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A mathematical formulation is presented for detecting the 3D motion of a planar surface
from the motion of its perspective image without knowing correspondence of points. The
motion is determined explicitly by numerical computation of certain line or surface integrals on
the image. The same principle is also used to know the position and orientation of a planar
surface fixed in the space by moving the camera or using several appropriately positioned
cameras, and no correspondence of points is involved. Some numerical examples are also given.
© 1985 Academic Press, Inc.

1. INTRODUCTION

Detecting the 3-dimensional motion of a surface from the motion of its projected
image is one of the most important tasks of computer vision and image processing.
Kanatani [1, 2] gave a mathematical formulation in the case of a moving planar
surface under orthographic projection. In [1], he applied a mathematical principle
called “stereology” or “integral geometry” to the texture when the surface is
textured, and in [2], he modified the theory so that the contour image alone is used.
In both cases, there is no need to know the “correspondence,” i.e., the knowledge of
“which point moves to which one,” and the motion is explicitly given in terms of a
small number of data measured on the plane of vision. Related topics and their
background are also reviewed there. However, these theories are approximate in the
sense that some regular conditions are assumed with respect to the texture or the
contour shape.

As is discussed in [2], the correspondence of points is a local characteristic and
hence is sensitive to local errors, so that a large number of correspondence pairs are
necessary and averaging processes are required to cancel out the local errors.
Moreover, the detection of correspondence is usually a time consuming process and
is sometimes impossible, especially when the figure is a curve with no edges or
corners. Also discussed in [2] is the importance of computation in terms of explicit
analytical expressions without resorting to optimization searches by iterative
processes (e.g., searching for the best matching of two images, etc.) in view of
computational time and convergence problems.

This paper extends the method in [2] to the case of perspective projection and
gives a rigorous mathematical formulation which is theoretically exact. In other
words, unlike the previous studies, no special assumptions are made on the shape of
the image. No correspondence of points is involved, either. The motion is explicitly
given by a' set of “linear” equations without requiring any iterative processes or
matching processes. In the previous two studies [1, 2], we singled out surface
rotations, but here translations are also incorporated. The entire formulation turns
out to be a special case of Amari’s theory of the invariant feature space [3, 4].
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We assume, as in [2], that the surface is planar having a closed contour, or
equivalently it can be an infinite plane on which a closed curve is drawn. Since we
are viewing the image of a closed curve alone, all relevant information must be
extracted from the curve. Here, we calculate line or surface integrals of several
functions, where integrations are executed numerically. Since they are obtained as
sums or averages of a large number of observed data, they are insensitive to local
errors in general. Then, we obtain a set of differential equations linear in motion
parameters describing the time change of these integrals. The 3-dimensional motion
is recovered by solving them. Hence, the correspondence of points or the “optical
flow” [5-7] is obtained as a result of this computation. The same principle is also
applied to determine the position and orientation of a planar surface fixed in the
space by moving the camera or equivalently using several appropriately positioned
cameras. The correspondence of points is not required, either. Some numerical
examples are also given.

2. OPTICAL FLOW INDUCED BY THREE DIMENSIONAL MOTION

Consider an xyz coordinate system in the space, and let the xy plane be the plane
of vision. Suppose the center of projection is located at (0,0, —/ ), i.e., at distance /
from the plane on the negative side of the z axis (Fig. 1). The perspective projection
projects a point (X, Y, Z) in the space to (x, y,0) on the plane, where

x=IX/(I+Z), y=IY/(+2). 2.1)

The orthographic projection is attained by taking the limit of / — oo. Suppose the
point (X, Y, Z) is on a plane whose equation is Z = pX + qY + r. Parameters 4
and g are known as the “gradients” of the plane, since p = dZ/3X and q=9dZ/4Y.
Let us call p, g, and r the “surface parameters” of the plane. Suppose the surface is
at a given instant translating with instantaneous velocity (a, b, ¢) and rotating with
instantaneous angular velocity (w,, w,, ;) about (0,0, r), the intersection between
the surface and the z axis. (Let us call a, b, c, W), W, and w; the “motion
parameters” of the plane.) The instantaneous velocity of point (X, Y, Z) becomes

dX/dt =a+ w,(Z - r) — w,Y, (2.2)
dY/dr = b+ @y, X — 0, (Z — r), (2.3)
dZ/dt =c+ 0, Y — w, X. (2.4)

In view of Eq. (2.1), this 3-dimensional motion induces a velocity field (or “optical

FiG. 1. Relationship between the spatial coordinates (X, ¥, Z) of a point and the plane coordinates
(x,y) of its perspective projection.
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flow”) u = dx/d¢ and v = dy/dt on the plane of vision in the form

_ _ 2
y= [—px—qy a->c _f}_'.wl +| px+qy + x w, — yw;, (2.5)
I+r ] ! !

