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Abstract. In order to reconstruct 3-D shape from two uncalibrated views, one needs to resolve two problems:
(i) the computed focal lengths can be imaginary; (ii) the computation fails for fixated images. We present
a practical remedy for these by subsampling feature points and fixing the focal length. We first summarize
theoretical backgrounds and then do simulations, which reveal a rather surprising fact that when the focal
length is actually fixed, not using that knowledge yields better results for non-fixated images. We give an
explanation to this seeming paradox and derive a hybrid method switching the computation by judging
whether or not the images are fixated. Doing simulations and real image experiments, we demonstrate the
effectiveness of our method.
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1. Introduction

Many techniques have been proposed for reconstruct-
ing 3-D shape from images (Hartley and Zisserman,
2000). They are classified into two types: using sep-
arate images and using a continuous video stream.
Among the former, the two-view method using two
uncalibrated images (Hartley and Silpa-Anan, 2002;
Kanatani and Ohta, 2003) is the simplest. Using
three or more images may improve the accuracy, but a
large amount of computation is necessary for match-
ing multiple images and estimating the camera posi-
tions and their internal parameters for all the frames

(Pollefeys et al., 1999). In contrast, the two-view
method merely requires one to match feature points
between the two images and compute the fundamen-
tal matrix. Today, effective algorithms are available
for robustly matching two images (Kanazawa and
Kanatani, 2002; Zhang et al., 1995) and for accu-
rately computing the fundamental matrix (Chojnacki
et al., 2000; Kanatani, 2000; Leedan and Meer, 2000),
making the two-view method very practical for real
applications.

However, this method has a serious drawback: since
all the computations are based on the feature point
matches over two images, the result is very sensitive
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to the quality of the matches. In particular, the fo-
cal lengths for the two images are often computed to
be imaginary (Hartley and Silpa-Anan, 2002) due to
matching inaccuracies; wrong points may be matched,
or the matched points may not exactly correspond to
identical points in the scene.

On top of that, there is a problem of degeneracy:
the computation fails if the two images are such that
a point in the scene is fixated at their principal points
(Brooks et al., 1998; Kanatani and Matsunaga, 2000).
We call such an image pair fixated images. In order to
do 3-D reconstruction, therefore, one must avert the
camera from the object in a different way for each
image. This is a great obstacle in practice, since for
humans it is most natural to take images of something
by fixating it.

This paper analyzes these problems in detail and
presents a practical remedy. We first summarize the
theoretical backgrounds. Then, we go on to practical
issues. To avoid imaginary focal lengths, we subsam-
ple feature points. To cope with fixated images, we fix
the focal length for the two images. It is known that
3-D reconstruction is possible even from fixated im-
ages if the two focal lengths are the same (Brooks et
al., 1998; Kanatani and Matsunaga, 2000). Assuming
a fixed focal length is not a serious constraint, since
the focus and zooming are usually fixed in the course
of taking pictures for 3-D reconstruction.

However, we reveal a rather surprising fact: when
the focal length is actually fixed, not using that knowl-
edge yields better results if the images are not fixated .
We give an explanation to this seeming paradox. At
the same time, we exploite this fact and derive a hy-
brid method switching the computation by judging
whether or not the images are fixated. Doing simu-
lations and real image experiments, we demonstrate
the effectiveness of our method.

In Section 2, we introduce our assumptions and ter-
minologies. Sections 3 and 4 summarize the theories
for computing the focal lengths from the fundamental
matrix. In Sections 5 and 6, we compare the vari-
able and fixed focal length methods by simulations.
We test our subsampling technique and conclude that
when the focal length is fixed, not using that knowl-
edge yields better results if the images are not fixated.
In Section 7, we present a hybrid method switching
the computation by testing fixation. Section 8 shows
real image experiments to demonstrate the effective-

ness of our method. Section 9 is our conclusion.

2. Geometry of Fixated Images

We assume that the camera skew angle is 0◦ and the
aspect ratio is 1. Most digital cameras today seem to
satisfy these conditions. If not, appropriate geometric
correction is necessary, but we do not go into this issue
here.

Heyden and Åström (1997) showed that if such a
camera is used, the 3-D reconstruction is possible
without knowing the focal length and the principal
point location, but generally we need three or more
images. Hartley (1992) showed that two images are
sufficient if the principal point is given. We assume
that the principle point is known (typically at the
center of the image frame) and take it as the image
coordinate origin. However, the focal length is as-
sumed to be unknown.

If a point (x, y) in the first image corresponds to
a point (x′, y′) in the second, we have the following
constraint (Hartley and Zisserman, 2000):

(x, Fx′) = 0. (1)

Here, the points (x, y) and (x′, y′) are represented by
3-D vectors

x =

 x/f0

y/f0

1

 , x′ =

 x′/f0

y′/f0

1

 , (2)

where f0 (in pixels) is a scale factor1 for stabilizing
numerical computation. Throughout this paper, we
denote the inner product of vectors a and b by (a, b).
Equation (1) is called the epipolar equation; the ma-
trix F is of rank 2 and called the fundamental matrix
(Hartley and Zisserman, 2000).

