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Optimal Two-View Planar Scene Triangulation

Kenichi Kanatani†1 and Hirotaka Niitsuma†1

We present a new algorithm for optimally computing from point correspon-
dences over two images their 3-D positions using the knowledge that they are
constrained to be on a planar surface. We consider two cases: the case in which
the plane and camera parameters are known and the case in which they are
not. In the former, we show how observed point correspondences are optimally
corrected so that they are compatible with the homography between the two
images. In the latter, we show how the homography is optimally estimated by
iteratively using the triangulation procedure. Although the accuracy improve-
ment over existing methods is very small, our algorithm has a theoretical merit
of computing an exact maximum likelihood solution.

1. Introduction

Computing the 3-D position of a point from its projection in two images is called
triangulation and is a fundamental tool of computer vision4). The basic principle
is to compute the intersection of the rays, or the lines of sight, starting from
the camera lens center, or the viewpoint, and passing through the corresponding
image points. However, point correspondence detection using an image processing
operation incurs errors to some extent, and the two rays may not intersect. A
naive solution is to compute the midpoint of the shortest segment connecting
the two rays (Fig. 1(a)), but Kanatani8) and Hartley and Sturm5) pointed out
that for optimal estimation the corresponding points should be displaced so that
the rays meet in the scene (Fig. 1(b)) in such a way that the sum of the square
displaced distances, or the reprojection error , is minimized. For this, Hartley and
Sturm5) presented an algorithm that reduces to solving a 6th degree polynomial,
while Kanazawa and Kanatani14) gave a first approximation in an analytical
form. Later, Kanatani et al.12) showed that the first approximation is sufficiently
accurate and that a few iterations lead to complete agreement with the Hartley-
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Fig. 1 Triangulation. (a) The midpoint of the shortest segment connecting the rays. (b) The
points are optimally corrected so that their rays intersect. (c) The points are optimally
corrected so that their rays intersect on the plane.

Sturm solution with far more efficiency. Lindstrom15) and Tossavainen19) further
improved this approach.

The aim of this paper is to demonstrate that exactly the same holds when
the points we are viewing are constrained to be on a planar surface. This is a
common situation in indoor and urban scenes. If a 3-D point is constrained to
be on a known plane, the corresponding points must be displaced so that the
rays not merely intersect but also meet on that plane (Fig. 1(c)). We call this
planar triangulation after Chum et al.3). A first approximation solution was given
by Kanazawa and Kanatani13), while Chum et al.3) presented an algorithm that
reduces to solving an 8th degree polynomial. The purpose of this paper is to
demonstrate that a few iterations of the first approximation lead to an optimal
solution. We consider two cases:
• The plane and camera parameters are known.
• The plane and camera parameters are not known.

The algorithm of Chum et al.3) deals with the former. The latter case could be
solved using the bundle adjustment approach, as done by Bartoli and Sturm1)

for an arbitrary number of images. Here, we present a much simpler method to
deal with the latter case by extending the former. We highlight the fact that
our optimal triangulation procedure for the former case can straightforwardly be
extended to the latter.

In Section 2, we summarize the fundamentals about planar projection and
homographies. In Section 3 and 4, we present an iterative algorithm for optimal
planar triangulation for known plane and camera parameters. In Section 5, we
show that our optimal triangulation procedure can automatically be extended to
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the case of unknown plane and camera parameters. In Section 6, we do numerical
simulations and demonstrate that our algorithm and the first approximation of
Kanazawa and Kanatani13) give practically the same value.

2. Planar Surface and Homography

First, we summarize the relationship between planar surfaces and homogra-
phies. Consider a plane with a unit surface normal n at distance d from the
origin of an XY Z world coordinate system (Fig. 2(a)). We take images of this
plane from two positions. The ith camera, i = 1, 2, is translated from the world
origin O by ti after rotated by Ri. We call {ti, Ri} the motion parameters of
the ith camera. We assume that by prior camera calibration the image origin is
placed at the principal point and that the aspect ratio is 1 with no image skew.

The image of the plane taken from the first position, let us call it the “first
image,” and the image taken from the second position, let us call it the “second
image,” are related by the homography4),8) (Fig. 2(b))

x′ = f0
h11x + h12y + h13f0

h31x + h32y + h33f0
, y′ = f0

h21x + h22y + h23f0

h31x + h32y + h33f0
, (1)

where f0 is a scale factor of approximately the size of the image for stabilizing
numerical computation with finite length. The 3 × 3 matrix H = (hij) is deter-
mined by the parameters {n, d} of the plane, the motion parameters {Ri, ti}
and the focal lengths fi, i = 1, 2, in the form4),8)
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Fig. 2 (a) Plane and camera configuration. (b) Two images of the same planar surface are
related by a homography.

where I is the unit matrix, and diag(a, b, c) denotes the diagonal matrix with
diagonal elements a, b, and c in that order. Throughout this paper, we denote
the inner product of vectors a and b by (a, b).

