of ∆1MM̄

−∆1Mθ̄. From Eq. (35),
we can write

∆1Mθ̄=
1
N

N
X

α=1

L
X

k,l=1

W̄ (kl)
α

“

∆1ξ
(k)
α ξ̄

(l)>
α +ξ̄

(k)
α ∆1ξ

(l)>
α

”

θ̄

+
1
N

N
X

α=1

L
X

k,l=1

∆1W̄
(kl)
α ξ̄

(k)
α ξ̄

(l)>
α θ̄

=
1
N

N
X

α=1

L
X

k,l=1

W̄ (kl)
α (∆1ξ

(l)
α , θ̄)ξ̄(k)

α . (A.24)

We can also write

∆1MM̄
−∆1Mθ̄

=∆1MM̄
−
“ 1

N

N
X

α=1

L
X

k,l=1

W̄ (kl)
α (∆1ξ

(l)
α , θ̄)ξ̄(k)

α

”

=
“ 1

N

N
X

β=1

L
X

p,q=1

W̄
(pq)
β

“

∆1ξ
(p)
β ξ̄

(q)>
β + ξ̄

(p)
β ∆1ξ

(q)>
β

”

+
1
N

N
X

β=1

L
X

p,q=1

∆1W̄
(pq)
β ξ̄

(p)
β ξ̄

(q)>
β

”

M̄
−
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“ 1
N

N
X

α=1

L
X

k,l=1

W̄ (kl)
α (∆1ξ

(l)
α , θ̄)ξ̄(k)

α

”

=
1
N

N
X

β=1

L
X

p,q=1

W̄
(pq)
β

“

∆1ξ
(p)
β ξ̄

(q)>
β +ξ̄

(p)
β ∆1ξ

(q)>
β

”

M̄
−

“ 1
N

N
X

α=1

L
X

k,l=1

W̄ (kl)
α (∆1ξ

(l)
α , θ̄)ξ̄(k)

α

”

+
1
N

N
X

β=1

L
X

p,q=1

∆1W̄
(pq)
β ξ̄

(p)
β ξ̄

(q)>
β M̄

−

“ 1
N

N
X

α=1

L
X

k,l=1

W̄ (kl)
α (∆1ξ

(l)
α , θ̄)ξ̄(k)

α

”

=
1

N2

N
X

α,β=1

L
X

k,l,p,q=1

W̄ (kl)
α W̄

(pq)
β (∆1ξ

(l)
α , θ̄)

“

∆1ξ
(p)
β ξ̄

(q)>
β

+ξ̄
(p)
β ∆1ξ

(q)>
β

”

M̄
−

ξ̄
(k)
α +

1
N2

N
X

α,β=1

L
X

k,l,p,q=1

W̄ (kl)
α

∆1W̄
(pq)
β (∆1ξ

(l)
α , θ̄)ξ̄(p)

β ξ̄
(q)>
β M̄

−
ξ̄
(k)
α

=
1

N2

N
X

α,β=1

L
X

k,l,p,q=1

W̄ (kl)
α W̄

(pq)
β (∆1ξ

(l)
α , θ̄)(ξ̄(q)

β ,

M̄
−

ξ̄
(k)
α )∆1ξ

(p)
β (≡ t1)

+
1

N2

N
X

α,β=1

L
X

k,l,p,q=1

W̄ (kl)
α W̄

(pq)
β (∆1ξ

(l)
α , θ̄)(∆1ξ

(q)
β ,

M̄
−

ξ̄
(k)
α )ξ̄(p)

β (≡ t2)

+
1

N2

N
X

α,β=1

L
X

k,l,p,q=1

W̄ (kl)
α ∆1W̄

(pq)
β (∆1ξ

(l)
α , θ̄)(ξ̄(q)

β ,

M̄
−

ξ̄
(k)
α )ξ̄(p)

β (≡ t3). (A.25)

Consider the three terms t1, t2, and t3 separately. The expectation of
t1 is

E[t1] =
1

N2

N
X

α,β=1

L
X

k,l,p,q=1

W̄ (kl)
α W̄

(pq)
β (ξ̄(q)

β , M̄
−

ξ̄
(k)
α )

E[∆1ξ
(p)
β ∆1ξ

(l)>
α ]θ̄

=
1

N2

N
X

α,β=1

L
X

k,l,p,q=1

W̄ (kl)
α W̄

(pq)
β (ξ̄(q)

β , M̄
−

ξ̄
(k)
α )σ2δαβV

(pl)
0 [ξα]θ̄

=
σ2

N2

N
X

α=1

L
X

k,l,p,q=1

W̄ (kl)
α W̄ (pq)

α (ξ̄(q)
α , M̄

−
ξ̄
(k)
α )V (pl)

0 [ξα]θ̄.

(A.26)

The expectation of t2 is

E[t2]=
1

N2

N
X

α,β=1

L
X

k,l,p,q=1

W̄ (kl)
α W̄

(pq)
β (θ̄, E[∆1ξ

(l)
α ∆1ξ

(q)>
β ]

M̄
−

ξ̄
(k)
α )ξ̄(p)

β

=
1

N2

N
X

α,β=1

L
X

k,l,p,q=1

W̄ (kl)
α W̄

(pq)
β (θ̄, σ2δαβV

(lq)
0 [ξα]

M̄
−

ξ̄
(k)
α )ξ̄(p)

β

=
σ2

N2

N
X

α=1

L
X

k,l,p,q=1

W̄ (kl)
α W̄ (pq)

α (ξ̄(k)
α , M̄

−
V

(lq)
0 [ξα]θ̄)ξ̄(p)

α .

