COMPUTER VISION, GRAPHICS, AND IMAGE PROCESSING 41, 28-42 (1988)

Constraints on Length and Angle
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Given a perspective projection of line segments on the image plane, the constraints on their
3D positions and orientations are derived on the assumption that their true lengths or the true
angles they make are known. The approach here is first to transform images of line segments to
the center of the image plane as if the camera were rotated to aim at them. The 3D
information extracted in this canonical position is then transformed back to the original
configuration. Examples are given, by using real images, for analytical 3D recovery of a
rectangular corner and a corner with two right angles. © 1988 Academic Press, Inc.

1. INTRODUCTION

Humans can easily estimate the 3D position and orientation of an object in a
scene by vision alone. The most fundamental assumption tacitly made by humans
seems to be the constancy of size: We know the true shape and size of many familiar
objects such as a man, a car, and a house, and, seeing these familiar objects, we can
easily and fairly accurately reconstruct the 3D world around us from our 2D visual
perception.

The same principle applies to computer vision. If the true shape and size of an
object are known and its projection image is given, the geometry of projection gives
rise to mathematical relations or constraints on the 3D position and orientation of
the object. The 3D position and orientation can be uniquely determined if a
sufficient number of constraints are available from various sources of information.

However, these constraints often have very complicated forms if the projection is
perspective, even if the object is a very simple one such as a line segment and a
planar face (cf. Haralick [2]). This is due to the geometrical inhomogeneity of the
image plane: The extent of perspective distortion is different from position to
position. Under orthographic projection, the image plane is geometrically homoge-
neous, and we can freely translate a projected image to an arbitrary position on the
image plane. The process of 3D recovery is not affected except for the correspond-
ing translation of the object in the scene. Under perspective projection, however, we
cannot arbitrarily translate the projected image.

But must we always analyze a perspectively projected image in that position? Can
we not move it, in some way, to another position on the image plane so that analysis
becomes easy? These questions lead us to the following observation of human
perception. When a human finds a familiar object in the field of view, he rotates his
eye or head so that the image of the object in question comes to the center of the
field of view. Invoking the knowledge about the true shape and size of the object,
and applying the assumption of constancy of size, he estimates the 3D position-and
orientation of the object. Then, recalling the angle of eye or head rotation, he
interprets the 3D information in reference to his body.

This human reaction can be simulated by camera image analysis in the following
way. Suppose the camera is rotated around an arbitrary axis by an arbitrary angle
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with the center of its lens fixed. As a result, a different image is seen on the image
plane. However, since a point on the image plane actually corresponds to a ray
starting from the lens center, occlusion is not affected. If the angle of camera
rotation is known, the original image can be recovered as long as the image
boundary is not involved. Thus, the image transformation due to camera rotation
does not require any knowledge about the 3D scene, and hence can be computed; the
camera need not be actually rotated.

The above consideration implies the following fact: An object image can be
moved into an arbitrary position on the image plane by applying the transformation
which simulates camera rotation. The geometrical properties of this transformation,
especially its invariants, were extensively studied by Kanatani [5, 7, 8] from the
viewpoint of group representation theory, in particular irreducible representations
of the 3D rotation group SO(3).

Consequently, we can move an observed image into a canonical position where
analysis becomes easy. The 3D constraints obtained there are then transformed
back into the original configuration. This technique was also applied to the analysis
of shape-from-texture by Kanatani and Chou [9]. Evidently, the image origin is a
prime candidate for the canonical position. We will show that for angle clues we
only need to consider orthographic projection if the vertex is located at the image
origin.

Even if the object image is moved into the canonical position, the 3D interpreta-
tion may not be unique. In such a case, humans invoke an appropriate hypothesis
and solve the problem uniquely. The underlying mechanism of human hypothesizing
is under study by many researchers, and although a definite conclusion has not yet
been reached, it is observed that humans assume the “simplest” configuration in
some sense. This process is also simulated for geometrical reasoning of computer
vision (cf. Mulgaonkar, Shapiro and Haralick [10]).

In this paper, we study the constraints on the 3D positions and orientations of
line segments, assuming that their true lengths and the angles they make are known.
The use of “simplifying hypotheses” to restrict the ambiguity is also discussed.