3. Triangulation for Known Plane and Cameras

We first consider the case in which we know {n, d}, {Ri, ti}, and fi, i = 1,
2, hence the homography H. In homogeneous coordinates, Eqs. (1) are written
as4),8) x′/f0

y′/f0

1

 ∼=

 h11 h12 h13

h21 h22 h23

h31 h32 h33


 x/f0

y/f0

1

 . (3)

The symbol ∼= means equality up to a nonzero constant. Equation (3) can equiv-
alently be written as x′/f0

y′/f0

1

 ×

 h11 h12 h13

h21 h22 h23

h31 h32 h33


 x/f0

y/f0

1

 =

 0
0
0

 . (4)

The three components of this equation multiplied by f2
0 are

(ξ(1), h) = 0, (ξ(2), h) = 0, (ξ(3), h) = 0, (5)

where we define the 9-D vectors h, ξ(1), ξ(2), and ξ(3) by

h = (h11, h12, h13, h21, h22, h23, h31, h32, h33)>, (6)
ξ(1) = (0, 0, 0, −f0x, −f0y, −f2

0 , xy′, yy′, f0y
′)>,

ξ(2) = (f0x, f0y, f2
0 , 0, 0, 0, −xx′, −yx′, −f0x

′)>,

ξ(3) = (−xy′, −yy′, −f0y
′, xx′, yx′, f0x

′, 0, 0, 0)>. (7)

A corresponding point pair (x, y) and (x′, y′) can be identified with a point p =
(x, y, x′, y′)> in the 4-D xyx′y′ joint space. Each of the three equations in Eqs. (5)
is a second degree polynomial in x, y, x′, and y and linear in hij , defining a
hypersurface in this 4-D joint space. However, the identity x′ξ(1) +y′ξ(2) +f0ξ

(3)

= 0 holds, so Eqs. (5) define a 2-D variety, or algebraic manifold, S in the 4-D
joint space.
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Fig. 3 The point p is orthogonally projected on to p̄ on S in the 4-D joint space.

In the presence of noise, by which we mean uncertainty of image processing
operations, the point p is not necessarily on S. Optimal planar triangulation is
to displace p to a point p̄ on S in such a way that the reprojection error

E = (x − x̄)2 + (y − x̄)2 + (x′ − x̄′)2 + (y − ȳ′)2 = ‖p − p̄‖2, (8)
is minimized subject to the constraint that (x̄, ȳ) and (x̄′, ȳ′) satisfy the given
homography, i.e.,

(ξ(k)(p̄), h) = 0, k = 1, 2, 3. (9)

Geometrically, this means orthogonally projecting p onto the variety S in the 4-D
joint space (Fig. 3). This can also be viewed as maximum likelihood estimation
under isotropic Gaussian noise.

Once such a p̄ = (x̄, ȳ, x̄′, ȳ′)> is obtained, the corresponding 3-D position
(X,Y, Z) is determined by solving x̄/f0

ȳ/f0

1

 ∼= P 1


X

Y

Z

1

 ,

 x̄′/f0

ȳ′/f0

1

 ∼= P 2


X

Y

Z

1

 , (10)

where P 1 and P 2 are the 3 × 4 projection matrices defined as follows4),12):

P 1 = diag
(
1, 1,

f0

f1

)
R>

1 ( I −t1 ),

P 2 = diag
(
1, 1,

f0

f2

)
R>

2 ( I −t1 ). (11)

Equations (10) give four linear equations in X, Y , and Z, but because Eq. (9) is
satisfied, a unique solution is obtained12).

4. Optimal Planar Triangulation

We now present a new procedure for minimizing Eq. (8) subject to Eq. (9).
Since the structure of the problem is very simple, many approaches are conceiv-
able. For example, we may use Eq. (9) to eliminate x̄′ and ȳ′ from E in Eq. (8)
and minimize E with respect to x̄ and ȳ by gradient descent or Newton-like it-
erations. Here, we take an approach that can be straightforwardly extended to
the case of unknown plane and camera parameters, as we show later.

While unconstrained triangulation12) involves a single constraint describing the
epipolar geometry, planar triangulation is constrained by the three equations in
Eq. (9), which are not mutually algebraically independent. For this, the first
approximation has already been presented by Kanazawa and Kanatani13). We
modify their method so that an optimal solution is obtained by iterations. The
procedure is as follows (see Appendix A.1 for the derivation):
( 1 ) Let E0 = ∞ (a sufficiently large number), and define the 4-D vectors

p =


x

y

x′

y′

 , p̂ =


x̂

ŷ

x̂′

ŷ′

 , p̃ =


x̃

ỹ

x̃′

ỹ′

 , (12)

where we let x̂ = x, ŷ = y, x̂′ = x′, ŷ′ = y′, and x̃ = ỹ = x̃′ = ỹ′ = 0.
( 2 ) Compute the following 9 × 4 matrices T (1), T (2), and T (3):

T (1) =



0 0 0 0
0 0 0 0
0 0 0 0

−f0 0 0 0
0 −f0 0 0
0 0 0 0
ŷ′ 0 0 x̂

0 ŷ′ 0 ŷ

0 0 0 f0


, T (2) =



f0 0 0 0
0 f0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−x̂′ 0 −x̂ 0
0 −x̂′ −ŷ 0
0 0 −f0 0


,
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T (3) =



−ŷ′ 0 0 −x̂

0 −ŷ′ 0 −ŷ

0 0 0 −f0

x̂′ 0 x̂ 0
0 x̂′ ŷ 0
0 0 f0 0
0 0 0 0
0 0 0 0
0 0 0 0


. (13)

( 3 ) Compute the following ξ(1)∗, ξ(2)∗, and ξ(3)∗:

ξ(1)∗ = (0, 0, 0, −f0x̂, −f0ŷ, −f2
0 , x̂ŷ′, ŷŷ′, f0ŷ

′)> + T (1)p̃,

ξ(2)∗ = (f0x̂, f0ŷ, f2
0 , 0, 0, 0, −x̂x̂′, −ŷx̂′, −f0x̂

′)> + T (2)p̃,

ξ(3)∗ = (−x̂ŷ′, −ŷŷ′, −f0ŷ
′, x̂x̂′, ŷx̂′, f0x̂

′, 0, 0, 0)> + T (3)p̃.

