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The 3-dimensional motion of a planar surface is detected only from the motion of its
projected 2-dimensional contour image on the plane of vision. There is no need to know the
correspondence of points. The motion is explicitly given by measuring “diameters” of the
image contour on the plane of vision. No iterative or matching processes are involved.
Numerica! examples are also given. © 1985 Academic Press, Inc.

1. INTRODUCTION

Detecting the 3-dimensional motion of a surface from the 2-dimensional motion
of its projected image is one of the most important tasks or “modules” of computer
vision and image processing. One of the prevailing approaches is first to detect the
“correspondence,” i.e., the knowledge of which point moves to which one, and to
analyze the “optical flow” (e.g., [1,2, 3]). For example, if the surface is a face of a
polyhedron, the correspondence is determined by detecting edges and corners. In
general, however, determination of correspondence is a time consuming process
involving iterative searches. Moreover, if the surface is not a polygon but an
arbitrary smooth shape, no correspondence could be known at all. Even if the
correspondence is known, the computation of the motion could become complicated.
Translational motions must be separated from rotational motions (cf. [1,2]). Fur-
thermore, the accuracy depends greatly on the choice of the points used for
computation. If those points are located very near each other, a small amount of
noise would make the computational error very great, so that some kind of
correction like averaging over different correspondences is necessary (e.g., [3]).

In view of this, a technique to detect the 3-dimensional motion without knowing
the correspondence is desired. It is also desired that measurement involve data just
enough to know the desired component of the motion. For example, if the orienta-
tion of the surface is wanted, the involved data should be “invariant” with respect to
translational motions. Besides, the necessary computation should be as simple as
possible, preferably without any iterative searches. In this paper, we present such a
technique. We present a set of “explicit” formulae to compute the surface motion
from a small number of measured “features” alone. The image can be erased out of
the memory once the features are obtained, for there is no need to compare or
correlate two images. This saves the memory space. Similar approaches have already
been seen. For example, Amari [4,5] proposed a theory of invariant features to
detect the motion of gray-level images. Kanatani [6] applied a mathematical princi-
ple called “integral geometry” or “stereology” [7-12] to detect the orientation of an
infinitely large plane surface with a texture on it. Here we do not need any texture at
all. Only necessary is the assumption that the surface is “planar,” having a “closed
contour.”
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The iterative search is one of the basic techniques in image processing. It is most
universal in the sense that it can be applied to any problems, for its principle is to
test feasible possibilities systematically to reach one which best matches the given
requirement. At the price of universality, however, it usually involves much compu-
tation time, and the process sometimes does not converge to the true solution,
especially when the cost function has local maxima or minima. In order to accelerate
or ensure convergence, a very good approximation is necessary as an initial guess.
Thus, it is of vital importance to obtain an “explicit” scheme without involving
iterative searches even though it gives only an approximation. The presented
estimation technique is rough in the sense that it involves various approximations.
Another scheme similar to this but exact in principle is also proposed by Kanatani
[13]. It involves numerical integration of certain functions on the plane of vision,
but the accuracy depends sensitively on the choice of these functions. The estimation
is very accurate when the motion is small but cannot be applied when the motion is
large, while the present one gives a fairly good estimation even if the motion is large,
as is illustrated in our examples. Thus, the virtues of these two methods are
complementary, and the present one will serve many purposes if appropriately used.

2. SPECIFICATION OF SURFACE ORIENTATION AND ROTATION

In this paper, we consider only the orthographic projection. (The scheme of
Kanatani [13] is applicable to the perspective projection.) Hence, the location of the
surface is irrelevant, and we adopt the convention that it passes through the origin of
the space and that we are viewing the image orthographically projected along the z
axis onto the xy plane. There are several ways, mutually equivalent, of describing
the surface orientation. One obvious way is to specify the unit normal vector
(ny, ny, ny). Since (ny, n,, n3) and (—n,, —n,, —n,) describe the same orientation,
we can always assume n, > 0. We exclude the exceptional case of n; = 0 (i.e., the
surface is orthogonal to the plane of vision.) The equation of the surface has the
form n;x + n,y + nyz = 0. Alternatively, we can use the spherical coordinates o
and 7 of the normal (Fig. 1). It follows by our convention that 0 < o < w/2 and
0 < 7 < 2. The parameter o is termed the “slant” and 7 the “tilt” of the surface.
We can alternatively use the “gradients” ( p, q), where p = dz/dx and q = 9z/dy.
The surface equation is then expressed by z = px + gy.