We say that two images are fixated if the optical
axes of the cameras that took these images intersect
in the scene (Fig. 1). It follows that the origin of one
image corresponds to the origin of the other. In the
vector representation of eqs. (2), the origin (0, 0) is
represented by k = (0, 0, 1)>. So, the condition for
fixation is

(k, Fk) = 0, (3)

or equivalently F33 = 0.
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Figure 1 . Two images are fixated if the optical axes intersect.

3. Variable Focal Length Method

We now summarize the procedures for computing
the focal lengths {f , f ′} of the two cameras from the
fundamental matrix F .

It was Hartley (1992) who first presented an ana-
lytic procedure. He applied the singular value decom-
position (SVD) and solved linear equations in four
unknowns. Pan et al. (1995a, b) reduced this prob-
lem to solving cubic equations. Newsam et al. (1996)
refined these algorithms into a combination of SVD
and linear equations in three unknowns. They also de-
rived the degeneracy condition for the solution to be
indeterminate. Bougnoux (1998) presented a closed-
form formula for f in terms of the fundamental matrix
F and the epipoles e and e′. Kanatani and Mat-
sunaga (2000) and Ueshiba and Tomita (2003) pre-
sented alternative formulations. These analyses are
mathematical equivalent, all indicating that the com-
putation fails for fixated images. Here, we describe
the procedure presented in Kanatani and Matsunaga
(2000).

We first change the variables from {f , f ′} into {ξ,
η} by

ξ =
(f0

f

)2

− 1, η =
(f0

f ′

)2

− 1. (4)

Define the following polynomial K(ξ, η) of order 4 in
{ξ, η} (order 2 in each):

K(ξ, η) = (k, Fk)4ξ2η2 + 2(k, Fk)2‖F>k‖2ξ2η

+2(k, Fk)2‖Fk‖2ξη2 + ‖F>k‖4ξ2

+‖Fk‖4η2 + 4(k, Fk)(k,FF>Fk)ξη
+2‖FF>k‖2ξ + 2‖F>Fk‖2η + ‖FF>‖2

−1
2

(
(k, Fk)2ξη + ‖F>k‖2ξ

+‖Fk‖2η + ‖F ‖2
)2

. (5)

ξ

η

O

K(   ,    )ξ η

(   ,    )ξ η

Figure 3 . The focal lengths {f , f ′} are determined by the
tangent point of the surface K(ξ, η) to the ξη-plane, at which
K(ξ, η) takes its minimum 0.

Throughout this paper, we define the vector norm by

‖a‖ =
√∑3

i=1 a2
i for a = (ai) and the matrix norm

by ‖A‖ =
√∑3

i,j=1 A2
ij for A = (Aij).

The unknowns {ξ, η} are determined from the fol-
lowing condition (see Appendix A for the proof):

K =
∂K

∂ξ
=

∂K

∂η
= 0. (6)

This appears to be overspecification, providing three
equations for two unknowns. It turns out, however,
that the three equations are algebraically dependent,
only two among them being independent (see Ap-
pendix B for the proof). Geometrically, the func-
tion K(ξ, η) defines a locally nonnegative concave sur-
face that is tangent to the ξη-plane with minimum 0
(Fig. 2).

Since K(ξ, η) is a polynomial of order 4, its mini-
mum can be easily computed by Newton iterations. It
is also possible to solve eq. (6) analytically (Kanatani
and Matsunaga, 2000). Alternatively, we can derive
various types of analytical formula via different ap-
proaches (Bougnoux, 1998; Hartley, 1992; Kanatani
and Matsunaga, 2000; Ueshiba and Tomita, 2003).
Among them, the simplest may be the following form
(see Appendix C for the derivation):

ξ =
‖Fk‖2 − (k, FF>Fk)‖e′ × k‖2/(k, Fk)

‖e′ × k‖2‖F>k‖2 − (k, Fk)2
,

η =
‖F>k‖2 − (k, FF>Fk)‖e × k‖2/(k, Fk)

‖e × k‖2‖Fk‖2 − (k,Fk)2
.

(7)

Here, e and e′ are, respectively, the unit eigenvectors
of F> and F for eigenvalue2 0; they represent the
epipoles (Hartley and Zisserman, 2000), pointing from
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the respective centers of projection to the centers of
projection of the other images.

From eqs. (7), it is immediately seen that the com-
putation fails for fixated images, for which (k, Fk)
vanishes, causing zero division. For non-fixated im-
ages, the focal lengths {f , f ′} are given from eqs. (4)
in the form

f =
f0√
1 + ξ

, f ′ =
f0√
1 + η

. (8)

However, if the computed fundamental matrix F is
not accurate enough, the inside of one or both of the
square roots can be negative, resulting in imaginary
focal lengths (Hartley and Silpa-Anan, 2002).

4. Fixed Focal Length Method

We next consider the case when the focal lengths
{f , f ′} are known to be equal. Mathematical analy-
sis of this case was done in various different forms by
Brooks et al. (1998), Kanatani and Matsunaga (2000),
Sturm (2001), and Ueshiba and Tomita (2003), all
indicating that the focal lengths can be computed
from fixated images but that degeneracy occurs if
the optical axes of the two cameras are parallel or
if they form an isosceles triangle with the baseline as
its base. Here, we describe the procedure presented
in Kanatani and Matsunaga (2002).