(14)

( 4 ) Compute the following 9 × 9 matrices V
(kl)
0 [ξ]:

V
(kl)
0 [ξ] = T (k)T (l)>. (15)

( 5 ) Compute the 3 × 3 matrix W = (W (kl))

W =

 (h, V
(11)
0 [ξ]h) (h, V

(12)
0 [ξ]h) (h, V

(13)
0 [ξ]h)

(h, V
(21)
0 [ξ]h) (h, V

(22)
0 [ξ]h) (h, V

(23)
0 [ξ]h)

(h, V
(31)
0 [ξ]h) (h, V

(32)
0 [ξ]h) (h, V

(33)
0 [ξ]h)


−

2

, (16)

where ( · )−r denotes pseudoinverse with truncated rank r (the smallest
eigenvalue is replaced by 0 in its spectral decomposition).

( 6 ) Update p̃ and p̂ as follows:

p̃ =
3∑

k,l=1

W (kl)(ξ(l)∗,h)T (k)>h, p̂ ← p − p̃. (17)

( 7 ) Evaluate the reprojection error E = ‖p̃‖2. If E ≈ E0, return p̂ as p̄ and
stop. Else, let E0 ← E and go back to Step (2).

The use of the pseudoinverse with truncated rank 2 in Eq. (16) reflects the fact

that only two of the three constraints in Eqs. (5) are algebraically independent.
This algorithm computes the same solution as that of Chum et al.3), which solves
an 8th degree polynomial. However, our algorithm involves only a few iterations
of linear calculus without requiring any polynomial solver, which is sometimes
inefficient and numerically unstable.

Strictly speaking, our procedure is iterative local search, which, theoretically,
may not find a true solution, while the algorithm of Chum et al.3) computes all the
roots of an 8th degree polynomial, from among which a true solution is selected.
However, we need not worry about false solutions in practice, because the true
solution is the closest to the observation by the definition of the reprojection error
E. In other words, if local minima of E do exist, which is very questionable, they
are necessarily located farther away from the observation, and hence the solution
found by local search should be the true solution except in a vary pathological
case, which is difficult to imagine. So, we do not consider such a possibility. The
same argument is done for unconstraint triangulation12).

5. Triangulation for Unknown Plane and Cameras

Next, we consider the case in which {n, d}, {Ri, ti}, i = 1, 2, are unknown.
As is well known4),8), these parameters can be estimated by computing the ho-
mography H between the two images, provided that the focal lengths fi are
known; we assume that they are given by prior camera calibration. Once the
homography H is known, the plane and camera parameters can be analytically
computed6),16),20)–22) (see Appendix A.2). Thus, the problem reduces to comput-
ing the homography H from point correspondences over the two images. The
simplest method is to minimize the algebraic distance, which is known by many
names such as least squares and DLT (Direct Linear Transformation)4), but the
accuracy is low in the presence of noise17). A method known to be very accu-
rate is what is called Sampson error minimization4), and an iterative scheme
was presented by Scoleri et al.18). However, Sampson error minimization does
not necessarily compute an exactly optimal solution in the sense of maximum
likelihood10). We now show that by combining the Sampson error minimization
with the optimal planar triangulation described in Section 4, we can obtain an
exactly optimal H. This is the second contribution of this paper.
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Our method is based on the theory of Kanatani and Sugaya10), but the proce-
dure described there applies only to a single constraint, which is the case in ellipse
fitting and fundamental matrix computation. Here, we extend their theory to
homographies constrained by multiple equations. Given N corresponding points
(xα, yα) and (x′

α, y′
α), or 4-D joint points pα = (xα, yα, x′

α, y′
α)>, α = 1, . . ., N ,

our task is to optimally compute the 9-D vector h that encodes the homography
H by minimizing the sum of the reprojection error over all these pairs

E =
1
2

N∑
α=1

(
(xα − x̄α)2 + (yα − x̄α)2 + (x′

α − x̄′
α)2 + (yα − ȳ′

α)
)2

=
1
2

N∑
α=1

‖pα − p̄α‖2, (18)

for the true values p̄α = (x̄α, ȳα, x̄′
α, ȳ′

α)> of pα subject to the constaint that

(ξ(k)(p̄α), h) = 0, k = 1, 2, 3, α = 1, . . . , N. (19)

This can also be viewed as maximum likelihood estimation under homogeneous
isotropic Gaussian noise.

If the points we are observing are precisely coplanar in the scene and their
projections are precisely detected on the image plane, there is a solution of p̄α

and h that makes the reprojection error E in Eq. (18) exactly 0. Here, we are
assuming that
• the points we are observing may not precisely be coplanar in the scene, and/or
• their projections on the image plane may not precisely be detected because

of uncertainty and inaccuracy of image processing operations.
Whichever is the case, we compute p̄α and h that minimize Eq. (18). Hence,
this method can also be applied to not exactly planar surfaces such as building
facades and road surfaces. The procedure for minimizing Eq. (18) is as follows
(see Appendix A.3 for the derivation):
( 1 ) Let E0 = ∞ (a sufficiently large number), and give an initial guess of h

using any method, say least squares.
( 2 ) Let pα, p̂α, and p̃α be the vectors in Eqs. (12) for the αth point pα, α =

1, . . ., N .
( 3 ) Let T (1)

α , T (2)
α , and T (3)

α be, respectively, the values of T (1), T (2), and T (3)

in Eqs. (13) for the αth point pα, α = 1, . . ., N .
( 4 ) Compute the 9 × 9 matrices V

(kl)
0 [ξα] = T (k)

α T (l)>
α and the 3 × 3 matrices

W α = (W (kl)
α ) in Eq. (16) for the αth point pα, and let the 9-D vectors

ξ(1)∗
α , ξ(2)∗

α , and ξ(3)∗
α be the values of ξ(1)∗, ξ(2)∗, and ξ(3)∗ in Eqs. (14) for

the αth point pα, α = 1, . . ., N .
( 5 ) Compute the 9-D unit vector h that minimizes

J =
1
N

N∑
α=1

3∑
k,l=1

W (kl)
α (ξ(k)∗

α , h)(ξ(l)∗
α , h). (20)

( 6 ) Update p̃α and p̂α, α = 1, . . ., N , as follows:

p̃α =
3∑

k,l=1

W (kl)
α (ξ(l)∗

α , h)T (k)>
α h, p̂α ← pα − p̃α. (21)

( 7 ) Evaluate the reprojection error E =
∑N

α=1 ‖p̃α‖2. If E ≈ E0, return h and
stop. Else, let E0 ← E and go back to Step (3).

