
VIDEO IMAGE SEQUENCE ANALYSIS:

ESTIMATING MISSING DATA

AND SEGMENTING MULTIPLE MOTIONS

KEINCHI KANATANI AND YASUYUKI SUGYA

Department of Computer Science

Okayama University, Okayama 700-8530 Japan

Abstract. We discuss two issues of video processing based on our recent results:
missing data estimation and multiple motion segmentation. We first show that for
a rigidly moving scene we can reliably extend interrupted feature point tracking by
imposing a geometric constraint based on the affine camera modeling. For scenes
of multiple motions, many techniques have been proposed for segmenting moving
objects into individual motions. However, many methods perform very poorly for
real video sequences. We resolve this mystery by analyzing the geometric struc-
ture of the degeneracy of the motion model, which leads to a new segmentation
algorithm. We demonstrate its effectiveness, using real video images.
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16.1. Introduction

Video processing is one of the central topics for media technology today,
and tracking feature points through the image sequence is a first step of
many applications including 3-D reconstruction. Here, we discuss two issues
in this respect based on our recent results (Sugaya and Kanatani, 2004a;
Sugaya and Kanatani 2004b).
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The first issue is missing data: Feature point tracking fails when the
points go out of the field of view or behind other objects. Many techniques
have been proposed to estimate the missing data (Brandt, 2002; Jacobs,
2001; Saito and Kamijima, 2003; Tomasi and Kanade, 1992), but most
of them are based on tentative 3-D reconstruction from sampled frames,
assuming that they are correct. Here, we describe a more reliable scheme
which integrates extrapolation and outlier removal. The procedure is based
on (Sugaya and Kanatani, 2004a).

The second issue is multiple motion segmentation for classifying feature
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point trajectories into independent motions. For this task, too, many tech-
niques have been proposed (Chen and Suter, 2004; Costeira and Kanade,
1998; Gear, 1998; Ichimura, 1999; Ichimura, 2000; Inoue and Urahama,
2001; Kanatani, 2001; Kanatani, 2002a; Kanatani, 2002b; Park et al., 2004;
Vidal and Ma, 2004, Vidal and Hartley, 2004; Wu et al., 2001). According
to our experiments, however, many methods that exhibit high accuracy
in simulations perform rather poorly for real video sequences. We show
that this inconsistency is caused by the degeneracy of the motion model on
which the segmentation is based. This finding leads to a new segmentation
algorithm described in (Sugaya and Kanatani, 2004b). We demonstrate its
effectiveness, using real video images.

This paper is organized as follows. Section 2 summarizes the geometric
constraints. Section 3 describes our outlier removal procedure. Section 4
describes how we extend partial trajectories. In Section 5, we show real
video examples of trajectory extension. In Section 6, we describe our prin-
ciple of multiple-motion segmentation. In Section 7, we analyze the degen-
eracy of motion model. Section 8 describes our segmentation algorithm. In
Section 9, we show real video examples. Section 10 concludes this paper.

16.2. Geometric Constraints

Our method is based on the geometric constraints described in (Chen and
Suter, 2004; Debrunner and Ahuja, 1998; Huynh et al., 2003; Irani, 2002;
Kanatani, 2001; Kanatani, 2002a; Kanatani, 2002b; Kanatani and Sugaya,
2004; Sugaya and Kanatani, 2002a; Sugaya and Kanatani, 2002b; Sugaya
and Kanatani, 2003; Sugaya and Kanatani, 2004a; Sugaya and Kanatani,
2004b). Suppose we track N feature points over M frames. Let (xκα, yκα)
be the coordinates of the αth point in the κth frame. We stack all the
coordinates vertically and represent the entire trajectory by the following
2M -D trajectory vector :

pα =
(

x1α y1α x2α y2α · · · xMα yMα

)>
. (1)

For convenience, we identify the frame number κ with “time” and refer to
the κth frame as “time κ”.