Zz=px+qy

FiG. 1. Specification of surface orientation by the normal vector n, the slant ¢ and tilt 7, and the
gradients (p, 9).
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These three descriptions are mutually equivalent and related to each other as
follows:

(i) normal vs. slant-tilt

n, = singcosr, n, = sinosinr, n, = coso, (2.1)

o=cos"!n,, 7=tan"}(ny/n)), (2.2)

where appropriate branches of cos~! and tan~' must be chosen by considering the
signs of n,, n,, and n,.

(i) slani-tilt vs. gradients

p = —tanocos7T, ¢ = —tanosin7, (2.3)
o =tan"lyp?+ ¢, T =tan"(q/p), (2.4)

where again appropriate branches of tan~! must be chosen by considering the signs
of p and gq.

(iii) gradients vs. normal

= —ny/n, = —ny/ns, (2:5)
n,=—-p/Yp*+4q*+1, n,=—q/yp*+q*+1, ny=1/yp>+q*+1.
(2.6)

Let (w,, w,, w;) be the angular velocity vector, which describes an instantaneous
rotation of angular velocity w = Jw,? + w,> + w,* around an axis of direction
cosine (w;, w,, w;)/w through the origin. Then, the time change of the surface
orientation is described by one of the following three sets of differential equations:

dny/dt = —nyw, + nyw;, (2.7)
dny/dt = nyw, — nyw,; .

{ do/dt = —w;sinT + w,cosT, ”g

dr/dt = @, — (w,c0s T + w,sinT) /tano; (28)

{dp/dt =pgw, —(p?*+ 1w, — qu;, (2.9)
dg/dt = (g% + 1), — pgw, + pws.

This surface motion induces, by projection, the “ velocity field” or the “optical flow”
in the xy plane as follows:

dx/dt = pw,x +(quw, — w,) y,
dy/dt = —=(pw, — @3)x — qu,y, (2.10)
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3. DISTRIBUTION DENSITY AND FEATURES

Now, the only assumption here is that the surface is planar, having a closed
contour. Hence, all relevant information must be extracted from the circumference
contour alone. This means that the surface itself can be an infinite plane on which a
closed curve is drawn. This does not make any difference, because we are looking at
the curve image alone. A closed curve on the plane of vision has a number of
characteristics—the length, the area, the center of gravity, the moments, etc. What
we consider here is the “distribution density” f(8) of the contour. It is defined as
follows: Let the closed curve be disected into infinitesimally small line segments of
length d/. The orientation of each line segment is described by angle 8 made from
the x axis. Since # and 6 + = describe the same orientation, we choose one of the
two possibilities randomly with probability 3. The distribution density f(8) is
defined so that f(6)d@ is the total length of those line segments of orientation
between # and 8 + d. By definition, f(f) is “symmetric” in the sense that
f(8) = f(0 + «), and [27f(0)d4 is the total length of the curve.

The above definition is merely a mathematical conception, and we do not compute
f(0) by this definition. What we measure is the “diameter” D(@) of the contour, i.e.,
the distance between the two parallel lines of orientation 8 tangent to the contour, as
is indicated in Fig. 2. Hence, D(#) is a symmetric function, D(8) = D(8 + =),
defined for 0 < 8 < 2. In contrast to the distribution density, the diameter can be
measured easily for any particular @ directly on the plane of vision. Yet, there is a
mathematical relation between them. Suppose the contour is convex. Then, we have
the following theorem.