Letting ξ = η in eq. (5), we obtain the following
polynomial K(ξ) of order 4 in ξ:

K(ξ) = a1ξ
4 + a2ξ

3 + a3ξ
2 + a4ξ + a5, (9)

a1 =
1
2
(k, Fk)4,

a2 = (k, Fk)2(‖F>k‖2 + ‖Fk‖2),

a3 =
1
2
(‖F>k‖2 − ‖Fk‖2)2 + (k, Fk)(4(k, FF>Fk)

−(k, Fk)‖F ‖2),
a4 = 2(‖FF>k‖2 + ‖F>Fk‖2)

−(‖F>k‖2 + ‖Fk‖2)‖F ‖2,

a5 = ‖FF>‖2 − 1
2
‖F ‖4. (10)

Equation (6) reduces to

K(ξ) = K ′(ξ) = 0. (11)

The solution is analytically obtained as follows (see
Appendix D for the proof):

• If a1 6= 0,

– if 3a2
2 − 8a1a3 6= 0, compute the two solu-

tions of the quadratic equation

(3a2
2 − 8a1a3)x2 + 2(a2a3 − 6a1a4)x

+(a2a4 − 16a1a5) = 0. (12)

Let ξ be the one for which |K(x)| is smaller;
– if 3a2

2 − 8a1a3 = 0, let

ξ = − a2a4 − 16a1a5

2(a2a3 − 6a1a4)
. (13)

• If a1 = 0 and a2 6= 0, let

ξ = − a3a4 − 9a2a5

2(a2
3 − 3a2a4)

. (14)

• If a1 = a2 = 0 and a3 6= 0, let

ξ = − a4

2a3
. (15)

• If a1 = a2 = a3 = 0, no solution exists.

The last is the degeneracy case: parallel optical axes
or an isosceles triangle configuration (Kanatani and
Matsunaga, 2000).

However, this analysis is based on the assumption
that the fundamental matrix F is exact. Equation
(11) gives two constraints on one variable ξ, but they
are in general inconsistent if F is computed from noisy
data. Geometrically, eq. (11) states that the solution
is given by the position on the ξ-axis at which the
curve K(ξ) takes its minimum 0 (in the degeneracy
case, the curve is “flattened” into a line (Kanatani
and Matsunaga, 2000)). However, the minimum is in
general positive (Fig. 3), because K(ξ) is the cross
section of the surface K(ξ, η) in Fig. 2 with a plane
perpendicular to the ξη-plane passing through the line
ξ = η. It follows that the minimum of K(ξ) is 0 when
and only when the minimum of K(ξ, η) is on the line
ξ = η. This condition is generally violated if F is not
exact.

Ueshiba and Tomita (2003) analytically obtained a
unique solution by regarding the two principal points
as extra unknowns, assuming that the images are fix-
ated. However, the camera must be rotated around
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Figure 2 . The focal length can be determined by the position
at which the curve K(ξ) takes its minimum 0. However, the
minimum is generally positive.

the optical axis for the solution to exist. Also, their
method cannot be applied to non-fixated images.

In order to avoid this difficulty, we compute the
value ξ at which the curve K(ξ) takes its minimum,
i.e., we solve K ′(ξ) = 0, although this does not pro-
duce an optimal solution (in the sense of maximum
likelihood). In order to obtain an optimal solution, we
need to recompute the fundamental matrix F subject
to the constraint that the resulting F yield identical
focal lengths by eqs. (7). At present, however, no
such systematic computational scheme is known other
than brute force search, and no criteria are available
to avoid local minima. The purpose of this study is
to find a practical compromise, so we adopt the above
simple scheme.

Since K ′(ξ) is a cubic polynomial, the solution may
be analytically obtained in theory. However, the com-
putation branches depending on whether a1 ∼ a3 are
zero or not, and there is no good way to set a suitable
threshold. This difficulty can be avoided by numeri-
cally computing the solution of K ′(ξ) = 0 by Newton
iterations:

ξ ← ξ − K ′(ξ)
K ′′(ξ)

. (16)

We use eq. (15) as the initial value. Usually, two or
three iterations are sufficient. From the computed ξ,

Figure 4 . Left : Simulated images of a cylindrical grid surface (600 × 800 pixels). The focal lengths are f̄ = f̄ ′ = 1000 (pixels).
The center of the second frame is displaced by d (= 20 for the images shown here) pixels from its fixated position. Right : Top
view of the camera motion.

the focal lengths {f , f ′} are given by eqs. (8), namely,

f = f ′ =
f0√
1 + ξ

. (17)

In this case, too, the solution can be imaginary.

5. Variable vs. Fixed Focal Lengths

The focal lengths can be imaginary in the pres-
ence of noise whether we use the variable focal
length method (which we hereafter abbreviate to the
v.f. method) or the fixed focal length method (which
we abbreviate to the f.f. method). But which is better
if the ground truth is f = f ′? We examined this by
simulation.