We regard the XY Z camera coordinate system as a reference, relative
to which the scene is moving. Consider a 3-D coordinate system fixed to
the scene, and let tκ and {iκ, jκ, kκ} be, respectively, its origin and basis
vectors at time κ. Let (aα, bα, cα) be the coordinates of the αth point with
respect to this coordinate system. Its position with respect to the reference
frame at time κ is

rκα = tκ + aαiκ + bαjκ + cαkκ. (2)
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We assume an affine camera, which generalizes orthographic, weak
perspective, and paraperspective projections (Kanatani and Sugaya, 2004;
Poelman and Kanade, 19): the 3-D point rκα is projected onto the image
position (

xκα

yκα

)
= Aκrκα + bκ, (3)

where Aκ and bκ are, respectively, a 2 × 3 matrix and a 2-D vector de-
termined by the position and orientation of the camera and its internal
parameters at time κ. Substituting Equation (2), we have

(
xκα

yκα

)
= m̃0κ + aαm̃1κ + bαm̃2κ + cαm̃3κ, (4)

where m̃0κ, m̃1κ, m̃2κ, and m̃3κ are 2-D vectors determined by the position
and orientation of the camera and its internal parameters at time κ. From
Equation (4), the trajectory vector pα in Equation (1) can be written in
the form

pα = m0 + aαm1 + bαm2 + cαm3, (5)

where m0, m1, m2, and m3 are the 2M -D vectors obtained by stacking
m̃0κ, m̃1κ, m̃2κ, and m̃3κ vertically over the M frames, respectively.

Equation (5) implies that all the trajectories are constrained to be in the
4-D subspace spanned by {m0, m1, m2, m3}. In addition, the coefficient
of m0 in Equation (5) is identically 1 for all α. This means that the
trajectories are in the 3-D affine space within that 4-D subspace (Kanatani,
2002b).

16.3. Outlier Removal

Before extending partial trajectories, we must remove incorrectly tracked
trajectories, or “outliers”, from among observed complete trajectories. For
this, we adopt the method described in (Sugaya and Kanatani, 2003), which
also discusses problems about the approach in (Huynh and Heyden, 2001).
Let n = 2M , where M is the number of frames, and let {pα}, α = 1, ...,
N , be the observed complete n-D trajectory vectors. The procedure is as
follows (Sugaya and Kanatani, 2003):

1. Randomly choose four vectors q1, q2, q3, and q4 from among {pα}.
2. Compute the n× n (second-order) moment matrix

M3 =
4∑

i=1

(qi − qC)(qi − qC)>, (6)

where qC is the centroid of {q1, q2, q3, q4}.
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Figure 16.1 . Removing outliers by fitting a 3-D affine space.

3. Let λ1 ≥ λ2 ≥ λ3 be the three eigenvalues of the matrix M3, and
{u1, u2, u3} the orthonormal system of corresponding eigenvectors.

4. Compute the following n× n projection matrix (I denotes the n× n
unit matrix):

P n−3 = I −
3∑

i=1

uiu
>
i . (7)

5. Let S be the number of points pα that satisfy

‖P n−3(pα − qC)‖2 < (n− 3)σ2, (8)

where σ is an estimate of the noise standard deviation.
6. Repeat the above procedure a sufficient number of times (we stopped

if S did not increase for 200 consecutive iterations), and determine
the projection matrix P n−3 that maximizes S.

7. Remove those pα that satisfy

‖P n−3(pα − qC)‖2 ≥ σ2χ2
n−3;99, (9)

where χ2
r;a is the ath percentile of the χ2 distribution with r degrees

of freedom.

The term ‖P n−3(pα − qC)‖2, called the residual , is the squared distance
of point pα from the fitted 3-D affine space. We assume that the noise
in the coordinates of the feature points is an independent Gaussian ran-
dom variable of mean 0 and standard deviation σ. Then, the residual
‖P n−3(pα − qC)‖2 divided by σ2 should be subject to a χ2 distribution
with n− 3 degrees of freedom with expectation (n− 3)σ2. The above pro-
cedure effectively fits a 3-D affine space that maximizes the number of the
trajectories whose residuals are smaller than (n − 3)σ2. Then, we remove
those trajectories which cannot be regarded as inliers with significance level
1% (Figure 16.1). We have confirmed that σ = 0.5 is a reasonable value
(Sugaya and Kanatani, 2003).
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16.4. Trajectory Extension