THEOREM

D(8) =3 [ " sin(6 — 87)|£(8°) d6". (3.1)

Proof. Let S be the area of the plane of vision. Put a line of orientation 4 on it
randomly and consider the expected number of intersections with the curve. Con-
sider those line segments of length d/ whose orientations are between #’ and
8’ + d#’. Such a line segment intersects the line when its center falls inside the area
of width |sin(@ — 6’)] along the line (Fig. 3). Since there are f(8’)d8’/Sd! such
line segments per unit area, |sin(8d — 8)|f(8’)d8’/S of them intersect the line per
unit length. Hence, the expected number of intersections per unit length is /2" |sin(6

Fi6. 2. Diameter D(9) is the distance between the two parallel tangent lines of orientation 6.
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FIG. 3. A line segment intersects the line when its center falls inside the area of width [sin(8’ — 8)|
along the line.

— 89|f(8")d8’/S. On the other hand, the expectation over random droppings is
equivalent to considering parallel lines of infinitesimally small spacing d4 and of
orientation @ covering the plane of vision [7-9]. The total length is S/dA, and the
total number of intersections is 2.D(8)/ dh, one line intersecting the curve twice due
to the convexity of the curve. (We need not consider the tangent lines, because they
arise with “measure 0.”) Hence, the number of intersections per unit length is
2.D(8)/S, which proves the theorem. O

The transform of Eq. (3.1) was generalized to include 3-dimensional figures not
necessarily curves by Kanatani [10}, who termed it the “Buffon transform” and gave
it a tensor formulation invariant to coordinate transformations (see also Kanatani
[14]). He also gave a procedure of inverting the transform of (3.1). Let D(8) be
expanded in the Fourier series

D(0)-£\1 + Z (4 cosn0+Bsmn0)] (3.2)

n=2

where ¥’ denotes summation with respect to even numbers. The odd terms do not
appear due to the symmetry of D(8). Then, the distribution density f(8) is given by

1(0)=£ [1 Y (n? = 1)(A,c05n6 + B smnﬂ)] (3.3)

n=2

(A formal proof of this requires the orthogonality of irreducible representations of
the 2-dimensional rotation group and Schur’s lemma. See Kanatani [10].) If D, is
the diameter for 6 = wk/N, k = 0,1,..., N, the Fourier coefficients in Eq. (3.2) are
approximated by

N-1
C=2m ) D./N, (3.9)
k=0
N-1 N-1 N-1 N—-1
=2 ) Dios(nnk/N)/ ¥ D,, B,=2Y D,sin(nnk/N)/ ¥ D,.
k=0 k=0 k=0 k=0

(3.5)
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As is shown in the next section, only C, 4, and B, are sufficient to determine the
3-dimensional motion. So far we have assumed that the surface contour is convex,
but we can remove this assumption. As can be seen from Fig. 3, if we measure
the diameter D(8) of a nonconvex contour from outside, we are actually measuring
the diameter of its “convex hull,” i.e., the minimum convex domain containing the
contour. An important fact is that the convex hull is “invariant” with respect to (not
necessarily orthographic) projections. In other words, the convex hull of the pro-
Jjected image is the same as the projected image of the convex hull of the original
contour. This is apparent because “tangency” is an invariant concept with respect to
projections. Hence, we have only to regard the convex hull as the “real surface.”

4. DETERMINATION OF SURFACE MOTION FROM FEATURES

Suppose we observe a 2-dimensional image of a moving contour at some time ¢.
An approximation we adopt here is to assume that the distribution density of the
contour image has the form

f(8) = —2%[1 + a,cos28 + b,sin24], (4.1)

and that the higher harmonics can be neglected. On the plane of vision is induced
the velocity field of Egs. (2.10). Due to this velocity field, the coefficients of Eq. (4.1)
are not constants but functions of time. Their time derivatives become

de/dt = — *};c[bzp —(a, - 2)q]w1 + %C‘[(az +2)p + bygle,, (4.2)
day/dt = 4[by(4 + a,) p +(6 - a,*)q] )

+%[(6 - “22)1’ + by(4 - az)q]wz = 2b,w,, (4.3)
db,/dt = [(5;2 - 4a, — 6)p — azbyg]w,
~1[ayb,p + (b + 4a, — 6)gw, + 24,0, (4.4)