This procedure is identical to the optimal planar triangulation in Section 4 except
for Step (5). Equation (20) coincides with what is known as the Sampson error4)

if ξ(k)∗
α and ξ(l)∗

α on the right-hand side are respectively replaced by ξ(k)
α and

ξ(l)
α , i.e., the values of Eqs. (7) for the αth point pα (see Appendix A.3 for the

meaning of Eq. (20)). It can be minimized by the scheme of Scoleri et al.18), but
here we use a much simpler reformulation of Kanatani et al.17), which is a direct
extension of the FNS (Fundamental Numerical Scheme) of Chojnacki et al.2).
The procedure goes as follows (see Appendix A.4 for the derivation):
( 1 ) Provide an initial value h0 for h, e.g., by least squares.
( 2 ) Compute the matrices M and L by

M =
1
N

N∑
α=1

W (kl)
α ξ(k)∗

α ξ(l)∗>
α , L =

1
N

N∑
α=1

N∑
k,l=1

v(k)
α v(l)

α V
(kl)
0 [ξα],

(22)

where we define

v(k)
α =

3∑
l=1

W (kl)
α (ξ(l)∗

α ,h). (23)
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( 3 ) Solve the eigenvalue problem
(M − L)h = λh, (24)

and compute the unit eigenvector h for the smallest eigenvalue λ.
( 4 ) If h ≈ h0, return h and stop. Else, let h0 ← h, and go back to Step (2).

For unconstrained triangulation, the optimal algorithm of Kanatani et al.12),
which assumes a given fundamental matrix, can automatically be converted to
optimal fundamental matrix computation merely by inserting a Sampson error
minimization step, as shown by Kanatani and Sugaya9). In contrast, the polyno-
mial solving algorithm of Hartley and Sturm5) cannot be so easily converted to
optimal fundamental matrix computation. The situation is the same for planar
triangulation. The optimal planar triangulation we proposed in Section 4, which
assumes a given homography, can automatically be converted to optimal homog-
raphy computation merely by inserting a Sampson error minimization step. In
contrast, the polynomial solving algorithm of Chum et al.3) cannot be so easily
converted to optimal homography computation.

6. Experiments

Figure 4(a) shows two images of a simulated grid. The image size is 500×500
pixels; the focal lengths are f1 = f2 = 600 pixels. We added Gaussian noise
of mean 0 and standard deviation 1 pixel to the x and y coordinates of each
of the N (= 121) grid points. Then, we reconstructed the 3-D position of each
grid point by unconstrained triangulation12) and by our planar triangulation.
Figure 4(b) shows the 3-D positions of the grid points. We can see that by
planar triangulation (in blue) all the points are on the specified plane but not by
unconstrained triangulation (in red). For quantitative evaluation, we measured
the root mean square reprojection error

e =

√√√√ 1
N

N∑
α=1

(
(x̂α − xα)2 + (ŷα − yα)2 + (x̂′

α − x′
α)2 + (ŷ′

α − y′
α)2

)
, (25)

where (x̂α, ŷα) and (x̂′
α, ŷ′

α) are the corrected positions of the observations
(xα, yα) and (x′

α, y′
α), respectively. We also evaluated the 3-D reconstruction

error

(a) (b)

reprojection
error

theoretical
expectation 3-D error

unconstrained 1.99503 2.00000 4.24466
planar 1st approx.

2.83127 — 0.95937
exact

2.83124 2.82843 0.95935

Fig. 4 (a) Simulated images of a planar grid taken from different places. (b) 3-D position of
the reconstructed grid. Points reconstructed by planar triangulation (in blue) are on
the specified plane, but those reconstructed by unconstrained triangulation12) (in red)
are not necessarily on it. The table below lists the reprojection error, its theoretical
expectation, and the average 3-D reconstruction error.

D =

√√√√ 1
N

N∑
α=1

‖r̂α − r̄α‖2, (26)

where r̂α is the reconstructed position of the αth point, and r̄α its true position.
The table in Fig. 4 lists the values for unconstrained triangulation12), the first
approximation of the planar triangulation (the iteration is terminated after the
first round), which corresponds to the result of Kanazawa and Kanatani13), and
the exact values computed by our method.

From this table, we observe that the reprojection error e increases by assuming
planarity. This is because the corresponding points need to be displaced so that
the rays not simply intersect but also intersect on the specified plane. Statistical
analysis8) tells us that under maximum likelihood Ne2/σ2 is subject to a χ2

distribution with N degree of freedom for unconstrained triangulation and with
2N degrees of freedom for planar triangulation. Hence, e should be approximately
σ and

√
2σ, respectively. The values in the table in Fig. 4 are very close to the

prediction. However, the increase in the reprojection error e does not mean the
increase in the 3-D reconstruction error D. In fact, the 3-D reconstruction error
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plane reprojection
error

theoretical
expectation 3-D error

known 2.83124 2.82843 0.01919
unknown 1st approx.