After removing outlier trajectories, we optimally fit a 3-D affine space to
the resulting inlier trajectories. Let {pα}, α = 1, ..., N , be their trajectory
vectors. We first compute their centroid and the (second-order) moment
matrix

pC =
1
N

N∑

α=1

pα, M =
N∑

α=1

(pα − pC)(pα − pC)>. (10)

Let λ1 ≥ λ2 ≥ λ3 be the largest three eigenvalues of the matrix M , and
{u1, u2, u3} the orthonormal system of corresponding eigenvectors. The
optimally fitted 3-D affine space is spanned by the three vectors of u1, u2,
and u3 starting from pC .

If the αth point can be tracked only over κ of the M frames, its trajec-
tory vector pα has n− k unknown components (k = 2κ). We partition the
vector pα into the k-D part p

(0)
α consisting of the k known components and

the (n− k)-D part p
(1)
α consisting of the remaining n− k unknown compo-

nents. Similarly, we partition the centroid pC and the basis vectors {u1,
u2, u3} into the k-D parts p

(0)
C and {u(0)

1 , u
(0)
2 , u

(0)
3 } and the (n− k)-D

parts p
(1)
C and {u(1)

1 , u
(1)
2 , u

(1)
3 } in accordance with the division of pα.

We first test if each of the partial trajectories is sufficiently reliable. Let
pα be a partial trajectory vector. If image noise does not exist, the deviation
of pα from the centroid pC should be expressed as a linear combination of
u1, u2, and u3. Hence, there should be constants c1, c2, and c3 such that

p(0)
α − p

(0)
C = c1u

(0)
1 + c2u

(0)
2 + c3u

(0) (11)

for the known part. In the presence of image noise, this equality does not
hold. If we let U (0) be the k × 3 matrix consisting of u

(0)
1 , u

(0)
2 , and u

(0)
3

as its columns, Equation (11) is replaced by

p(0)
α − p

(0)
C ≈ U (0)c, (12)

where c is the 3-D vector consisting of c1, c2, and c3. Assuming that k ≥
3, we estimate the vector c by least squares in the form

ĉ = U (0)−(p(0)
α − p

(0)
C ), (13)

where U (0)− is the generalized inverse of U (0). It is computed by

U (0)− = (U (0)>U (0))−1U (0)>. (14)
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The residual, i.e., the squared distance of point p
(0)
α from the 3-D affine

space spanned by {u(0)
1 , u

(0)
2 , u

(0)
3 } is ‖p(0)

α − p
(0)
C − U (0)ĉ‖2. Under our

noise model, the residual ‖p(0)
α − p

(0)
C − U (0)ĉ‖2 divided by σ2 should be

subject to a χ2 distribution with k−3 degrees of freedom. Hence, we regard
those trajectories that satisfy

‖p(0)
α − p

(0)
C −U (0)ĉ‖2 ≥ σ2χ2

k−3;99 (15)

as outliers with significance level 1%.
The unknown part p

(1)
α is estimated from the constraint implied by

Equation (11), namely

p(1)
α − p

(1)
C = c1u

(1)
1 + c2u

(1)
2 + c3u

(1) = U (1)c, (16)

where U (1) is the (n− k)× 3 matrix consisting of u
(1)
1 , u

(1)
2 , and u

(1)
3 as its

columns. Substituting Equation (13) for c, we obtain

p̂(1)
α = p

(1)
C + U (1)U (0)−(p(0)

α − p
(0)
C ). (17)

Evidently, this is an optimal estimate in the presence of Gaussian noise.
However, the underlying affine space is computed only from a small number
of complete trajectories; no information contained in the partial trajectories
is used, irrespective of how long they are. So, we also incorporate partial
trajectories in the following manner.