=1-px—qy(b_y y?

2.\ - y- X
v 7 lc) (px+qy+ 1)w1+ g + x0;. (2.6)

If the points on the plane Z = pX + ¢qY + r move according to Egs. (2.2)—(2.4), the
surface parameters change according to

dp/dt = pgo, = (p* + 1)w;, — qus, (2.7)
dg/dt = (¢* + 1), — pqo, + pw;, (2.8)
dr/dt =c¢ — pa — gb. (2.9)

3. INTEGRAL FEATURES AND MOTION DETECTION

Suppose we have a closed curve C on the plane of vision. Consider as its
“features” various line integrals along C of the form

I= jCF(x,y)ds, (3.1)

where ds = {dx? + dy?. We must resort to numerical integration for evaluation,
and one of the simplest schemes is

N-1
1= Z F(fi’yi) As;, (3.2)
i=0
Ax; = x40y — x5, Ay, = Yier — Vs As; = \/(Axi)z +(A.Vi)2 , (33)
X = (xi + xi+l)/2? Vi= (}’i + yi+l)/2’ (34)

where (x;, ;), i =0,1,..., N — 1, are consecutive N points distributed along the
curve with sufficiently small intervals and (xy, yy) = (x4, Jp)- Of course, we could
use higher order numerical schemes; see, e.g., [8].

Suppose there is a velocity field dx/d¢ = u(x, y),dy/dt = v(x, y) on the plane
and the curve moves or “flows” according to this flow. Then, as is well known in
calculus, the time difference of the integral of Eq. (3.1) due to the flow field becomes

d7 oF oF
- fc[ux + 05

du({dx\* [du dv\dxdy  dv(dy\?
+{8x(ds) +(0x+0y)ds ds+8_y(a) }F ds. (35)

Let us use abbreviations such as F, = dF/dx, F,=dF/dy, x’=dx/ds, and
y’ = dy/ds. If we substitute Egs. (2.5) and (2.6) in Eq. (3.5), we obtain a linear
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DETECTING PLANAR SURFACE MOTION 17

immediately. If the number of equations exceeds 6, we can solve them, say, by the
least square error method, which reduces to solving a set of linear equations known
as the “normal equations.”

Step 5. The surface parameters p, ¢, and r at time ¢ + Ar are evaluated from
Egs. (2.7)-(2.9), say by

p=p+ [pqwl —(p2 + l)w2 - qw3]At, (3.13)
g’ = q+[(q*+ 1), — pge, + pwy] At (3.14)
r’=r+[c— pa+ gb]At, (3.15)

or by some higher order schemes, see, e.g., [8,9].
Step 6. p < p'.qe q’,r < r’,t < t+ At, and go back to Step 2.

Thus, we can trace the position and orientation of a plane surface, provided the
position and orientation are known initially, and no correspondence of points is
involved. Determination of the initial orientation and position is discussed later.

4. USE OF SURFACE INTEGRALS AND REDUCTION TO ORTHOGRAPHIC PROJECTION

Line integrals are not the only “features” of closed contour C. Alternatively, we
can take surface integrals over the area S enclosed by the contour curve C. Consider
a surface integral of the form

J= fSF(x,y) dxdy. (4.1)

This integral can also be evaluated numerically on the plane of vision. The scheme
may not be as simple as for line integrals, especially when the contour has an
irregular shape, but there is no essential difficulty. Moreover, this can be converted
to line integrals. Note that there always exist two functions P(x, y) and Q(x, y)
such that F(x, y) is expressed as

F(x,y)=3Q/3x — dP/dy. (4.2)

Then, due to “Green’s theorem” of vector calculus, integral (4.1) is converted to a
line integral

J = [[P(x,y)dx + Q(x, y) dy]. (43)
C

If there is a velocity field dx/d¢ = u(x, y), dy/dt = v(x, y), the surface integral of
Eq. (4.1) is transformed, as is well known in calculus, by

dJ oF dF (du dv
d_t—];[ua-'- vx+(£+W)F]dxdy

=f[ude+dex], (4.4)
c

Note that, due to Green’s theorem, we can express dJ /d as either a surface integral
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or a line integral. The subsequent procedures go in parallel with the case of line
integrals, so we omit the details.