(The mathematical principles to derive this result are discussed in Kanatani [6, 10).)
If we compare Eq. (3.3) and Eq. (4.1), we can see

and hence the transformation of the “features” C, A, and B, due to the motion are
obtained. The relevant equations become

4
dA,/de = [B,(1 - 34,)p — (3 - 34,2)q] e,

+[=(3-34,2)p + B,(1 + 34,) g} w, — 2By, (4.7)
dB,/dt = [(% —A,—3B?)p+ %Aszq]‘*’l

+ [%AszP ‘(% -4, - %Bzz)q]‘*’z + 24,0;. (4.8)

1dC 3 1 1 3
55 = [ 2mp+ 30+ 34 |0 +[30 - 342)p - 38w, (46)
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Equations (4.6)-(4.8) are viewed as a set of simultaneous linear equations for the
angular velocity vector (w;, w,, w;). The solution is given in the form

[2;] " B,(4? —p:) +24,pq [%((A’A)/(% - "AHz) N C/C)[;jﬁ fjﬁ:]

rad)f(3-rar)[3]] )

1 [ : , 1 1
w0y = [A,A]+((||A|| - 542)p - 3B:a ),
> 2142 2 2
1 , 1
+(= 38 + (1417 + 743 ) ) ] (4.10)

where the following abbreviations are employed:

ll4ll = {42 + B2, (4.11)
(4,4) = A,d4,/dt + B,dB,/dt, [A,A] = A,dB,/dt — B,dA,/d1,
(4.12)

and C = dC/dt. Here, C, A, and B, can be measured at each time. Their time
derivatives are approximated by measuring them at time ¢ and time ¢ + At, a
sufficiently short time later, and taking the difference. For example, dA4,/d: =
[4,(z + At) — A,(2)]/At. Hence, once we know the gradients ( p, ) at time 1, we
can compute the angular velocity vector (w,, w,, w;) by these equations. Then, in
view of Egs. (2.9), the gradients ( p’,¢’) at time ¢ + At can be approximated by

P =p+[pgo, - (p* + 1) e, — quy]As, (4.13)
q’ =q+ [(q2 + 1)w, — pgu, + pw3]At, (4.14)

or equivalently from Eqs. (2.7) or (2.8). It then follows that, if we know the initial
orientation of the surface, we can trace the surface orientation, successively applying
the above procedure. However, as is seen from Eq. (4.9), this scheme fails to work if
p = g = 0 at time . In this case, we need a different scheme, which will be presented
later.

5. A NUMERICAL EXAMPLE OF TRACING SURFACE ORIENTATION

Figure 4 shows projected contour images of a moving planar surface in the space.
The slant and tilt of C, are 60° and 80°, respectively, or in terms of the gradients
p = —0306 and ¢ = —1.706, and C,, C,, and C; are images of the same surface
after being rotated by 10°,20°, and 30°, respectively, about an axis of direction
cosine (1/v3,1/Y3,1 /V3). The transition of surface orientation is described by a
“trajectory” in the pg plane, or the “gradient space.” Figure 5 shows the true (solid)
and a computed (dashed) trajectories, where we computed the features C, A,, and
B, from diameters of 18 different orientations. The precision is remarkable in view
of the fairly large amount of relative motions and the involved approximations.
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F16. 4. Projected images of a surface: C; has slant 60° and tilt 80°. C;, G, and G, are the images
after rotations of 10°,20° and 30°, respectively, about an axis of direction cosine (1/v3,1//3,1//3).

1-10

FiG. 5. The true (solid) and the computed (dashed) trajectories of the surface orientation for the
images in Fig. 4.