The left of Fig. 4 shows two simulated images of a
cylindrical grid surface. The image size is supposedly
600× 800 pixels; the focal lengths are f̄ = f̄ ′ = 1000
(pixels). The right of Fig. 4 is the top view of the
camera motion. We need to stay away from isosceles
triangle camera configurations to avoide degeneracy.
Yet, it is very natural for humans to keep the same
depth while moving the camera. So, we assumed a
nearly isosceles triangle configuration by setting the
ratio of the depths to the object to 1 : 0.94. The
baseline makes 70◦ with the optical axis for the first
camera and 86.5◦ for the second camera. Then, the
center of the second frame is displaced from its fixated
position by d pixels, which we varied over 0 ≤ d ≤ 40
(the left of Fig. 4 is for d = 20).

We added Gaussian noise of mean 0 and standard
deviation σ (pixels) to the x and y coordinates of
the 117 vertices independently. In order to simu-
late realistic situations, we randomly chose 10% of
the vertices and increased the noise magnitude five
times there3. From these noisy vertices, we com-
puted the fundamental matrix; we used an algorithm
called renormalization4 (Kanatani, 2000; Kanatani
and Ohta, 2003), which is known to be statistically
optimal (Kanatani, 1996).
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Figure 5 . The horizontal axis is for the noise standard deviation σ (pixels). The vertical axis shows the percentage of the
occurrences of imaginary focal lengths. The solid and dashed lines are for the v.f. and f.f. methods, respectively. The value d
(pixels) measures the deviation from fixation.

Figure 5 plots the percentage of the occurrences
of imaginary focal lengths over 2000 trials for each
σ. The solid and dashed lines are for the v.f. and
f.f. methods, respectively. At d = 0 (fixated im-
ages), the values for the v.f. method are not plotted,
because they are out of the range; they are about
60% for all σ. As d increases, the percentage for the
v.f. method drops, while it stays almost the same for
the f.f. method. As a result, the relative order is re-
versed near d = 20.

6. Accuracy of the Focal Lengths

In order to see the comparative accuracy of the fo-
cal lengths, we need to avoid the occurrences of imag-
inary focal lengths.

To this end, Hartley and Silpa-Anan (2002) used
the knowledge about the approximate focal length
and its minimum value: they optimized the funda-
mental matrix and the principal points so that the
computed focal lengths are close to each other, close
to their predictions, and close to their minimum val-
ues and at the same time the principal point is close
to the frame center. The result depends on the pre-

dictions we make and the measure of closeness we use.
Here, we adopt subsampling of feature points. If

the computed focal lengths are not both real, we
randomly remove one pair of corresponding feature
points and recompute the fundamental matrix. If we
fail to obtain real focal lengths for N/10 consecutive
repetitions (N is the number of correspondences), we
randomly remove two pairs and do the same. If this
fails, we go on removing more pairs until real focal
lengths are obtained. According to our experience,
real focal lengths are usually obtained after a few such
trials if not at the first trial. Of course, we may not
be able to obtain any solution if the matches are very
poor or completely wrong.

Many other strategies can be conceivable. For ex-
ample, we may prefer those feature points that are
close to their epipolar lines predicted by the funda-
mental matrix F computed in the preceding step.
We tried such methods in many forms, but we were
unable to find any method better than the above
straightforward one.

Imaginary focal lengths occur if the values (ξ, η)
computed by eqs. (7) are perturbed across the line ξ
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Figure 6 . The dotted region is the admissible domain for (ξ, η).
Imaginary focal lengths occur if the true values (ξ̄, η̄) are per-
turbed into (ξ, η) across the line ξ = −1 or the line η = −1.
The ellipse schematically illustrates the uncertainty region.

= −1 or the line η = −1 due to the inaccuracy of
the fundamental matrix F . The difficulty is that the
admissible domain ξ > −1 and η > −1 (the dotted
region in Fig. 6) is topologically an open set: if it were
closed, we could minimally correct (ξ, η) back onto the
boundary line, which is not admissible, resulting in f
= ∞ or f ′ = ∞.

We may be able to avoid this by empirically spec-
ifying a closed region within which we expect the so-
lution to exist or, more generally, by introducing an a
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Figure 7 . The horizontal axis is for the noise standard deviation σ (pixels). The vertical axis shows the root-mean-square error
in the focal lengths over 1000 trials. The solid and dashed lines are for the v.f. and f.f. methods, respectively. The value d
(pixels) measures the deviation from fixation.

priori distribution of the solution (i.e., the Bayesian
approach) as done by Hartley and Silpa-Anan (2002).
However, it is very difficult to introduce such em-
pirical constraints, on which the resulting solution
strongly depends. So, we take the approach of gener-
ating another solution inside the admissible domain
by subsampling feature points.

We evaluated the accuracy of the focal lengths com-
puted by our method by the root-mean-square error

E =

√√√√ 1
2000

1000∑
a=1

(
(fa − f̄)2 + (f ′

a − f̄ ′)2
)

(18)

over 1000 trials, where fa and f ′
a are the values in

the ath trial, and f̄ and f̄ ′ are their true values. We
computed this for different σ and d, using the sim-
ulated images in Fig 4. Figure 7 shows the results
corresponding to Fig. 5.