The constraints involving angles have been studied by many researchers. The
solution is not unique in general, and a frequently assumed “simplifying hypothesis”
is what is called the rectangularity hypothesis. Many man-made objects such as
buildings, machine parts, and furniture have rectangular corners. Besides, the
assumption of rectangularity is regarded as very natural from the viewpoint of
human perception (cf. Barnard [1]).

Kanade [4] analyzed rectangular corner images with regard to interpretation of
polyhedron drawings under orthographic projection. However, since he chose, as
unknowns, the gradient components p, g of the face defined by two edges (probably
motivated by the gradient space of Huffman [3]), the resulting equations were very
complicated, and the solution was obtained only by a numerical or graphical
scheme. Later, Kanatani [6] chose the orientation angles of edges as unknowns and
derived explicit analytical formulae.

Attempts to handle perspective projection was made by Barnard [1]. His ap-
proach is very straightforward, but the solution can be obtained only by numerical
iterations even for a rectangular corner. Following the formulation of Huffman [3]
and Kanade [4], Shakunaga and Kaneko [11] also analyzed angle clues under
perspective projection. Although these approaches can treat a wider class of
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problems, e.g., lines that do not necessarily meet in the scene, their formulations are
very much complicated.

In this paper, we will show that the solution for a rectangular corner and a corner
with two right angles can be obtained in very simple analytical terms if we use the
image transformation which simulates camera rotation. We also show examples of
analysis by using real images.

2. CAMERA ROTATION TRANSFORMATION

The camera image can be thought of as the projection onto an image plane
located at distance f from the viewpoint O; a point P in the scene is projected onto
the intersection of the image plane with the ray connecting the point P and the
viewpoint O. The viewpoint O corresponds to the center of the camera lens, and the
distance f equals the focal length of the camera lens if the object is very far away.
For simplicity we call f the focal length although correction is necessary if the
object is near the camera (cf. Haralick [2]). Let us choose an XYZ-coordinate
system such that the viewpoint O is at the origin and the Z-axis coincides with the
camera optical axis. Let Z = f be the image plane, and take an xy-coordinate
system so that the x- and y-axes are parallel to the X- and Y-axes (Fig. 1). A point
(X, Y, Z) in the scene is projected onto point (x, y) on the image plane whose
image coordinates x, y are given by

x=fX/Z, y=fY/Z. (2.1)

Consider a camera rotation around the viewpoint O (i.e., the center of the camera
lens) and the induced transformation of the image. Suppose the camera is rotated by
rotation matrix R (orthogonal matrix with determinant 1). As a result, the point
seen at (x, y) now moves to point (x’, y’) given by the following theorem. (The
expression in terms of the pan, tilt, and swing of the camera orientation is found in
Haralick [2]).

THEOREM 1. The image transformation induced by camera rotation R = (r;;) is
given by

mx +ryy+r,f , _f"lzx trpytrf (22)

[} y = .
rsx + rypy + rf rsx + rypy +ryf

x'=f

(Xy,2)

FiG. 1. Perspective projection as a camera model.
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(a,b)
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Fi1G. 2. Point (a4, b) on the image defines a unit vector / which starts from the viewpoint O and
points toward the point.

Proof. A rotation of the camera by R is equivalent to the rotation of the scene in
the opposite sense. If the scene is rotated by R~! (= RT), where T denotes
transpose, point ( X, Y, Z) moves to point ( X’, Y’, Z’) given by

(4

X o o X
4

Y i=|rny rp mafl Y] (2.3)
’

4 ns s 2

This point is projected to (x’, y’) on the image plane, where x’' = fX’/Z’ and
y" = fY'/Z’. Combining this with Egs. (2.1), we obtain Egs. (2.2).

It should be emphasized that the image transformation due to camera rotation
does not require any knowledge about the scene. The transformation has an inverse,
which is obtained by interchanging R and RT. The transformations of the form of
Eq. (2.2) form a subgroup of the 2D projective transformation group. In the
following, we assume that the image plane is sufficiently large compared with the
projected image of the object we are viewing.!