So far, all the formulations have been based on perspective projection. As was
mentioned earlier, they are reduced to the case of orthographic projection by taking
the limit of / = oo. The induced 2-dimensional flow becomes

u=a+(px+ qy)w, - yus, (4.5)
v=>b—(px+ gy)w, + xuw;,. (4.6)

If we let I = oo, C; of Eq. (3.9) vanishes and hence ¢ cannot be determined, which
is obvious for the orthographic projection (¢ does not appear in Egs. (4.5) and (4.6)).
However, a, b, w,, w,, and w,; can be determined by the same procedure, and the
orientation of the surface is traced by using Egs. (2.7) and (2.8). (An alternative
method is described in [2].)

5. DETERMINATION OF SURFACE PARAMETERS BY MOVING THE CAMERA

The method discussed so far traces the motion of a planar surfaces by detecting
the translational and rotational velocities successively. This type of trace requires
known initial conditions. Apparently, it is impossible to know the position and
orientation of a surface only from a single image. One way to circumvent this
difficulty is application of “stereoscopic” or “binocular” vision. This usually re-
quires the knowledge of point correspondence, but our principle provides us with a
scheme without it. Suppose a planar surface is fixed in the space and the camera can
move instead. The motion of the camera causes effects equivalent to the motion of
the surface in the opposite direction. Hence, we obtain the following procedure.

Step 1. Give an appropriate function F(x, y) and consider the corresponding
feature 7 of Eq. (3.1)

Step 2. Move the camera along the x, y, and z axes with its orientation fixed
and observe C,, C,, and C; of Eq. (3.6) directly. For example, suppose the camera
moves along the x-axis by Aa and we observe the difference of AT of feature I on the
plane of vision. Then, C, is evaluated by —AI/Aa if Aa is small. (Note that the
plane moves by —Aa relative to the camera). Of course, we could also use higher
order schemes using several data observed along the camera motion (see, e.g., [8, 9]).

Step 3. Compute the surface parameters p, g, and r by regarding Egs. (3.7), (3.8),
and (3.9) as a set of simultaneous equations with p, ¢, and r unknowns. First, p
and ¢ are given by solving simultaneous equations

a; aun||p b,
[“21 “22][q]=[”2] (1)

a,; = 1C3fc[xe + x’zF] ds

where

+ le [szx + xpF, + (2xx? + yx'y’ + xy'z)F] ds, (5.3)
c
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a1y = IC3fC[ny + x’y’F| ds

+ clf [xyF, + y2F, +(yx? + xx'y’ + 2yy?) F| ds, (5.4)
C

ay = IC3fC[xF;, + x'y’F| ds
+c2f [x2F, + xyF, +(2xx™ + yx'y’ + xp*)F| ds, (5.5)
C

ay = 1C3fC[yFy +y’2F] ds

+C2f [xny + p2F, +(yx? + xxy’ + 2yy’2)F] ds, (5.6)
C
b, = I(IC,fF;ds + CII[xe + yF, + F| ds), (5.7)
C C
b, = 1(1c3fCFyds + G, [ [xF, + yF, + F] ds). (5.8)
C

Then, r is obtained by substituting p and ¢ in one of Egs. (3.7),(3.8), and (3.9).

The same process is possible if a surface integral is used. In practice, however, a
number of different features should be taken to determine the surface parameters p,
g, and r, say, by the least square error method. Here, the camera is moved in three
different directions, but it is possible in principle to do the same thing by moving it
in only one direction, say along the x axis, and measuring three or more different
features. However, this does not seem suitable in view of error sensitivity and
possible degeneracy of the equations. In the above, we used the expression “moving
the camera” to emphasize the relationship completely dual to the motion of the
plane. Of course, we need not move anything if we have an appropriate number of
cameras suitable positioned beforehand. This is a more realistic situation, and data
are obtained simultaneously and processed in one stage.

7. DISCUSSIONS AND NUMERICAL EXAMPLES

Several problems remain in actual implementation. In order to use line or surface
integrals as features, we must choose an appropriate set of 6 or more integrand
functions. They should be at least linearly independent, but it is not a sufficient
condition. They should be such that the rates of change of the corresponding
features are linearly independent with respect to motion parameters. In other words,
if we regard the Cs of Eqs. (3.7)-(3.12) as a vector (C,, C,, C;, C,, C;, C), we have as
many vectors as the integrands we choose. These vectors must contain at least 6
linearly independent ones, but the necessary and sufficient condition for it has not
yet been known. Moreover, the determinant of the matrix composed of those 6
independent vectors must be as large as possible from the viewpoint of computa-
tional stability. At present, however, not much is known about the favorable choice
of the features.