In the course of computation, we employed a few modifications. The first one is
related to the fact that, if p and g are small, the angular velocities w, and w, exert
only a small distortion rate, while w,, the angular velocity about the z axis, induces a
2-dimensional rotation whose distortion rate is of order 1 (see Egs. (2.10)). Hence,
we proceeded as follows: If p,q = 0 in Eq. (4.10), we have w; = [A, A)/2||A|l>. Let
@, be this value. Using it as a first approximation, we first rotate the image at time
t + At by —@,At. This is easily done by rewriting the features as C — C, 4, -
Acos(@; At) + B,sin(@; At), B, & —A,sin(@; At) + B,cos(®;At) at time £ + Ar.
(We do not have to change the image itself.) Then, this modified motion is expected
to have a smaller value of w;. After computing the gradients ( p’,q’) at ¢ + Az by
the procedure described previously, we obtain the true gradients by transformation
p’ — p'cos(w; At) — q’sin(@;At), g’ — p’sin(@;At) + g'cos(w, At).

The second one is the use of the normal vector instead of the gradients. If p and ¢
are given, the normal vector is given by Egs. (2.6). Given the angular velocity vector
(®,, w5, w,;), we can compute the normal vector at time ¢ + Az by using Egs. (2.7),
and the gradients are given by Eqs. (2.5). Of course, Egs. (2.7),(2.8), and (2.9) are
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mathematically equivalent to each other as differential equations, but Egs. (2.7) seem
to give a better solution when approximated as difference equations with derivatives
replaced by simple differences, especially when p and g are small.

6. THECASEOF p=¢ =10

As was mentioned earlier, we need a different scheme when p = ¢ = 0 at time ¢,
in which case angular velocities w, and «, do not affect the image (see Eqgs. (2.10)).
Since the velocity describes an instantaneous “linear” approximation of the motion,
we must have a higher order approximation when the velocity vanishes. Suppose
p = q =0 at time 7, and let (p’, q’) be the gradients a short time later at time ¢".
Then, the transformation on the plane of vision has the following form: point (x, y)
at time ¢ moves to point(x’, y’), where

x'=(1-p?/2)x—(pq’' +2)y + 0(p* q* 2%, 61)
y'=—=(pq - Q)x+(1-p?*/2)y + 0(p*,q% Q).

Here, the last terms designate those of order p’*,¢’* or Q2, and Q is an arbitrary
angle of rotation about the z axis. In order that these equations have a practical
sense, the magnitude of the “in-plane rotation” £ must be small and have the order
of p? or q”.

If the distribution density of the contour curve is given by Egs. (4.1) at time ¢,
then it becomes at time ¢’

f(8) = zc—ﬂ[l + ajc0 28 + bjsin20 + ajcos48 + bisin48] + O( p”, ¢*,92?),

(6.2)

where
¢ = c[l +ip?+ %((q’2 ~p’2)a2 - 2p’q’b2)], (6.3)
a;=a,+ (g% - p?) —4a,[(4? - p?)a, - 2b,p79°) - 26,2,  (6.4)
by = b, ~ 3(2p7’) — ¥b,[(q” — p?)a, — 2b,pg’] + 24,2, (6.5)
ay=$[(a” - p*)a, + 2p7%,], (6.6)
s = ‘3‘[(‘1'2 - P'z)bz - 2p’q’az], (6.7)

(The mathematical principles to derive this result are discussed in Kanatani [6, 10].)
From Egs. (6.3), (6.4), and (6.5) and relations (4.5), we can also solve for p’, g’ and Q
in terms of C,C’, A,, A3, B, and B; as follows. First, p’ and q’ are given as the
solution of

A,(q? - p?) —2B,pg = ~4(1 - C’/C),
P2+ g% =4[1-C/C+((A,A) - IA12) /(3 - IA1%)], (6.8)
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and  is given by

= ([A, A1 - [ B,(a” - p7*) + 24, p4]) /21AI12, (6.9)

where we have used abbreviations

(A,A") = 4,45 + B,B;, [A,A’] = 4,B; — B,45. (6.10)
If we put
p’ =rcos¢, q’ = rsin¢g, (6.11)
and define ¢, to be the angle given by
cos2d, = A,/|All,  sin2¢, = B,/||A|), (6.12)

The solution of Eqgs. (6.8) is given as

r=21-C’/C+((A,X) - 1IAI1?)/(3 - IAI2), (6.13)
2
AN +(1 - cr/C)(Z - 1AI12) /((A, &) — 1A11%)]
(6.14)