2.81321 — 0.13643
exact

2.81323 2.78128 0.13660

Fig. 5 The reconstructed grid by estimating the plane and the camera positions (in red) and
its true position (in black). The table lists the reprojection error of planar triangulation
by estimating the plane and the camera positions, its theoretical expectation, and the
average 3-D reconstruction error.

D actually decreases with the knowledge of planarity. We also see that the exact
values are very close to the first approximation of Kanazawa and Kanatani13).

Next, we tested the case in which the plane and camera parameters are un-
known. Since the absolute scale is indeterminate, we scaled the relative displace-
ment between the cameras to unit length. Figure 5 shows the 3-D positions of
the reconstructed grid (in red) and its true position (in black). Due to the error
in estimating the plane, i.e., the homography, the computed position is slightly
different from its true position. The table in Fig. 5 compares the reprojection
error e and the 3-D reconstruction error D in the known and unknown plane
cases. The values in the known plane case are the same as in the table in Fig. 4
except the normalization ‖t‖ = 1.

We observe that the reprojection error e is smaller in the unknown plane case
than in the known plane case. This is because the parameters of the plane are
estimated so that the reprojection error is minimized. Statistical analysis8) tells
us that under maximum likelihood Ne2/σ2 is subject to a χ2 distribution with
2N − 8 degrees of freedom and hence has expectation 2N − 8. This reflects
the fact that the homography constraint has eight degrees of freedom with codi-
mension two8). Consequently, the reprojection error e should approximately be√

2(1 − 4/N)σ. The value in the table in Fig 4 is very close to the prediction.
We also see that the first approximation (using only a single Sampson error min-
imization step) and the exact maximum likelihood value are very close to each
other, as generally predicted in Ref. 10). Again, the smaller reprojection error
does not mean increase in 3-D reconstruction accuracy. Rather, the 3-D recon-

struction accuracy deteriorates because of the error in estimating the plane, as
shown in the table in Fig. 4.

Note that when the camera positions are unknown, the 3-D positions of the
points cannot be reconstructed without the knowledge of planarity. If the points
are in general position, their 3-D positions and the camera positions can be recon-
structed from two views11), but that computation fails if the points degenerate
to be coplanar4),8).

7. Concluding Remarks

We have presented an optimal algorithm?1 for computing the 3-D positions of
points viewed from two images using the knowledge that they are constrained to
be on a planar surface. This is an extension of the unconstrained triangulation of
Kanatani et al.12) which does not assume planarity. Our algorithm automatically
encompass the case in which the plane and camera parameters are unknown; they
are estimated merely by inserting a Sampson error minimization step. As a result,
an exact maximum likelihood estimate is obtained for the homography between
the two images. Note that the homography is optimally estimated even if the
points we are observing are not pecisely coplanar in the scene, so this algorithm
has a wide range of applications involving not exactly planar surfaces such as
building facades and road surfaces.

Our algorithm here is a complete parallel to the scheme of Kanatani and Sug-
aya9) for computing an exact maximum likelihood estimate of the fundamental
matrix between two images merely by inserting a Sampson error minimization
step in the unconstrained triangulation of Kanatani et al.12). In contrast, the op-
timal triangulation of Hartley and Sturm5), which solves a 6th degree polynomial,
is not so easily converted to optimal fundamental matrix estimation. Similarly,
the optimal planar triangulation of Chum et al.3), which solves an 8th degree
polynomial, is not so easily converted to produce an optimal homography.

We have also confirmed experimentally that the first approximation is very
close to the exact maximum likelihood estimate. Thus, we may say that our
optimal scheme is not really necessary in practice. In fact, the Sampson error

?1 The code is available at http://www.suri.cs.okayama-u.ac.jp/˜kanatani/e/.
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minimization solution is known to coincide with the exactly optimal solution
up to several significant digits in many problems10), and a variaty of real image
applications have been published in the literature1),3),4),8),13). This is the reason
we do not show real image demos in this paper. Rather, we stress the theoretical
importance of our formulation: The performance of existing methods can only
be evaluated by comparing it with our optimal solution.

In our experiment, we used the least squares, also known as the DLT, to com-
pute the initial value h to start the FNS iterations described in Section 5. We
have observed that the iterations may not converge in the presence of extremely
large noise and that the use of “HyperLS” or its “Taubin approximation”17) can
significantly extend the noise level range of convergence.

Our optimal homography computation does not reach a global minimum of the
reprojection error if Step (5) does not return a global minimum of the Sampson
error. In fact, the FNS described in Section 5 is not theoretically guaranteed to
return a global minimum of the Sampson error J , although no counterexample
has been witnessed in our experiences. If the Sampson error J could be globally
minimized in each iteration, e.g., using branch and bound, we would obtain a
global minimum solution h in the end, because the Sampson error J coincides
with the reprojection error when the iterations have converged10).