From this, we see that the focal lengths computed
by the v.f. method from fixated images (d = 0) are
meaningless, while the f.f. method can successfully
compute fairly accurate values, as expected. How-
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ever, the v.f. method gradually gains in accuracy as d
increases, while the f.f. method has almost the same
accuracy. As a result, the relative accuracy is reversed
around d = 20.

This is a rather surprising fact, since this means
that when the focal lengths are known to be equal,
not using that knowledge yields better results if d is
large. This can be explained as follows. Recall that
we first compute the fundamental matrix F by a sta-
tistically optimal method (in our case the renormal-
ization method (Kanatani, 2000; Kanatani and Ohta,
2003)). However, the optimality is guaranteed only
when no constraint is imposed other than detF =
0. If we know that the two focal lengths {f , f ′} are
equal, the computed solution F is no longer optimal ,
because an optimal solution F should be computed
subject to the constraint that it yield real and equal
focal lengths. However, such a computation is very
difficult in practice, as described in Section 4. So,
we introduced a practical compromise, which led to a
seemingly surprising result.

7. Hybrid Method

From the observation in the preceding sec-
tion, we can expect high accuracy if we use the
f.f. method when the images are nearly fixated and
the v.f. method when they are not. Here, we adopt
the following strategy.

In the first and second images are defined epipo-
lar lines (k,Fx′) = 0 and (x, Fk) = 0 by the image
origin of the other images. In terms of the image
coordinates, they are

F13x + F23y + F33f0 = 0,

F31x
′ + F32y

′ + F33f0 = 0. (19)

If the images are fixated, the origins should be on
these epipolar lines. So, the degree of fixation can be
measured by the distances h and h′ (pixels) of these
lines from the origins:

h =
|F33|f0√
F 2

13 + F 2
23

, h′ =
|F33|f0√
F 2

31 + F 2
32

. (20)

We judge that the images are fixated if h ≤ hc and h′

≤ hc for a threshold hc (pixels). This judgment is in-
dependent of the scale of F or the average magnitude
of the errors in F .

Many other switching schemes are conceivable.
For example, we may conduct statistical hypothesis
testing based on the covariance tensor of the com-
puted fundamental matrix, which can be obtained
as a byproduct of the renormalization computation
(Kanatani, 2000; Kanatani and Ohta, 2003)), or in-
troduce model selection using the geometric AIC or
the geometric MDL (Kanatani, 1996, 1998, 2004).
However, it is very difficult to compute these crite-
ria precisely. If we introduce approximations or use
estimates, the result is greatly influenced by the ac-
curacy of the approximations and estimates we use.
After trying many alternatives, we have concluded
that the above simple criterion works the best.

In our experiments, we used the threshold hc = 20
(pixels), partly because the relative accuracy of the
v.f. and f.f. methods is reversed around d = 20 (pix-
els) in the simulation and partly because the deviation
of about 20 pixels is inevitable if humans try to take
fixated images manually. This threshold should be
adjusted according to the image size, the image reso-
lution, and the focal length. After many simulations
using various image sizes, image resolutions, and fo-
cal lengths, we have found that in all cases the critical
value is approximately 0.02 radians if measured in the
angle of view .

Figure 8 is the simulation result using the data of
Fig. 4. We incremented d from 0 (fixated images) to
40 for σ = 0.3 (pixels). The vertical axis is for the
root-mean-square error E (pixels) in eq. (17). The
solid and dashed lines are for the v.f. and f.f. meth-
ods, respectively; the dotted line is for the hybrid
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Figure 8 . The horizontal axis is for the deviation d (pixels)
from fixation. The vertical axis shows the root-mean square
error in the computed focal lengths for the noise standard de-
viation σ = 0.5 (pixels). The solid and dashed lines are for
the v.f. and f.f. methods, respectively; the dotted line is for the
hybrid method.
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(a) (b) (c)

Figure 9 . Input images and selected feature points. The image pair (a) and (b) is fixated, while the image (c) is taken by
slightly averting the optical axis.

method. We can see that the hybrid method adopts
the f.f. method when d is small and switches to the
v.f. method when d is large. The transition occurs
around the value d = 20, to which the threshold for
h and h′ is set. As a result, the method with higher
accuracy is automatically chosen irrespective of the
value d.

8. Real Image Examples

In Fig. 9, the image pair (a) and (b) is fixated, while
the image (c) is taken by slightly averting the opti-
cal axis. We chose 39 corresponding feature points
as marked in the images. Algorithms for automati-
cally detecting feature points and matching them are
available (Kanazawa and Kanatani, 2002; Zhang et
al., 1995), but mismatches are inevitable to some ex-
tent. Since our aim here is not to study the matching
performance, we chose the feature points by hand.

From the feature point matches marked in the im-
ages, we computed the fundamental matrix by renor-
malization and tested if the image pair (a) and (b)
and the image pair (a) and (c) are fixated. In both
cases, real focal lengths were obtained without sub-
sampling. The computed values of h and h′ are listed
in Table 1; the image pair (a) and (b) is judged to be
fixated, while the image pair (a) and (c) is not.