Note that if three components of pα are specified, one can place it,
in general, in any 3-D affine space by appropriately adjusting the remain-
ing n − 3 components. In view of this, we introduce the “weight” of the
trajectory vector pα with k known components in the form

Wα =
k − 3
n− 3

. (18)

Let N be the number of all trajectories, complete or partial, inliers or
outliers. The optimization goes as follows:

1. Set the weights Wα of those trajectories, complete or partial, that
are so far judged to be outliers to 0. All other weights are set to the
value in Equation (18).

2. Fit a 3-D affine space to all the trajectories. The procedure is the same
as before except that Equations (10) are replaced by the weighted
centroid and the weighted moment matrix

pC =
∑N

α=1 Wαpα∑N
α=1 Wα

, M =
N∑

α=1

Wα(pα − pC)(pα − pC)>. (19)
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3. Test each trajectory if it is an outlier, using Equation (15).
4. Estimate the unknown parts of the inlier partial trajectories, using

Equation (17).

These four steps are iterated until the fitted affine space converges. In
the course of this optimization, trajectories once regarded as outliers may
be judged to be inliers later, and vice versa. In the end, inlier partial
trajectories are optimally extended with respect to the affine space that is
optimally fitted to all the complete and partial inlier trajectories.

The iterations may not converge if the initial guess is very poor or a
large proportion of the trajectories are incorrect. However, this did not
happen in any of our experiments using real video sequences.

We need at least three complete trajectories for guessing the initial
affine space. If no such trajectories are given, we may use the method
of Jacobs (Jacobs, 2001), but it is much more practical to segment the
sequence into overlapping blocks, extending partial trajectories over each
block, and connecting the blocks.

16.5. Experiments

Figure 16.2(a) shows five decimated frames from a 50 frame sequence
(320×240 pixels) of a static scene taken by a moving camera. We detected
200 feature points and tracked them using the Kanade-Lucas-Tomasi algo-
rithm (Tomasi and Kanade, 1991). When tracking failed at some frame,
we restarted the tracking after adding a new feature point in that frame.
In the end, we obtained 29 complete trajectories, of which 11 are regarded
as inliers by the procedure described in Section 3. The marks 2 in Figure
16.2(a) indicate their positions; Figure 16.2(b) shows their trajectories.

Using the affine space they define, we extended the partial trajectories
and optimized the affine space and the extended trajectories. The optimiza-
tion converged after 11 iterations, resulting in the 560 inlier trajectories
shown in Figure 16.2(c). The computation time for this optimization was
134 seconds. We used Pentium 4 2.4B GHz for the CPU with 1 GB main
memory and Linux for the OS. Figure 16.2(d) is the extrapolated image of
the 33th frame after missing feature positions are restored: using the 180
feature points visible in the first frame, we defined triangular patches, to
which the texture in the first frame is mapped. We reconstructed the 3-D
shape by factorization based on weak perspective projection (Kanatani and
Sugaya, 2004) (Figure 16.2(e)); see (Sugaya and Kanatani, 2004a) for more
experiment results.
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(a)

(b) (c)

(d) (e)

Figure 16.2. (a) Five decimated frames from a 50 frame sequence and 11 points
correctly tracked throughout the sequence. (b) The 11 complete inlier trajectories.
(c) The 560 optimal extensions of the trajectories. (d) The extrapolated texture-
mapped image of the 33th frame. (e) The reconstructed 3-D shape.

16.6. Multiple Motion Segmentation

So far, we have regarded the observed trajectories as points undergoing a
single rigid motion. We now consider the case in which multiple motions
exist.

Equation (5) states that the trajectory vectors of points that belong
to one object are constrained to be in the 4-D subspace spanned by {m0,
m1, m2, m3}. Hence, multiple moving objects can be segmented into
individual motions by separating the trajectories vectors {pα} into distinct
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4-D subspaces. This is the principle of the method of subspace separation
(Kanatani, 2001; Kanatani, 2002a).

Equation (5) also states that the trajectory vectors of points that be-
long to one object are constrained to be in a 3-D affine space within that
4-D subspace. Hence, multiple moving objects can be segmented into indi-
vidual motions by separating the trajectory vectors {pα} into distinct 3-D
affine spaces. This is the principle of the method of affine space separation
(Kanatani, 2002b).