3. STANDARD ROTATION AND STANDARD TRANSFORMATION

Consider a camera rotation which maps a given point (a, b) to the origin (0, 0) on
the image plane. The rotation is not unique; we can add any rotation of an arbitrary
angle (the swing) around the Z-axis. The 3D unit vector starting from the viewpoint
O pointing toward the point (a, b) on the image plane is given by

p a b f
a2+ b2+ f2 a2+ B + f2 7 a2 + B2 + f?

(3.1)

(Fig. 2). This vector makes angle

Q = tan"'(Va® + b2 /f) (3.2)

!Strictly speaking, as the camera rotates, a new part comes into view and some part goes out of view
even if the image plane is infinitely large. In this paper, we do not consider this effect, assuming that the
angle of camera rotation is not so large so that the object we are viewing is always in the field of view.
For a mathematically rigorous treatment, see Kanatani [8].
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with the unit vector k = (0,0, 1) along the Z-axis. The unit vector normal to both /
and k is given by

kX1 b a__
Il X 1) Va2 + b2 a2+ b*’

n= (3.3)

If the camera is rotated around vector n = (n,, n,, n,) by angle @ screw-wise, the
point (a, b) is mapped to (0,0) on the image plane. The corresponding rotation
matrix is

cos € + (1 — cosQ)n (1 —cosQ)nn, —sinQny (1 — cos R)nyns + sin n,
R=|(1 ~cosQ)nynm +sinQn;  cos®+ (1 —cos®)n3 (1 - cosR)nyny — cosQn |
(1 —cosQ)nyn; —sinQn, (1 — cos R)n3yn, + sinQn, cos § + (1 — cos 2)n}

(3.4)

(For derivation, see Kanatani [8], for example.) Substituting Egs. (3.2) and (3.3), we
obtain

E F I
R(a,b)=| F G I, (3.5)
-, -, L
where we put I = (/,, /5, ;) and
a’ly + b? ab(l; -1 by + a?
E=——, FE(23—2), G=——. (36)
a‘+b a‘+b a‘+b

Hence, from Theorem 1, the transformation induced on the image plane is given
by

, fEx+Fy—llf , Fx+ Gy - I,f
x:—— =

, Y i A~ 3.7
Ix+ Ly +Lf 7 Ix + Ly + If (3.7)

We call the rotation R(a, b) the standard rotation to map point (a, b) onto the
image origin (0, 0), and the transformation of Egs. (3.7), which we denote by Y
the standard transformation with respect to point (a, b). Its inverse T, ', is given by

Ex' + Fy' + I.f Fx' + Gy’ + I,f
vy —nr Ty v Ly -

(3.8)

The standard rotation can be regarded as a rotation which does not contain
rotations around the Z-axis (i.e., the swing is zero, cf. Haralick [2]). This is similar
to the rotations of the eye or the head: they rotate upward, downward, rightward,
and leftward, but not around the line of sight.

If we take the limit f — oo of infinitely large focal length, i.e., in the limit of
orthographic projection, we simply obtain x’=x —a, y’' =y — b, namely the



CONSTRAINTS ON LENGTH AND ANGLE 33

translation to move point (a, b) onto the image origin (0,0). Thus, the standard
transformation T, ,, of Eqs. (3.7) is a natural extension of image translation under
orthographic projection, and hence it can play the role of image translation under
perspective projection.

4. TRANSFORMATION OF LINES
A line on the image plane is written in the form

Ax+ By + C=0. (4.1)

Here, the ratio of A4, B, C alone has a geometrical meaning; A4, B, C and c4, ¢B, ¢cC
for a nonzero scalar ¢ define one and the same line.? In order to emphasize this fact,
let us write 4 : B: C to express a line. If transformation (2.2) is applied, line (4.1) is
mapped into another line

Ax+ By+ C' =0. (4.2)
The line A’ : B’: C’ is given by the following theorem.

THEOREM 2. A line A: B: C on the image plane is transformed by camera rotation
R into line

mA + B+ 1y C/firpA + 1B+ 5,C/f: f(r3A + ryyB) + rC. (4.3)

Proof. In view of Eq. (2.1), Eq. (4.1) is written as A(fX/Z) + B(fY/Z) + C =
0, or

[4 B c/l|¥|=o. (4.4)

X
Y
VA
From Eq. (2.3), we find that A, B, C/f are transformed as a vector, i.e.,

, m ™ M| 4
B i=|rn, rp rmf| B |, (4.5)

ny ra ra|lC/f

from which Eq. (4.3) is obtained.