(a) (b)

Figure 10 . 3-D reconstruction from fixated images: (a) v.f. method; (b) f.f. method.

Table 1 also lists the focal lengths {f , f ′} computed
using the two method. According to a simple calibra-
tion using a reference pattern, the true focal length is
estimated to be f = f ′ ≈ 1000 (pixels), from which
the v.f. values computed from the fixated image pair
(a) and (b) are wide apart, while the f.f. value seems
reasonably good. For the non-fixated image pair (a)
and (c), both methods estimate reasonable values, but
the v.f. values are slightly better, in agreement with
the simulation results.

Figure 10 shows the 3-D shape reconstructed from
the fixated pair. As expected, the v.f. method pro-
duces a meaningless shape (Fig. 10(a)) because of the
unrealistic focal lengths, while the f.f. method pro-
duces a fairly accurate shape (Fig. 10(b)). The two
images in Fig. 10(b) are the front view (left figure)
and the upper view (right figure) of the box; ide-

Table 1 : Fixation test and focal length estimation for the image
pair (a) and (b) and for the image pair (a) and (c) in Fig. 9.
The unit is pixels.

Fixation test v.f. f.f.

h h′ f f ′ f = f ′

(a), (b) 1.03 1.03 436 443 811

(a), (c) 54.22 54.22 929 906 855
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(a) (b)

Figure 11. 3-D reconstruction from non-fixated images: (a) v.f. method; (b) f.f. method.

Figure 12 . Input images and selected feature points.

(a) (b)

Figure 13 . 3-D reconstruction: (a) v.f. method; (b) f.f. method.

ally they should be both rectangles. Figure 11 shows
the 3-D shape reconstructed from the non-fixated pair
corresponding to Fig. 10(b). Although both methods
produce fairly accurate shapes, we can see that the
v.f. method gives a more accurate result because of
the better estimates of the focal lengths.

Figure 12 shows two images (680 × 512 pixels) of
a store house taken by a third person without paying
any attention to the fixation issue. The zooming con-
dition was not recorded except that the focal length
was not changed in the course of shooting. From the
feature point matches marked in the images (we se-
lected them manually), we computed the fundamental
matrix by renormalization; real focal lengths were ob-
tained without subsampling. We tested fixation and
found that h = 13.46 (pixels) and h′ = 11.74 (pixels),
so we judged them to be fixated. This evidences the

fact that humans are very likely to take fixated images
unconsciously; particularly so, if we note that there
is nothing to fixate in the centers of the two images.

The focal lengths are estimated to be f = 973 (pix-
els) and f ′ = 778 (pixels) by the v.f. method and f =
f ′ = 799 (pixels) by the f.f. method. Figure 13 shows
front and top views of the 3-D shape reconstructed by
the two methods. Since the store house should have
rectangular corners, we conclude that the f.f. method
produces a better result, as expected, meaning that
the focal lengths estimated by the f.f. method are
closer to their true values.

9. Concluding Remarks

In this paper, we studied the problem of the oc-
currences of imaginary focal lengths and the degen-
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eracy of fixated images that plagues 3-D reconstruc-
tion from two uncalibrated views. We first summa-
rized the theoretical backgrounds. Then, we pre-
sented a practical remedy scheme of subsampling fea-
ture points and fixing the focal length. Our simu-
lation experiments revealed a rather surprising fact
that when the focal length is actually fixed, not using
that knowledge yields better results for non-fixated
images. We gave an explanation to this seeming para-
dox and derived a hybrid method switching the com-
putation by judging fixation. Doing simulations and
real image experiments, we have demonstrated the
effectiveness of our method.

Appendix A: Decomposability Condition

Let {f , f ′} be the true focal lengths for the first and
the second cameras, and let the corresponding points
(x, y) and (x′, y′) be represented, instead of eqs. (2),
by the following vectors.

x̄ =

 x/f
y/f
1

 , x̄′ =

 x′/f ′

y′/f ′

1

 . (21)

The epipolar equation (1) now has the form

(x̄, Ex̄′) = 0, (22)

where E is a rank 2 matrix, called the essential matrix
(Hartley and Zisserman, 2000; Kanatani, 1996). Sup-
pose the second camera is translated by t and rotated
by R (rotation matrix) relative to the first camera; we
call {t, R} the motion parameters. It can be easily
shown (Hartley and Zisserman, 2000; Kanatani, 1996)
that

E ' t × R, (23)

where ' means that both sides are equal up to a
nonzero constant. For a vector a and a matrix A, we
define a × A to be the matrix consisting of columns
that are the vector products of a and the individual
columns of A.