In general, we have two sets of solutions due to the multivaluedness of cos~!, and
the one which gives a smaller absolute value of £ must be chosen. ThlS result lS
obtained on the assumption that || is small and has the order of p or q
However, if || is not small compared to p” or q%, in other words, if p’* and q
are much smaller than ||, the procedure described in the previous section applies.
Namely, let & = [A, A’]/2||A||? be a first approximation of &, and transform C’, 43,
and Bj.to those of the rotated figure by — — 8. Then, the modified motion is expected
to have a smaller value of |2]. The true p’ and g’ are obtained by rotating the
computed gradient vector ( p’,¢’) by &.

The curve C of Fig. 6 shows the shape of the surface used in Fig. 4 when
p = q = 0 (i.e, slant 0), and C" is the projected image of the same surface slanted by

¢ = + 3cos!

F1G. 6. The shape C of the surface of Fig. 4 with slant 0, and image C’ of the same surface slanted by
slant 30 ° and tilt 10° and rotated by —20° about the z axis.
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~<

D{e)

=4

FiG. 7. Diameters of 18 different orientations—white circles for C and black dots for C’. The solid
curves are approximations up to the second Fourier harmonics computed from those data.

slant 30° and tilt 10° and rotated by —20° about the z axis. Hence, the true
gradients are p’ = —0.289 and ¢’ = —0.5. We measured diameters of 18 different
orientations, which are shown in Fig. 7—white circles for C and black dots for C".
The solid curves are approximations up to the second Fourier harmonics. In other
words, our scheme regards these curves as the true diameter distributions. Applying
the above procedures, we obtain p’ = 0.293 and ¢’ = 0.420, which is again a good
estimate in view of the large amount of relative motions and the approximation
involved.

7. CONCLUDING REMARKS

The underlying assumption in the present scheme is that we are observing an
“orthographically” projected image of a moving “planar” surface of an arbitrary
shape having a “closed” contour. The proposed method has the following salient
features: (1) There is no need to seek correspondence of points, which saves
computation time. (2) All computations involve only three “features” C, 4,, and B,
measured on the plane of vision, and there is no need to retain the image itself,
which saves memory space. (3) The features are “invariant” with respect to transla-
tional motions, so that the separation of rotational motions from translational
motions is incorporated from the beginning. (4) The computation is stable with
respect to local errors, because the features are average quantities of a number of
measurements. (5) The surface orientation is given by explicit formulae, and no
iterative process is involved, which saves computation time.

A remaining problem is the accuracy, because several types of approximation are
used. The accuracy is affected by (i) accuracy of diameter measurement, (ii) the
number of orientations along which the diameter is measured, (iii) the magnitude of
high harmonics of the distribution density of the convex hull of the contour because
we consider only harmonics up to the second order, and (iv) the time interval of
measurements because we approximate derivatives by differences. Here, (i), (ii), and
(iv) are not serious problems, because they depend on implementation techniques
and their effect can be made as small as desired in principle. In contrast, (iii) is
characteristic of the surface shape itself. Hence, this scheme is most suitable for
those which have “smooth and general” convex hulls without having any corners or
special symmetries, but not for too regular shapes like circles and rectangles lacking
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a certain range of orientations at all. However, though the prediction may be poor
for those shapes, it still gives a rough estimate, since we are comparing two
distributions like those in Fig. 7 approximated up to the second order. If we want
accuracy, we can resort to the scheme of Kanatani [13] which does not involve any
assumption about the shape and hence is exact in principle. However, it fails to give
reasonable estimates when the relative motion becomes large, while the present one
gives fairly good estimates even when the relative motion is large, as is shown in our
examples. Hence, the merits and drawbacks of these two schemes are complemen-
tary, one is accurate but sensitive and the other rough but robust. Thus, the present
scheme serves many purposes if properly used and combined with other processes.
For example, it is a wise policy to make corrections now and then by using iterative
processes based on the estimates of the present scheme in order to clear the possible
accumulated errors.
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