A line passing through point (a, b) is written as

A(x—a)+B(y—b)=0, (4.6)

or A: B: —(Aa + Bb). If the camera rotation R is the standard rotation R(a, b),
the corresponding standard transformation T, ,, on the image plane maps this line

2This means that 4, B, C are the homogeneous coordinates of the line of Eq. (4.1). If we regard the
xy-image plane with the line of infinity added as a 2D projective space, and use homogeneous coordinates
to describe points on it, treatment of points becomes completely dual to treatment of lines. However, we
do not use this projective geometry because we are interested in applications to real images; in practice
the use of xy-inhomogeneous coordinates is most convenient.
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X

(a,b)

) Y

F1G. 3. A half line starting from point (a, b) having orientation ¢ is mapped by the standard
transformation 7, ,, onto a half line starting from the image origin having orientation §.

into a line of the form A’x + B’y = 0 or A’: B’: 0. From Eq. (4.3), we obtain

A (fE+al)A + (fF + bl,)B
B (fF+al,)A+ (fG+ bl,)B’

(4.7)

Consider a half line starting from a point on the image plane. Define its
orientation to be the angle ¢ (0 < ¢ < 2#) made from the positive direction of the
x-axis measured in the positive sense (i.e., toward the positive direction of the
y-axis) (Fig. 3). From the relation

A/B = —tang, (4.8)

and Eq. (4.7), we obtain the following result (cf. Appendix):

THEOREM 3. A half line of orientation @ starting from point (a, b) is mapped by
the standard transformation T, ,, into a line starting from the image origin whose
orientation @ is given as
_, (fE + al))tang — (fF + bl,)

(fF + al))tanp — (fG + bl,)

¢ = —tan (4.9)

Since tan~! is a two-valued function, there are two values for , and the one nearer to
@ is chosen.?

COROLLARY. A half line of orientation @ starting from the image origin is mapped
by the inverse standard transformation T};,‘b) into a line starting from point (a, b)
whose orientation ¢ is given by

_, (fG + bly)tan +(fF + bl,)
(fF + al,)tan® +(fE + al;) ~

(4.10)

Again, the one nearer to  is chosen.

5. CONSTRAINT ON LENGTH

Consider a line segment with endpoints (a, by), (a,, b;) on the image plane, and
let Py, P, be the corresponding endpoints in the scene. Assuming that the true 3D

3Recall that we assume the rotation is not very large.
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XY

() (b)

F1G. 4. The projection of line segment Py P, and the mapping by the standard rotation R(agyby).

length of line segment PyP, is known to be /, consider the resulting constraint. If
the standard transformation T, , , is applied, point (a,, by) is mapped onto the
image origin. Let (a’;, b’,) be the point onto which point (a,, b,) is mapped by Eq.
(3.7). Let @, 0 < p < 27, be the orientation of the line segment starting from the
image origin (Fig. 4a).

Let r be the distance of point P, from the viewpoint O, and let 8,0 < 8§ < = /2,
be the angle of the line segment P, P, measured from the line of sight. The standard
transformation T, , , maps point P, onto point (0,0, r) and point P, onto

(ao;

(/sin@cos @, Isin@sing, r + [cosb) (5.1)

(Fig. 4b). Let a,0 < a < 7 /2, be the angle of OP, measured from the Z-axis. From
Fig. 4b, angle a is

a =tan"! \/afz + b3 /f. (5.2)

By the /law of sines of trigonometry, the distance r is expressed in terms of 8 by
r=1Isin(8 — a)/sina, (5.3)

and hence one degree of freedom is constrained about the positions of these two
points; they are expressed in terms of one parameter 6.

" Consider to constrain the remaining degree of freedom by invoking a simplifying

hypothesis. A reasonable one may be that the line segment is perpendicular to the

ray connecting the viewpoint and the point in question. In the canonical position,

this means @ = 7 /2. Under this hypothesis, a unique value for r is given from Eq.