Acknowledgments This work was supported in part by the Ministry of Ed-
ucation, Culture, Sports, Science, and Technology, Japan, under a Grant in Aid
for Scientific Research (C 21500172).
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Appendix

A.1 Derivation of optimal planar triangulation
Instead of computing p̄ that minimizes Eq. (7), we can let p̄ = p − ∆p and

compute ∆p. Equations (7) and (8) are now rewritten as

E = ‖∆p‖2, (ξ(k)(p − ∆p), h) = 0, k = 1, 2, 3. (27)

Writing ξ(k) = ξ(k)(p), substituting the Taylor expansion ξ(k)(p−∆p) = ξ(k) −
T (k)∆p+ · · · to the second of Eqs. (27), and omitting second order terms in ∆p,
we obtain to a first approximation

(T (k)∆p, h) = (ξ(k), h). (28)

Introducing Lagrange multipliers λ(k), differentiating

1
2
‖∆p‖2 −

3∑
k=1

λ(k)(T (k)∆p,h) =
1
2
(∆p, ∆p) −

3∑
k=1

λ(k)(∆p, T (k)>h) (29)

with respect to ∆p, setting the result to 0, we obtain

∆p =
3∑

k=1

λ(k)T (k)>h. (30)

Hence, E = ‖∆p‖2 has the form

E =
( 3∑

k=1

λ(k)T (k)>h,
3∑

l=1

λ(l)T (l)>h
)

=
3∑

k,l=1

V (kl)λ(k)λ(l), (31)

where V (kl) = (h, V
(kl)
0 [ξ]h) (recall the definition of V

(kl)
0 [ξ] in Eq. (14)). Sub-

stituting Eq. (30) into Eq. (28), we obtain
3∑

l=1

(h, V
(kl)
0 [ξ]h)λ(l) = (ξ(k), h). (32)

This defines a set of simultaneous linear equations in λ(l), but the coefficient ma-
trix has rank 2 in the absence of noise. So, we solve it by using the pseudoinverse

W of truncated rank 2 in Eq. (15) and obtain

λ(k) =
3∑

l=1

W (kl)(ξ(l), h). (33)

Substitution of this into Eq. (31) yields

E =
3∑

k,l=1

V (kl)
3∑

m=1

W (km)(ξ(m), h)
3∑

n=1

W (ln)(ξ(n), h)

=
3∑

k,l=1

W (kl)(ξ(k),h)(ξ(l), h), (34)

where we have used the identity WV W = W (W )−2 W = W for pseudoinverses.
The true value p̄ is now estimated from Eqs. (30) and (33) by replacing ξ(l)∗ by
ξ(l) in Eq. (16).

This is only a first approximation. So, we let p̄ = p̂ − ∆p̂ and estimate the
higher order correction ∆p̂. Now, Eqs. (7) and (8) are rewritten as

E = ‖p̃ + ∆p̂‖2, (ξ(k)(p̂ − ∆p̂), h) = 0, k = 1, 2, 3, (35)

where we put p̃ = p− p̂. Substituting the Taylor expansion of ξ(k)(p̂−∆p̂) and
omitting second order terms in the higher order correction ∆p̂, we obtain

(T̂
(k)

∆p̂, h) = (ξ̂
(k)

, h), (36)

where ξ̂
(k)

= ξ(k)(p̂) and T̂
(k)

is the value of the matrix T (k) obtained by sub-
stituting p = p̂. Introducing Lagrange multipliers λ, differentiating

1
2
‖p̃ + ∆p̂‖2 −

3∑
k=1

λ(k)(T̂
(k)

∆p̂, h) =
1
2
(p̃ + ∆p̂, p̃ + ∆p̂)

−
3∑

k=1

λ(k)(∆p̂, T̂
(k)>

h) (37)

with respect to ∆p̂, and setting the result to 0, we obtain

∆p̂ =
3∑

k=1

λ(k)T̂
(k)>

h − p̃. (38)
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Substituting of this into E = ‖p̃ + ∆p̂‖2, we have

E = (
3∑

k=1

λ(k)T̂
(k)>

h,

3∑
l=1

λ(l)T̂
(l)>

h) =
3∑

k,l=1

V̂ (kl)λ(k)λ(l), (39)

where we put V̂
(kl)
0 [ξ] = T̂

(k)
T̂

(l)>
and V̂ (kl) = (h, V̂

(kl)
0 [ξ]h). Substituting

Eq. (38) into Eq. (36), we obtain after rearrangement
3∑

l=1

V̂ (kl)λ(l) = (ξ̂
(k)∗

, h), (40)

where we put ξ̂
(k)∗

= ξ̂
(k)

+ T̂
(k)

p̃. From Eq. (40), the Lagrange multipliers λ(k)

are obtained in the form

λ(k) =
3∑

l=1

Ŵ (kl)(ξ̂
(l)∗

, h), (41)

where Ŵ (kl) is the (kl) element of the pseudoinverse Ŵ = (V̂ )−2 of truncated
rank 2 of the matrix V̂ . Substituting Eq. (41) into Eq. (39), we can write the
reprojection error E in the form

E =
3∑

k,l=1

V̂ (kl)
3∑

m=1

Ŵ (km)(ξ̂
(m)∗

,h)
3∑

n=1

Ŵ (ln)(ξ̂
(n)∗

,h)

=
3∑

k,l=1

Ŵ (kl)(ξ̂
(k)∗

, h)(ξ̂
(l)∗

, h), (42)

where we have used the identity Ŵ V̂ Ŵ = Ŵ (Ŵ )−2 Ŵ = Ŵ of pseudoinverses.
From Eqs. (38) and (39), the true value p̄ can be estimated by Eq. (16). We
let the result be p̂ and estimate the yet higher correction term by the same
procedure. In the end, ∆p̂ converges to 0.