Huang and Faugeras (1989) proved that a matrix
E has the form of eq. (23) if and only if one of its
singular values is zero and the other two are equal
(decomposability condition). Kanatani (1993) proved
that this is equivalent to the following condition:

‖EE>‖2 =
1
2
‖E‖4. (24)

In fact, if σ1 ≥ σ2 ≥ σ3 ≥ 0 are the singular values
of E, the constraint detE = 0 implies σ3 = 0. It is
easy to see that eq. (24) is equivalent to (σ2

1 −σ2
2)2 =

0 (Kanatani, 1993).
Comparing eqs. (1) and (22), we can see that the

essential matrix E is related to the fundamental ma-
trix F in the form

E ' diag
(
1, 1,

f0

f

)
Fdiag

(
1, 1,

f0

f ′

)
, (25)

where diag( · · · ) denotes the diagonal matrix that has
· · · as its diagonal elements in that order. Thus, E
can be regarded as a function of {f , f ′}. Define the
following function of {f , f ′}:

K(f, f ′) = ‖EE>‖2 − 1
2
‖E‖4. (26)

Substituting eq. (25), we can see that K(f, f ′) is a
polynomial of order 8 in {f , f ′} (order 4 in each).

Equation (24) implies that the focal lengths {f , f ′}
are obtained by solving K(f, f ′) = 0. It appears that
this equation alone is insufficient to solve for the two
unknowns {f , f ′}. It turns out, however, that the
partial derivatives of K(f, f ′) with respect to {f , f ′}
are both 0 (Kanatani, 1996) (see Appendix B for the
proof). Thus, {f , f ′} are the solution of

K =
∂K

∂f
=

∂K

∂f ′ = 0, (27)

which provides three constraints, but only the two of
them are independent.

If we change the variables from {f , f ′} into {ξ, η}
defined by eqs. (4), the function K(f, f ′) is rewritten
in the form of eq. (5) after lengthy calculations. Thus,
eq. (27) is equivalent to eq. (6).

Appendix B: Singularity of the Essential Matrix

Since the scale of the essential matrix E is indeter-
minate, we can assume that ‖E‖ = 1 without loosing
generality. This means that E is a point on an 8-
dimensional unit sphere S8 centered at the origin in
the 9-dimensional parameter space. Equation (24)
states that the true value E is on the intersection of
the sphere S8 with the manifold defined by ‖EE>‖2

= 1/2. Let E + ∆E be a neighboring point to E on
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the manifold ‖EE>‖2 = 1/2. To a first approxima-
tion, we obtain

1
2

= ‖(E + ∆E)(E + ∆E)>‖2 = ‖EE>‖2

+(EE>; E∆E>) + (EE>;∆EE>)

=
1
2

+ 2(EE>E;∆E), (28)

where we define the inner product of matrices A =
(Aij) and B = (Bij) by (A; B) =

∑3
i,j=1 AijBij .

Equation (28) implies that a first approximation

(EE>E;∆E) = 0, (29)

which means that EE>E is the “surface normal”
to the manifold ‖EE>‖2 = 1/2 at E. Substituting
eq. (23), we obtain

EE>E ' (t × I)RR>(t × I)>(t × I)R
= (t × I)(t × I)>(t × I)R
= (‖t‖2I − tt>)(t × I)R = ‖t‖2Ē

+t((t × t)>)R = ‖t‖2E, (30)

where we have used the identity t × R = (t × I)R
and noted that t × I is the skew-symmetric matrix
consisting of the components of t (Kanatani, 1996).

Because E itself is the surface normal to the sphere
S8 at E, eq. (30) implies that the sphere S8 is tan-
gent to the manifold ‖EE>‖2 = 1/2 at E, sharing a
common tangent space there. If E is constrained to
be in a two-parameter subset of the sphere S8 param-
eterized by {f , f ′}, the tangency relation also holds
for arbitrary perturbations of {f , f ′}. Hence holds
eq. (27).

Since ‖EE>‖2 = 1/2 and S8 are 8-dimensional
as manifolds, their intersection in the 9-dimensional
space should be a 7-dimensional manifolds in general.
Because of the above non-transversality, however, the
intersection degenerates into a 6-dimensional mani-
fold. The solution E is on the intersection of this
6-dimensional manifold with the 7-dimensional mani-
fold defined by detE = 0. It follows that the intersec-
tion is a 5-dimensional manifold. Thus, the essential
matrix has five degrees of freedom corresponding to
the camera rotation and the normalized translation.

Appendix C: Analytical Expression
for the Focal Lengths

From eqs. (23) and (25), the fundamental matrix
F is related to the motion parameters {t, R} by

F ' diag
(
1, 1,

f

f0

)
(t × R)diag

(
1, 1,

f ′

f0

)
, (31)

from which we see that the eigenvector e of F> and
the eigenvector e′ of F are related to the motion
parameters{t, R} in the from

e ' diag
(
1, 1,

f0

f

)
t, e′ ' diag

(
1, 1,

f0

f ′

)
R>t.

(32)
Hence, we obtain

t ' diag
(
1, 1,

f

f0

)
e ' Rdiag

(
1, 1,

f ′

f0

)
e′. (33)

Substituting this into eq. (31), we obtain

F ' e × diag
(
1, 1,

f0

f

)
Rdiag

(
1, 1,

f ′

f0

)
' diag

(
1, 1,

f

f0

)
Rdiag

(
1, 1,

f0

f ′

)
× e′.

(34)

Here, we have used the identity (Tu) × I =
(T−1)>(u × I)T−1 for an arbitrary vector u and an
arbitrary nonsingular matrix T . We define T × u to
be T (u × I)>.