(5.3) in the form

r=fl/ya{*+ b{%. (5.4)

6. CONSTRAINT ON ANGLE

Suppose we are viewing, on the image plane, two half lines starting from point
(a,b), and let ¢,, ,, 0 < @,, ¢, < 27 be their orientations. Assume that the angle
made by the corresponding half lines L,, L, in the scene is known to be a. If the
standard transformation T, ,, is applied, the images of L,, L, start from the image
origin, having orientations ¢,, @, given by Eq. (4.9) of Theorem 3 (Fig. 5a).
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{a,b)

(a) (b)

Fi1G. 5. The projection of two half lines L,, L, and the mapping by the standard transformation
na.h)'

Let 6,,6,, 0 < 8,,8, < =, by the unknown angle of L,, L, measured from the
Z-axis. Then, the unit vector along them are given by

ni; = (sin 6,cos @;, sin 6,sin P, cos 6,), (6.1)

for i = 1,2 (Fig. 5b). The condition that they make angle a is #, - #, = cos a, or

sin 8, sin 6,cos(P, — P,) + cos b;cos 6, = cos a. (6.2)

Hence, one degree of freedom is constrained. For example, 6, can be expressed in
terms of 8, and vice versa. The orientations of L,, L, in the original position are
prescribed by unit vectors n, = R(a, b)n,, n, = R(a, b)n,, respectively.

If we want to constrain the remaining one degree of freedom by invoking a
simplifying hypothesis, a natural one is 8, = #,. Under this hypothesis, angle 6,
(= 6,) is either 6, or 7 — 6,, where

cosa — cos(p, — @
6, = cos™! \/ (%, ~ ) . (6.3)

1 — cos(§, — §,)

The two solutions are mirror images of each other with respect to a mirror
perpendicular to the line of sight.

The important fact about angle constraints is that in the canonical position
distinction between perspective or orthographic disappears; the interpretation of the
3D line orientation does not involve depth or the distance from the viewer at all.
However, this fact does not seem to have been widely recognized and utilized in
image understanding.

7. INTERPRETATION OF A RECTANGULAR CORNER

Consider a rectangular corner which has three mutually perpendicular edges.
Many familiar objects, e.g., manufactured objects such as buildings, furniture, and
machine parts, have rectangular corners. Hence, the study of the rectangularity
constraint is of practical importance. In addition, it is often argued that humans
invoke this rectangularity hypothesis when no prior knowledge about the true angle .
is obtained (cf. Barnard [1)).
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To this problem, Kanatani [6] gave an analytical solution under orthographic
projection. Since perspective projection reduces to orthographic projection in the
canonical position as far as orientation is concerned, Kanatani’s solution can be
directly applied to perspectively projected images as well.

Consider three edges starting from the image origin, having orientations @;,
i=1,2,3. Let 8, i =1,2,3, be the angles of the corresponding edges in the scene
measured from the Z-axis. From equations of the form of Eq. (6.2) with a = 0, we
obtain the condition of rectangularity in the form

tanftand, = —1/cos(g, — ;), (7.1)

where (i, j) = (1,2),(2, 3),(3,1). If all three edges are assumed to go away from the
viewer, i.e.,, 0 < 6, 8,, 6, < 7/2, multiplication of both sides of the three equations
(7.1) yields

tan §ytan ftan 8; = |/~ 1/cos(F, — §,)cos(F, — ¥3)cos(F; — ;) . (7.2)

From Egs. (7.1) and (7.2), we obtain

6, = tan”! 1/_c°5(‘_Pz ~ @3)/cos(P, — §,)cos(P; — ;) .

b, = tan~! ,/—cos(@ - 61)/005(52 - t_p3)cos(¢, - ‘_Pz) ’ (7.3)

6, = tan~! l/_cos(‘_Pl - ‘7’2)/005(‘7’3 - ‘51)003(‘_?2 - P3).

If edge i goes toward the viewer, ie., 7/2 < §, < a, then 6, computed above is
replaced by # — @, i.e., by its mirror image.