A.2 Plane and motion parameters from homography
Since the XY Z world coordinate system can be arbitrarily defined in the scene,

we identify it with the first camera coordinate system so that the motion param-
eters of the first camera are {I, 0}; let {R, t} be the parameters of the second.
The absolute scale of the scene cannot be determined from images, so we let ‖t‖ =
1. The procedure for computing the parameters {n, d} and {R, t} from a given

homography H has be been presented by many researchers in many different
forms6),16),20)–22). The following is a modification of the formulation in Ref. 7):
( 1 ) Let H̃ be

H̃ = diag
(
1, 1,

f2

f0

)
Hdiag

(
1, 1,

f0

f1

)
. (43)

( 2 ) Normalize H̃ to have determinant 1:

H̃ ← H̃

3
√

det[H̃]
. (44)

( 3 ) Compute the singular value decomposition (SDV) of H̃ in the form (V and
V are orthogonal matrices):

H̃ = V diag(σ1, σ2, σ3)V >. (45)

( 4 ) Let v1, v2, and v3 be the columns of the matrix V . The paremeters {n,
d} are given by

n = N
[√

σ2
1 − σ2

2v1 ±
√

σ2
2 − σ2

3v3

]
, d =

σ2

σ1 − σ3
, (46)

where N [ · ] denotes normalization into unit norm (N [a] = a/‖a‖).
( 5 ) Compute t and R by

t = N
[
−σ3

√
σ2

1 − σ2
2v1 ± σ1

√
σ2

2 − σ2
3v3

]
, R =

1
σ2

(
I +

σ3
2nt>

d

)
H̃

>
,

(47)
where the double sign ± has the same order as in Eq. (46).

( 6 ) Another solution is obtained by simultaneously changing the sign of both
n and t.

Thus, we obtain four sets of solutions for t, R, d and n, but they include
geometrically identical solutions, so we obtain two sets of geometrically different
solutions. It is easy to pick out a correct solution, since in realistic situations the
incorrect solution has a very unnatural geometry. As an easy criterion, consider
for example the vanishing line of the plane, which may not exist within the image
framework. It divides the image plane into a plane region and an nonplane region
(e.g., the background). If the image origin is within the plane region, which is
usually the case, we can select the correct solution by choosing the one for which
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the Z components of vectors R>
1 n/d and R>

2 n/d are both positive. If there is
no such solution, we reconstruct the 3-D positions of the corresponding points
using our planar triangulation algorithm for both solutions and choose the one
for which the computed 3-D positions are in front of both cameras7).

A.3 Sampson error and optimal homography estimation
The procedure in Appendix A.1 orthogonally projects the 4-D joint point p =

(x, y, x′, y′)> onto the 2-D variaty S in the 4-D space. First, the projection direc-
tion is determined from the coordinates (x, y, x′, y′) of p as a first approximation
to the correct orthogonal direction. With this projection, the reprojection error
is given by Eq. (34). If we do this for all the N points pα = (xα, yα, x′

α, y′
α)>, α

= 1, . . ., N , the sum of the reprojection errors divided by N is

J =
1
N

N∑
α=1

3∑
k,l=1

W (kl)
α (ξ(k)

α , h)(ξ(l)
α , h), (48)

which is known as the Sampson error4). So far, we have assumed that the
homography h is given. If h is not given, it is reasonable to choose such h

that minimizes Eq. (48). Now, suppose the homography h is so chosen from the
beginning. Since the first projection direction may not be exactly orthogonal to
S we correct it as described in Appendix A.1. As a result, the reprojection error
for each p is given by Eq. (42). Summing it for all α and dividing it by N , we
obtain

J =
1
N

N∑
α=1

3∑
k,l=1

W (kl)
α (ξ(k)∗

α , h)(ξ(l)∗
α , h). (49)

Then, we update the homograpy h by choosing the value that minimized this
expression. Note that Eq. (49) has the same form as Eq. (48) except that ξ(k)

α

in Eq. (48) are replaced by ξ(k)∗
α . Hence, if a minimization tool for Eq. (48) is

available, it can also be used to minimize Eq. (49).
After the iterations have converged, the projection of each pα is orthogonal to

the variety S detemined by the homography h that minimizes the sum of the
reprojection errors for all the corresponding pairs of points. Thus, we obtain the
procedure described in Section 5.

A.4 Sampson error minimization for homography
As pointed out above, it is sufficient to derive a scheme for minimizing Eq. (48);

Eq. (49) is minimized using the same scheme.
Since the identity x′ξ(1) + y′ξ(2) + f0ξ

(3) = 0 holds for ξ(k) in Eqs.(7) as
mentioned in Section 3, we obtain

(x′
αξ(1)

α + y′
αξ(2)

α + f0ξ
(3)
α , h) = 0, (50)

for each α. Since this is an identity in xα, yα, x′
α, and y′

α, its derivatives with
respect to these are also identities. Hence, the following identically hold if there
is no noise:

(x′
α[T (1)

α ]1 + y′
α[T (2)

α ]1 + f0[T (3)
α ]1, h) = 0,

(x′
α[T (1)

α ]2 + y′
α[T (2)

α ]2 + f0[T (3)
α ]2, h) = 0,

(x′
α[T (1)

α ]3 + y′
α[T (2)

α ]3 + f0[T (3)
α ]3, h) = 0,

(x′
α[T (1)

α ]4 + y′
α[T (2)

α ]4 + f0[T (3)
α ]4, h) = 0. (51)

Here, [T (k)
α ]i is the ith column of T (k)

α , and we have noted that (ξ(k)
α , h) = 0 in

the absence of noise. From these four equations, we conclude that

(x′
αT (1)

α + y′
αT (2)

α + f0T
(3)
α )>h = 0. (52)

If we multiply T (k)
α with this and note the definition V

(kl)
0 [ξα] ≡ T (k)

α T (l)>
α , we

obtain

(x′
αV

(k1)
0 [ξα] + y′

αV
(k2)
0 [ξα] + f0V

(k3)
0 [ξα])h = 0. (53)

Let us write the 3 × 3 matrix having (h, V
(kl)
0 [ξα]h) as its (kl) element as V α.