Theoretically, the segmentation accuracy should be higher if we use
stronger constraints. For real video sequences, however, we have found
that the affine space separation accuracy is often lower than that of the
subspace separation (Sugaya and Kanatani, 2002a; Sugaya and Kanatani,
2002b). We will resolve this inconsistency in shortly.

As in the case of a single motion, we first need to remove outlier trajec-
tories. If the trajectories were segmented into individual classes, we could
apply the method of Section 3 to each motion separately. In the presence
of outliers, however, we cannot do correct segmentation, and hence we do
not know the affine spaces.

This difficulty can be resolved if we note that if the trajectory vectors
{pα} belong to m d-D subspaces, they should be constrained to be in a
dm-D subspace and if they belong to m d-D affine spaces, they should be
in a ((d + 1)m− 1)-D affine space. So, we robustly fit a dm-D subspace
or a ((d + 1)m− 1)-D affine space to {pα} by RANSAC and remove those
that do not fit to it. We observed that all apparent outliers were removed
by this method, although some inliers were also removed for safety (Sugaya
and Kanatani, 2003).

16.7. Structure of Degeneracy

The motions we most frequently encounter are such that the objects and
the background are translating and rotating 2-dimensionally in the image
frame with varying sizes. For such a motion, we can choose the basis
vector kκ in Equation (2) in the Z direction (the camera optical axis is
identified with the Z-axis). Under the affine camera model, motions in the
Z direction do not affect the projected image except for its size. Hence, the
term cαm̃3κ in Equation (4) vanishes; the scale changes are absorbed by the
scale changes of m̃1κ and m̃2κ over time κ. It follows that the trajectory
vector pα in Equation (5) belongs to the 2-D affine space passing through
m0 and spanned by m1 and m2 (Sugaya and Kanatani, 2002a; Sugaya and
Kanatani, 2002b).

If, in addition, the objects and the background do not rotate, we can fix
the basis vectors iκ and jκ in Equation (2) to be in the X and Y directions,
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(a) (b)

Figure 16.3. (a) If the motions of the objects and the background are degenerate,
their trajectory vectors belong to mutually parallel 2-D planes. (b) The data dis-
tributions inside the individual 2-D planes are modeled by Gaussian distributions.

respectively. Thus, the basis vectors iκ and jκ are common to all objects
and the background, so the vectors m1 and m2 in Equation (5) are also
common. Hence, the 2-D affine spaces, or planes, of all the motions are
parallel (Sugaya and Kanatani, 2004b) (Figure 16.3(a)).

Note that parallel 2-D planes can be included in a 3-D affine space.
Since the affine space separation method attempts to segment the trajecto-
ries into different 3-D affine spaces, it does not work if the objects and the
background undergo this type of degenerate motions. This explains why
the accuracy of the affine space separation is not as high as expected for
real video sequences.

16.8. Degeneracy-tuned Learning

We now describe a learning procedure tuned to the parallel 2-D plane de-
generacy (Sugaya and Kanatani, 2004b). First, we model the data distri-
butions inside the individual 2-D planes by Gaussian distributions (Figure
16.3(b)). As before, we let n = 2M . Suppose N n-D trajectory vectors
{pα} are already classified into m classes by some means. Initially, we
define the weight W

(k)
α of the vector pα by

W (k)
α =

{
1 if pα belongs to class k
0 otherwise

. (20)

Then, we iterate the following procedures A, B, and C in turn until all the
weights {W (k)

α } converge (we stopped the iterations when the increments
in W

(k)
α are all smaller than 10−10).