In deciding which edges go away from or toward the viewer, we must distinguish
two configurations. One is the fork (or “Y ™), where all pairs of edges make angles
larger than 7 /2 on the image plane (Fig. 6a). In this case, we can confirm that the
three edges either all go away from the viewer or all come toward the viewer, and
these two interpretations are the mirror images of each other. The other configura-
tion is the arrow, where one pair of edges makes an angle larger than #/2 and the
other pairs make angles less than =/2 (Fig. 6b). Then, it can be confirmed that
either the side edges go toward the viewer and the center edge away from the viewer,
or the side edges go away from the viewer and the central edge toward the viewer,
and the two interpretations are the mirror images of each other. It can also be

(@) (b)

F1G. 6. (a) A fork and (b) an arrow.
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confirmed that these two configurations, i.e., the fork and the arrow, exhaust the
images of rectangular corner.*

Once the orientations n;, i = 1,2,3, of the three edges are determined in this
canonical position, their orientations in the original position are given by n, =
R(a, b)n,, i = 1,2,3. Thus, we can conclude

THEOREM 4. Under perspective projection, the 3D orientation of a rectangular
corner can be determined uniquely from its projection except for the mirror image with
respect to a mirror perpendicular to the ray connecting the viewpoint and the vertex.

8. INTERPRETATION OF A CORNER WITH TWO RIGHT ANGLES

Consider a corner with three edges, and suppose it is known that two pairs of
edges make right angles and the other makes a known angle, say a. Assume that we
can tell from a given image which pairs of edges make right angles. As before, we
only need to consider the case where the vertex is at the image origin by the use of
the standard transformation.

As before, let ; be the orientation of edge i on the image plane, and let 6, be the
angle it makes from the Z-axis in the scene. Suppose edges 1,2 make angle a
(0 < a < 7) and the other pairs make right angles. From Egs. (6.2) and (7.1), we
must solve equations

sin 8;sin @,cos(®, — @,) + cos 6,cos 8, = cos a, (8.1)
-1 -1

tanftanf, = ——— tanftanf, = ———
P cos(y - 95) P cos(9, — 95)

(82)

Taking squares of both sides of Eq. (8.1), we obtain

tan’d,tan’d,cos?(@, — @,) + 2tan b tan b,cos(p, — &,) + 1
= (1 + tan,)(1 + tan®, )cos’a. (8.3)

From Egs. (8.2), we obtain

cos(p, — @
tan, = Mtan 6,, (8.4)
cos(, - ;)

and substituting this in Eq. (8.3), we obtain

Atan®d, + Btan’d, + C =0, (8.5)

cos(§, ~ @)
= —5————(cos*(§, — §,) — cos’a),
cos*(%, — §5) ( P )
cos(§, — §,)cos(§; — §5) _ ( cos’(p, — ;) )cosz

B=2 — — ——
cos(P, — @) cos*(@, — ¥5)

(8-6)
C = sin%a,

“Here, we do not consider the degenerate case where two edges are projected onto the same line (i.e.,
“L” or “T™), assuming that the object is in general position.
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F1G. 7. Image of a building. The upper-right corner has three mutually perpendicular edges.

and hence if we put X = tan’,, we obtain

X=(-B+VB2-44C)/24. (8.7)

We must choose only positive X. Then, 8, i = 1,2, 3, are given by

0, =tan 'YX or 7 —tan 'YX, (8.8)
cos(p, — @ —:1

, = tan~! M ané, |, 0;= tan™" — , (8.9)
COS(QD:,_ - q)3) COS(‘P_; - (pl)tan 61

Since Eq. (8.1) is squared to obtain Eq. (8.3), only those solutions which satisfy Eq.
(8.1) are the true solutions. In any case, if 6,,6,, 8, satisfy Egs. (8.1), so do
7 — 0,, 7 — 0,, 7 — 8 (ie., the mirror image).

9. EXAMPLES

Consider the building of Fig. 7. The focal length is f= 28 mm. The image
coordinates of the upper-right vertex are (10.0 mm, 7.9 mm), and the orientations of
the three edges are ¢, = 110°, ¢, = 168°, @, = 224°. If we apply the standard
transformation given by Eq. (4.9) of Theorem 3, we obtain ¢, = 111.5°, @, = 165.4°,
P, = 224.6° (Fig. 8). Suppose we know that the three edges are mutually perpendic-
ular. The configuration is an arrow. Applying Egs. (7.3), we obtain 8, = 56.1°,
6, = 131.3°, 6, = 59.8° if we assume that edge 2 goes away from the viewer and

F1G. 8. The standard transformation applied to the three edges in Fig. 7.
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Z X
2 2
Y Z

0

F16.9. The top view and the side view of Fig. 7.