(A.27)

Finally, we consider the expectation of t3. From Eq. (A.20), we can
write

∆1W
(pq)
β =

2
N

N
X

γ=1

L
X

m,n,r,s=1

W̄
(pm)
β W̄

(qn)
β W̄ (rs)

γ (ξ̄(r)
γ ,

M̄
−

V
(mn)
0 [ξβ ]θ̄)(∆1ξ

(s)
γ , θ̄). (A.28)

Hence,

E[∆1W
(pq)
β ∆1ξ

(l)
α ]

=E[
2
N

N
X

γ=1

L
X

m,n,r,s=1

W̄
(pm)
β W̄

(qn)
β W̄ (rs)

γ (ξ̄(r)
γ ,

M̄
−

V
(mn)
0 [ξβ ]θ̄)(∆1ξ

(s)
γ , θ̄)∆1ξ

(l)
α ]

=
2
N

N
X

γ=1

L
X

m,n,r,s=1

W̄
(pm)
β W̄

(qn)
β W̄ (rs)

γ (ξ̄(r)
γ ,

M̄
−

V
(mn)
0 [ξβ ]θ̄)E[∆1ξ

(l)
α ∆1ξ

(s)>
γ ]θ̄

=
2
N

N
X

γ=1

L
X

m,n,r,s=1

W̄
(pm)
β W̄

(qn)
β W̄ (rs)

γ (ξ̄(r)
γ ,

M̄
−

V
(mn)
0 [ξβ ]θ̄)σ2δαγV

(ls)
0 [ξα]θ̄

=
2σ2

N

L
X

m,n,r,s=1

W̄
(pm)
β W̄

(qn)
β W̄ (rs)

α (ξ̄(r)
α ,

M̄
−

V
(mn)
0 [ξβ ]θ̄)V (ls)

0 [ξα]θ̄. (A.29)

It follows that

(E[∆1W̄
(pq)
β ∆1ξ

(l)
α ], θ̄)(ξ̄(q)

β , M̄
−

ξ̄
(k)
α )

=(
2σ2

N

L
X

m,n,r,s=1

W̄
(pm)
β W̄

(qn)
β W̄ (rs)

α (ξ̄(r)
α ,

M̄
−

V
(mn)
0 [ξβ ]θ̄)V (ls)

0 [ξα]θ̄, θ̄)(ξ̄(q)
β , M̄

−
ξ̄
(k)
α )

=
2σ2

N

L
X

m,n,r,s=1

W̄
(pm)
β W̄

(qn)
β W̄ (rs)

α (ξ̄(r)
α ,

M̄
−

V
(mn)
0 [ξβ ]θ̄)(θ̄, V

(ls)
0 [ξα]θ̄)(ξ̄(q)

β , M̄
−

ξ̄
(k)
α ). (A.30)

Thus, the expectation of t3 is

E[t3] =
1

N2

N
X

α,β=1

L
X

k,l,p,q=1

W̄ (kl)
α (E[∆1W̄

(pq)
β ∆1ξ

(l)
α ], θ̄)

(ξ̄(q)
β , M̄

−
ξ̄
(k)
α )ξ̄(p)

β
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=
1

N2

N
X

α,β=1

L
X

k,l,p,q=1

W̄ (kl)
α

“2σ2

N

L
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m,n,r,s=1

W̄
(pm)
β W̄

(qn)
β W̄ (rs)

α

(ξ̄(r)
α , M̄

−
V

(mn)
0 [ξβ ]θ̄)(θ̄, V
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0 [ξα]θ̄)(ξ̄(q)

β , M̄
−

ξ̄
(k)
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(p)
β

=
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β W̄ (rs)
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(ξ̄(r)
α , M̄

−
V
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0 [ξβ ]θ̄)(θ̄, V
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0 [ξα]θ̄)(ξ̄(q)

β , M̄
−

ξ̄
(k)
α )ξ̄(p)

β

=
2σ2

N3

N
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L
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k,m,n,p,q,r=1

W̄
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β (ξ̄(r)

α ,

M̄
−

V
(mn)
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“

L
X

l,s=1

W̄ (kl)
α (θ̄, V

(ls)
0 [ξα]θ̄)W̄ (sr)

α

”

(ξ̄(q)
β , M̄

−
ξ̄
(k)
α )ξ̄(p)

β

=
2σ2

N3

N
X

α,β=1

L
X

k,m,n,p,q,r=1

W̄
(pm)
β W̄

(qn)
β (ξ̄(r)

α ,

M̄
−

V
(mn)
0 [ξβ ]θ̄)W̄ (kr)

α (ξ̄(q)
β , M̄

−
ξ̄
(k)
α )ξ̄(p)

β

=
2σ2

N2

N
X

β=1

L
X

m,n,p,q=1

W̄
(pm)
β W̄

(qn)
β (ξ̄(q)

β , M̄
−

“ 1
N

N
X

α=1

L
X

k,r=1

W̄ (kr)
α ξ̄

(k)
α ξ̄

(r)>
α

”

M̄
−
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(A.31)

Adding the expectations of t1, t2, and t3 together, we obtain the ex-
pectation of ∆1MM̄

−∆1Mθ̄ in the following form:

E[∆1MM̄
−∆1Mθ̄]=
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A.3.3 Evaluation of E[T θ̄]
Combining the above expectations E[∆2Mθ̄] and

E[∆1MM̄
−∆1Mθ̄], we obtain the expectation of T θ̄ in the

form
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(A.33)

where we define the matrix N̄ by Eq. (53).
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