From eq. (34), we have

Fdiag
(
1, 1,

f0

f ′

)
' e × diag

(
1, 1,

f0

f

)
R,

diag
(
1, 1,

f0

f

)
F ' Rdiag

(
1, 1,

f0

f ′

)
× e′.

(35)

Eliminating R by using the orthogonality relation
R>R = RR> = I, we obtain the following Kruppa
equations (Bougnoux, 1998; Hartley and Zisserman,
2000):

Fdiag
(
1, 1,

f2
0

f ′2

)
F> ' e × diag

(
1, 1,

f2
0

f2

)
× e,
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F>diag
(
1, 1,

f2
0

f2

)
F ' e′ × diag

(
1, 1,

f2
0

f ′2

)
× e′.

(36)

In terms of {ξ, η} defined by eqs. (4), these equations
are rewritten as

F (I + ηkk>)F> ' e × (I + ξkk>) × e,

F>(I + ξkk>)F ' e′ × (I + ηkk>) × e′, (37)

which reduce to

FF> +η(Fk)(Fk)> ' P e + ξ(e×k)(e×k)>, (38)

F>F + ξ(F>k)(F>k)> ' P e′

+ η(e′ × k)(e′ × k)>, (39)

where we define the projection matrices

P e = I − ee>, P e′ = I − e′e′>, (40)

onto the planes perpendicular to e and e′, respec-
tively. Multiplying k from the right on both sides of
eqs. (38) and (39), we obtain

FF>k + η(k, Fk)Fk = cP ek,

F>Fk + ξ(k, Fk)F>k = c′P e′k, (41)

where c and c′ are unknown constants.
Computing the inner product of k and both sides of

the second of eqs. (41) and the inner product of F>k

and both sides of the second of eqs. (41), we obtain

‖Fk‖2 + (k, Fk)2ξ = c′‖e′ × k‖2, (42)

(k, FF>Fk) + (k, Fk)‖F>k‖2ξ

= c′(k, Fk), (43)

which can be solved for {ξ, c′}, resulting in the first
of eqs. (7).

Computing the inner product of k and both sides
of the first of eqs. (41) and the inner product of F>k

and both sides of the first of eqs. (41), we obtain

‖F>k‖2 + η(k,Fk)2 = c‖e × k‖2, (44)

(k, F>FF>k) + η(k, Fk)‖Fk‖2 = c(k, F>k), (45)

which can be solved for {η, c}, resulting in the second
of eqs. (7).

Our derivation is essentially the same as the for-
mula for f given by Bougnoux (1998), but the result
has a slightly different appearance.

Appendix D: Analytical Fixed Focal Length

In the fixed focal length case, the solution ξ is given
by a common root of K(ξ) = 0 and K ′(ξ) = 0. The
solution ξ should also satisfy ξK ′(ξ) = 0. If a1 6= 0,
these three equations are written as a1 a2 a3ξ

2 + a4ξ + a5

4a1 3a2ξ
2 + 2a3ξ + a4

4a1 3a2 2a3ξ
2 + a4ξ

  ξ4

ξ3

1

 =

 0
0
0

 .

(46)
Since a nontrivial solution should exist, its determi-
nant should vanish:∣∣∣∣∣∣

a1 a2 a3ξ
2 + a4ξ + a5

4a1 3a2ξ
2 + 2a3ξ + a4

4a1 3a2 2a3ξ
2 + a4ξ

∣∣∣∣∣∣
= a1(3a2

2 − 8a1a3)ξ2 + 2a1(a2a3 − 6a1a4)ξ

+a1(a2a4 − 16a1a5) = 0. (47)

From this, we obtain eq. (12). If a1 = 0 and a2 6= 0,
the three equations K(ξ) = 0, K ′(ξ) = 0, and ξK ′(ξ)
= 0 are rewritten as a2 a3 a4ξ + a5

3a2 2a3ξ + a4

3a2 2a3 a4ξ

  ξ3

ξ2

1

 =

 0
0
0

 .

(48)
Since the determinant should vanish, we have∣∣∣∣∣∣

a2 a3 a4ξ + a5

3a2 2a3ξ + a4

3a2 2a3 a4ξ

∣∣∣∣∣∣
= 2a2(a2

3 − 3a2a4)ξ

+a2(a3a4 − 9a2a5) = 0, (49)

and obtain eq. (13). If a1 = a2 = 0 and a3 6= 0,
we simply solve the linear equation K ′(ξ) = 0, so we
obtain eq. (15). If a1 = a2 = a3 = 0, the solution is
indeterminate.
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Notes

1. We used the value f0 = 600 in our experiment, but no
practical difference should result by letting f0 = 1.

2. Even in the presence of noise, the fundamental matrix F
is computed to be det F = 0, so F> and F both have
eigenvalue 0.

3. We have confirmed by experiments that the dependence
on d is the same for homogeneous noise, too, but the
same phenomena emerge for a smaller noise level σ for
inhomogeneous noise.

4. The C++ source code is available at: http://www.img.
tutkie.tut.ac.jp
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