A. Do the following computation for each class k = 1, ..., m.
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1. Compute the fractional size w(k) and the centroid p
(k)
C of the class k:

w(k) =
1
N

N∑

α=1

W (k)
α , p

(k)
C =

∑N
α=1 W

(k)
α pα∑N

α=1 W
(k)
α

. (21)

2. Compute the n× n moment matrix M (k):

M (k) =
∑N

α=1 W
(k)
α (pα − p

(k)
C )(pα − p

(k)
C )>

∑N
α=1 W

(k)
α

. (22)

B. Do the following computation.

1. Compute the total n× n moment matrix

M =
m∑

k=1

w(k)M (k). (23)

2. Let λ1 ≥ λ2 be the largest two eigenvalues of the matrix M , and u1

and u2 the corresponding unit eigenvectors.
3. Compute the common n× n projection matrices:

P =
2∑

i=1

uiu
>
i , P⊥ = I − P . (24)

4. Estimate the noise variance in the direction orthogonal to all the
affine spaces by

σ̂2 = max[
tr[P⊥MP⊥]

n− 2
, σ2], (25)

where tr[ · ] denotes the trace and σ is an estimate of the tracking
accuracy. As before we used the value σ = 0.5 (pixels).

5. Compute the n× n covariance matrix of the class k by

V (k) = PM (k)P + σ̂2P⊥. (26)

C. Do the following computation for each trajectory vector pα , α = 1, ...,
N .

1. Compute the conditional likelihood P (α|k), k = 1, ..., m, by

P (α|k) =
e−(pα−p(k)

C ,V (k)−1
(pα−p(k)

C ))/2

√
det V (k)

. (27)
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2. Recompute the weights {W (k)
α }, k = 1, ..., m, by

W (k)
α =

w(k)P (α|k)∑m
l=1 w(l)P (α|l) . (28)

After the iterations of A, B, and C have converged, the αth trajectory is
classified into the class k that maximizes W

(k)
α , k = 1, ..., N .

In the above iterations, we fit 2-D planes of the same orientation to
all classes by computing the common basis vectors u1 and u2 from all
the data. We also estimate a common outside noise variance from all the
data. Regarding the fraction w(k) (the first of Equations (21)) as the a
priori probability of the class k, we compute the probability P (α|k) of
the trajectory vector pα conditioned to be in the class k (Equation (27);
common multipliers that will cancel out in Equation (28) are omitted).
Then, we apply Bayes’ theorem (Equation (28)) to compute the a posterior
probability W

(k)
α , according which all the trajectories are reclassified. Note

that W
(k)
α is generally a fraction, so one trajectory belongs to multiple

classes with fractional weights until the final classification is made.
This type of unsupervised learning (Schlesinger, 1968; Schlesinger and

Hlaváč, 2002) (mathematically equivalent to the EM algorithm (Dempster
et al., 1977)) is widely used for clustering. However, the iterations are very
likely to be trapped at a local maximum. So, correct segmentation cannot
be obtained by this type of iterations alone unless we start from a very
good initial value.

16.9. Multi-stage Learning

If we know that degeneracy exists, we can apply the above procedure for
improving the segmentation. However, we do not know if degeneracy exists.
If the trajectories were segmented into individual classes, we might detect
degeneracy by checking the dimensions of the individual classes, but we
cannot do correct segmentation unless we know whether or not degeneracy
exists.

We resolve this difficulty by the following multi-stage learning (Sugaya
and Kanatani, 2004b). First, we use the affine space separation assuming
2-D affine spaces, which effectively assumes planar motions with varying
sizes. For this, we use the Kanatani’s method (Kanatani, 2002), which
combines the shape interaction matrix of Costeira and Kanade (Costeira
and Kanade, 1998), model selection by the geometric AIC (Kanatani, 1998),
and robust estimation by LMedS (Rousseeuw and Leroy, 1987). Then, we
optimize the resulting segmentation by using the parallel plane degeneracy
model, as described in the preceding section.
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The resulting solution should be very accurate if such a degeneracy
really exists. However, rotations may exist to some extent. So, we relax
the constraint and optimize the solution again by using the general 3-D
motion model. This is motivated by the fact that if the motions are really
degenerate, the solution optimized by the degenerate model is not affected
by the subsequent optimization, because the degenerate constraints also
satisfy the general constraints.

In sum, our scheme consists of the following three stages:

1. Initial segmentation by the affine space separation using 2-D affine
spaces.

2. Unsupervised learning using the parallel 2-D plane degeneracy model.
3. Unsupervised learning using the general 3-D motion model.