Computing the inner product of h and Eq. (53), we obtain

V α

 x′
α

y′
α

f0

 = 0. (54)

Thus, v′
α = (x′

α, y′
α, f0)> is a null vector of V α. From the definition of pseu-

doinverse, it is also a null vector of W α = (V α)−2 . It follows that W αV α and
V αW α are both projection matrices onto the subspace orthogonal to v′

α. Hence,
we can write
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W αV α = V αW α = I −N [v′
α]N [v′

α]>. (55)

(Recall that N [ · ] denotes normalization into unit norm.) Differentiating Eq. (55)
with respect to hi, we obtain

∂V α

∂hi
W α + V α

∂W α

∂hi
= O. (56)

Multiplying this by W α from left and noting that ∂W α/∂hi also has v′
α as

its null vector and hence is invariant to the projection W αV α, we obtain the
following identity:

∂W α

∂hi
= −W α

∂V α

∂hi
W α. (57)

Now, if we define the 9 × 3 matrix

Ξα =
(

ξ(1)
α ξ(2)

α ξ(3)
α

)
, (58)

Eq. (48) can be rewritten as follows:

J =
1
N

N∑
α=1

(h,ΞαW αΞ>
α h). (59)

Differentiating this with respect to hi and using Eq. (57), we obtain

∂J

∂hi
=

2
N

N∑
α=1

(ΞαW αΞ>
α h)i −

2
N

N∑
α=1

(
h,ΞαW α

∂V α

∂hi
W αΞ>

α h
)
, (60)

where ( · )i denotes the ith component. If we put

v(k)
α =

3∑
l=1

W (kl)
α (ξ(l)

α , h), (61)

and define vα to be the 3-D vector with components v
(k)
α , k = 1, 2, 3, Eq. (61)

is written as

vα = W αΞ>
α h. (62)

From the definition of the matrix V α, we see that ∂V α/∂hi is a 3 × 3 matrix
whose (kl) element is 2

∑9
j=1 V

(kl)
0 [ξα]ijhj . Hence, the last term of the right-hand

side of Eq. (60) is

2
N

N∑
α=1

(
h,ΞαW α

∂V α

∂hi
W αΞ>

α h
)

=
2
N

N∑
α=1

(
vα,

∂V α

∂hi
vα

)
=

9∑
j=1

( 2
N

N∑
α=1

3∑
k,l=1

V
(kl)
0 [ξα]ijv(k)

α v(l)
α

)
hj . (63)

If we define 9 × 9 matrices M and L by

M =
1
N

N∑
α=1

W (kl)
α ξ(k)

α ξ(l)>
α , L =

1
N

N∑
α=1

N∑
k,l=1

v(k)
α v(l)

α V
(kl)
0 [ξα], (64)

the first term on the right-hand side of Eq. (60) is simply 2M . Equation (63) is
written as 2Lh. Thus, we obtain the following expression of the derivative of J

in Eq. (59):
∇hJ = 2(M − L)h. (65)

It follows that to minimize J we need to solve
(M − L)h = 0. (66)

In the above derivation, we have assumed that there is no noise. In the presence
of noise, the only difference is that Eq. (54) does not exactly hold, and V α is
nonsingular with the smallest eigenvalue close to 0. So, we regard the definition
of W α = (V α)−2 as obtained by truncating the smallest eigenvalue of V α to 0.
Using the FNS principle of Chojnacki et al.2), we obtain the following procedure:
( 1 ) Provide an initial value h0 for h.
( 2 ) Compute the matrices M and L in Eqs. (64).
( 3 ) Solve the eigenvalue problem

(M − L)h = λh, (67)
and compute the unit eigenvector h for the smallest eigenvalue λ.

( 4 ) If h ≈ h0, return h and stop. Else, let h0 ← h, and go back to Step (2).
Recall that the (kl) elements of V α is (h, V

(kl)
0 [ξα]h), so if we multiply h by a

constant c, the matrix V α is multiplied by c2. Hence, the matrix W α = (V α)−2
is multiplied by 1/c2. This means that J in Eq. (59) is invariant to the scale
change of h. Hence, its gradient ∇hJ is orthogonal to h, so (h, (M − L)h) =
0 for any h. It follows that when the FNS iterations have converged to some h

that satisfies Eq. (67), λ is necessarily 0 and Eq. (66) holds.
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In the extremely noisy case, the FNS iterations may not converge. In such a
case, replacing h ← h0 by h ← N [h + h0] (= N [(h + h0)/2]) is effective for
accelerating the convergence9). The use of “HyperLS” or its “Taubin approx-
imation”17) for computing the initial value is also effective, as pointed out in
Section 7.

(Received December 2, 2010)
(Revised May 11, 2011)

(Accepted July 12, 2011)
(Released September 20, 2011)

(Communicated by Long Quan)

Kenichi Kanatani received his B.E., M.S., and Ph.D. in applied
mathematics from the University of Tokyo in 1972, 1974 and 1979,
respectively. After serving as Professor of computer science at
Gunma University, Gunma, Japan, he is currently Professor of
computer science at Okayama University, Okayama, Japan. He is
the author of many books on computer vision and received many
awards including the Best Paper Awards from IPSJ (1987) and

IEICE (2005). He is an IEEE Fellow.

Hirotaka Niitsuma received his B.E. an M.S. from Osaka Uni-
versity, Japan, in 1993 and 1995, respectively, and his Ph.D. from
NAIST, Japan, in 1999. He was a researcher at TOSHIBA, at JST
Corporation, at Denso IT Laboratory, Inc., at Kwansei Gakuin
University, Japan, at Kyungpook National University, Korea, and
at AIST, Japan. From April 2007, he is Assistant Professor of
computer science at Okayama University, Japan. His research in-

terests include computer vision, machine learning, and neural networks.

79