Figure 2 shows a synthetic image C of a moving planar surface at time ¢ and C’ at
t + At a short time later. The surface parameters are p = —0.30, ¢ = —1.71 and
r/l = 1.00. We can determine the motion parameters a, b, ¢, w,, w,, and w; by
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FiG. 2. A perspective image of a planar surface contour at one time C and its image a short time
later C”.
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FiG. 3. The optical flow computed from the contour motion of Fig. 2. The correspondence of points is
obtained as a result.

adopting, say, x, y, x2, xy, y2, and x2y? as the integrands for line integrals, and
the orientation and position of C”’ is obtained from Eqgs. (3.13)-(3.15). Taking 72
points on each curve and executing numerical computation, we obtained aAt/! =
0.027, bAt/l = 0.027, cAt/l = 0.046, w, At = 0.031, w, At = 0.031, and w;Ar =
0.027, while the true values are 0.03,0.03, 0.05, 0.03, 0.03, and 0.03, respectively. The
computed orientation and position of C’ become p = —0.27, ¢ = —1.61, and
r/1 = 1.10, while the true values are p = —0.17, ¢ = —1.61, and r// = 1.11. This is
a very good result in view of the rough scheme of computation. Figure 3 shows the
computed “optical flow” of the motion in Fig. 2. (The true optical flow is not drawn,
since the difference is very small on the figure.) Thus, the correspondence of points is
computed as a consequence. Theoretically, the accuracy increases as more points are

F1G. 4. The image C of Fig. 2 (dashed) and images of the same surface from different viewpoints
(solid). The camera is displaced (a) leftwards, (b) downwards, and (c) away from the surface.
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taken on the curves, observations are made at shorter time intervals and higher order
schemes are used.

The surface parameters of a fixed plane surface are determined by moving the
camera. Figure 4 shows simulated motions of the image when the camera is
displaced (a) leftward, (b) downward, and (c) away from the surface. (It is the same
surface of Fig. 2, so that p = —0.30, ¢ = —1.71, and r/! = 1.00.) Taking 72 points
on each curve and using the curve length f.ds as the feature, we obtained
p= —036, g = —1.93, and r/I = 1.22, a fairly good result. The accuracy increases
if we take smaller values of Aa, Ab, and Ac (as long as the measurement is accurate)
or higher order schemes are used. For example, if we make each of Aa, Ab, and Ac a
tenth the above, obtain p = —0.30, ¢ = —1.73, and r// = 1.02.

8. CONCLUSIONS

The principle of motion detection discussed in this paper has salient characteris-
tics. First, no correspondence of points is required. Second, all we have to do is solve
a set of “linear” equations and no iterative search is involved. Third, once we have
computed line or surface integrals as the features, we do not have to retain the image
in the memory. Only the computed values of the integrals must be stored, because
we never compare two images to seek any kind of matching. Fourth, integrals are
computed as sums or averages of a large number of observed data, so that the use of
integrals as features is insensitive to local errors in general.

It is true that, if correspondence happens to be available easily, we should make
use of that information. Indeed, we should combine all available information. For
example, since the tracing of motion is performed successively, small errors in each
stage may accumulate in the course of time. Hence, it is a wise policy to transform
now and then the original image to the one predicted by the computation and check
if there is any significant discrepancy between the present image and the computed
one, making corrections if necessary. On the other hand, the accuracy of detection
increases as the difference of the images become smaller. If the difference is large,
one may first predict the motion by our method as a first approximation, transform
the first image according to the computed motion and compare it with the second
one. The difference should be smaller, so that one can add a more precise correction
this time. If it is still unsatisfactory, the procedure is repeated.

In this way, our method shows its merit when combined or used to supplement
other measurements. We presented in this paper only synthetic examples, because
the performance of our method is greatly affected by many additional techniques,
which also include the extraction of surface contours and the method of numerical
computation, in particular the use of higher order schemes (see, e.g., [10, 11] for
analyses of numerical schemes and errors). Various modifications and variations of

our method are possible depending on the apparatus used and the purpose of the
analysis.
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