The last stage is similar to the second except that 3-D affine spaces are
separately fitted to individual classes. The outside noise variance is also
estimated separately for each class; see (Sugaya and Kanatani, 2004b) for
the actual procedure.

Here, we assume that the number m of motions is specified by the
user. For example, if a single object is moving in a static background,
both moving relative to the camera, we have m = 2. Many studies have
been done for estimating the number of motions automatically (Costeira
and Kanade, 1998; Gear, 1998; Inoue and Urahama, 2001), but none of
them seems successful enough. This is because the number of motions is
not well-defined (Kanatani, 2002a): one moving object can also be viewed
as multiple objects moving similarly, and there is no rational way to unify
similarly moving objects into one from motion information alone, except
using heuristic thresholds or ad-hoc criteria. If model selection such as the
geometric AIC (Kanatani, 1998) and the geometric MDL (Kanatani, 2004)
is used, the resulting number of motions depends on criteria (Kanatani,
2002a). In order to determine the number m of motions, one needs high-
level processing using color, shape, and other information.

16.10. Real Video Experiments

Figure 16.4 shows five decimated frames from three video sequences A, B,
and C (320× 240 pixels). For each sequence, we detected feature points in
the initial frame and tracked them using the Kanade-Lucas-Tomasi algo-
rithm (Tomasi and Kanade, 1991). The marks 2 indicate their positions.

Table 16.1 lists the number of frames, the number of inlier trajectories,
and the computation time for our multi-stage learning. The computation
time is reduced by compressing the trajectory data into 8-D vectors (Sugaya
and Kanatani, 2002a). We used Pentium 4 2.4GHz for the CPU with
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A:

B:

C:

Figure 16.4. Three video sequences and successfully tracked feature points.

TABLE 16.1. The computation time
for the multi-stage learning of the se-
quences in Figure 16.4.

A B C

# of frames 30 17 100
# of points 136 63 73

CPU time (sec) 2.50 0.51 1.49

1GB main memory and Linux for the OS. Table 16.2 lists the accuracies of
different methods (“opt” stands for “optimized”) measured by (the number
of correctly classified points)/(the total number of points) in percentage.

As we can see, the Costeira-Kanade method fails to produce meaningful
segmentation. Ichimura’s method is effective for sequences A and B but not
so effective for sequence C. For sequence A, the affine space separation is
superior to the subspace separation. For sequence B, the two methods have
almost the same performance. For sequence C, the subspace separation
is superior to the affine space separation, suggesting that the motion in
sequence C is nearly degenerate. For all the three sequences, our multi-
stage learning achieves 100% accuracy.

16.11. Concluding Remarks

We discussed two issues of video processing, missing data estimation and
multiple motion segmentation, based on our recent results (Sugaya and
Kanatani, 2004a; Sugaya and Kanatani, 2004a; Sugaya and Kanatani,
2004b).
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TABLE 16.2. Segmentation accuracy
(%) for the sequences in Figure 16.4.

A B C

Costeira-Kanade 60.3 71.3 58.8
Ichimura 92.6 80.1 68.3
subspace separation 59.3 99.5 98.9
affine space separation 81.8 99.7 67.5

opt. subspace separation 99.0 99.6 99.6
opt. affine space separation 99.0 99.8 69.3
multi-stage learning 100.0 100.0 100.0

First, we described our method for extending interrupted feature point
tracking (Sugaya and Kanatani, 2004a). We alternate optimal extension
of the trajectories and optimal estimation of the affine space. To increase
robustness, we test the reliability of the extended trajectories in every step
and remove those judged to be outliers.

Next, we studied multiple motion segmentation. Our analysis of the
geometric structure of the degeneracy of the motion model leads to a spe-
cial type of degeneracy, which results in the multi-stage learning scheme
described in (Sugaya and Kanatani, 2004b). We demonstrated its effec-
tiveness, using real video images.

The source codes of the programs we used are available at:
http://www.suri.it.okayama-u.ac.jp/e-program.html.
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