F16. 10. Object image. The three edges of the upper-right corner make angles of 60°, 90°, and 90°.

2 1

F1G.11. The standard transformation applied to the three edges in Fig. 10.

edges 1 and 3 comes toward the viewer. (Otherwise, we obtain its mirror image as
well.) The corresponding unit vectors #,, i = 1,2, 3, are obtained by Eq. (6.1), and
the orientations in the original position are given by n, = R(10.0,7.9)n,, i = 1,2,3.
Figure 9 shows the “top view” (orthographic projection onto the YZ-plane) and the
“side view” (orthographic projection onto the ZX-plane).®

Consider the object in Fig. 10. The focal length is f= 28 mm. The image
coordinates of the upper-right vertex are (9.0 mm, 11.1 mm), and the orientations of
the three edges are @, = 163°, @, = 193°, ¢, = 257°. If we aply the standard
transformation given by Eq. (4.9) of Theorem 3, we obtain ¢, = 160.8°, @, = 189.7°,
@3 = 259.7° (Fig. 11). Suppose we know that edges 1 and 2 make angle 60°, edges 2
and 3 make angle 90°, and edges 3 and 1 make angle 90°. Then, we obtain three

°The position of the vertex is taken arbitrarily.
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FiG.12. The top view and the side view of Fig. 10.

equations of the form of Eq. (6.2). Applying Egs. (8.8) and (8.9), we obtain
8, = 72.1°, 6, = 125.5°, 0, = 64.3° if we assume that edge 2 comes toward the
viewer and edges 1 and 3 go away from the viewer. (Otherwise, its mirror image is
obtained as well.) In this case, there exists no other solution (except for its mirror
image). The corresponding unit vectors #,, i = 1,2, 3, are obtained by Eq. (6.1), and
the orientations in the original position are given by n; = R(9.0,11.1)n,, i = 1,2,3.
Figure 12 shows the “top view” (orthographic projection on to the YZ-plane) and
the “side view” (orthographic projection onto the ZX-plane).

10. CONCLUDING REMARKS

We have studied geometrical constraints on lines and angles resulting from
perspectively projected images. Unlike for orthographic projection, the image plane
is not geometrically homogeneous and images cannot be translated arbitrarily on it.
However, we have shown that images can be displaced arbitrarily on the image
plane by the standard transformation, which simulates the rotation of the camera
around the center of its lens. This transformation is a natural extension of image
translation under orthographic projection and has a natural analogy to human
visual perception.

By applying the standard transformation, we can move the image into a canonical
position where analysis becomes easy. Here, the important fact is that if we are
considering constraints on length and angle, the standard transformation need not
be applied to the image itself, we can numerically compute the coordinates of points,
lengths of line segments, and angles they make which would be observed in the
image after the transformation.

One of the important consequences is that the distinction between orthographic
and perspective disappears for the interpretation of line or edge orientation if
considered in the canonical position. Making use of this fact, we have shown that
interpretations of a rectangular corner and a corner with two right angles and a
known angle can be obtained very easily in analytical terms, and given some
numerical examples by using real images. The same problem was already analyzed
by Shakunaga and Kaneko [11] from a different point of view, but clearly the
approach presented here is simpler and more explicit. (However, they treated a
wider class of problems including the orientations of lines in the scene which do not
necessarily meet.)

We have also discussed the use of simplifying hypotheses to restrict the ambiguity.

APPENDIX

Although Eq. (4.9) is sufficient for theoretical purposes, it is not desirable for
actual numerical computation, since we have tan ¢ — co when ¢ — /2. One way
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to avoid this is to use Eq. (4.9) for 0 < ¢ < « /4, 3n/4 < @ <57/4,Tn/4 < ¢ < 2,
and otherwise to use

(fF + al,) — (fG + bl,)cot
(fE + aly) — (fF + bl)cot g °

®= —cot™!

which is equivalent to Eq. (4.9). Similar consideration applies to Eq. (4.10) as well.
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