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ABSTRACT

We describe an algorithm for decomposing a fundamen-
tal matrix computed from point correspondences over two
images into the focal lengths of the two images and the
camera motion parameters in a closed-form expression.
Our algorithm is based on the decomposability condition of
the essential matrix expressed in terms of its scalar invari-
ants. We give a complete analysis for degenerate camera
configurations. We also describe an algorithm for comput-
ing a single focal length in the degenerate case and analyze
the indeterminacy condition.
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self-calibration, focal length, invariant, polynomial
system, degenerate configuration.

1. INTRODUCTION

In reconstructing the 3-D structure from point cor-
respondences over two images taken by two uncali-
brated cameras, all available information is encoded
in the fundamental matriz F if no prior knowledge is
available about the scene [3, 18]. Since F' is a singu-
lar matrix of rank 2 defined up to scale, it has seven
degrees of freedom. The relative motion of the two
cameras are specified by a translation vector ¢ and
a rotation matrix R. Since the absolute scale of the
translation is indeterminate, the motion parameters
{t, R} have five degrees of freedom. It follows that
only up to two camera parameters can be recovered if
the camera motion is arbitrary.

A practical choice for the two parameters is the
focal lengths f and f' of the two cameras, since
other parameters can be pre-calibrated and fixed while
zooming usually changes freely as the camera moves.
Strictly speaking, the principal point (the intersection
of the optical axis with the image plane) may slightly
move as zooming changes, but regarding it as a fixed
point is known to be a good approximation. Once
we have obtained the focal lengths f and f' and the
motion parameters {¢, R}, the 3-D structure of the
scene can be reconstructed up to scale by triangula-
tion [9, 10].

Hartley [5] presented an analytic procedure for com-
puting the focal lengths f and f’ from the fundamental
matrix F. The solution is obtained by applying the
singular value decomposition (SVD) and solving linear
equations in four unknowns. Pan et al. [16, 17] reduced
this problem to solving cubic equations. Newsam et
al. [15] refined these algorithms into a combination of
SVD and linear equations in three unknowns. They
also derived the degeneracy condition for the solution
to be indeterminate. Bougnoux [1] presented a closed-
form formula for f in terms of the fundamental matrix
F and the epipoles e and e’ (eigenvectors of F7 and
F, respectively, for eigenvalue 0) (see Appendix A).
In this paper, we present a closed-form expression for

the focal lengths f and f in terms of the elements of
the fundamental matriz F alone: it does not involve
SVD, linear equations, or epipoles.

The significance of this paper is mostly theoretical,
since all the algorithms produce exactly the same so-
lution for the same input. The intuition that leads to
our algorithm is group-theoretical invariance [8]: if an
algorithm for computing f and f' from F is to ex-
ist, the choice of the image coordinate system in each
frame should not affect the structure of the algorithm.
In particular, an arbitrary image coordinate rotation
around the principal point in each frame should not
affect the solution. This means that f and f’ should
be expressed in terms of scalar invariants of F, since
f and f' are themselves scalar invariants with respect
to image coordinate rotations.

We first describe the algorithm and then give a jus-
tification for it. Next, we give a complete analysis for
degenerate configurations in which the solution is in-
determinate. Our result completely agrees with that of
Newsam et al. [15]. Finally, we describe an algorithm
for computing a single focal length in the degenerate
case. We show that the solution is indeterminate only
for the singular configurations that Brooks et al. [2]
found for a horizontally-constrained stereo head.

2. DESCRIPTION OF THE ALGORITHM

The inner product of vectors @ = (a;) and b = (b;)
is denoted by (a, b) = Z?:l a;b;. The norm of a vec-

tor @ = (a;) is denoted by ||a| = \/2?21 a;2. The

norm of a matrix M = (M;;) is defined by ||M|| =

W/E?,jﬂ M;;2. We let k = (0,0,1)T throughout this

paper.

We assume that the principal point in each image is
known and take it to be the image coordinate origin.
‘We also assume that the aspect ratio and the skewness
of the image frame is known and define image coordi-
nate systems in such a way that the effective aspect
ratio is 1 with no skew. The fundamental matriz F is
a matrix of rank 2 such that the epipolar equation

(<y>,F<y'>)=0 1)
1 1

is satisfied for any point (z,y) in the first image and
the corresponding point (z',y’) in the second image.
If the principal point is not at the coordinate origin
but at (uo, vo), we first transform F' in the form

1 0 O 1 0 wuo
Fe|l 0 1 0 )JF[o0 1 w |. (@
uo vo 1 0 0 1



The algorithm for computing the focal lengths f and
f' is described as follows:

Input: A fundamental matrix F'.
Output: Two focal lengths f and f'.

Procedure:
1. Compute the following quantities:
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| FTk|? | Fk||>
2 T
. (Tk,Fk) . 4— UFF'Fk) )
|F " k||| Fk]||? (k, Fk)

1 1

1
B (EETE - iE). o)

P=2(; -2+ JIFI?),

Q=-

C

2. Solve the following quadratic equation in Z:
(14 cP)Z? — (cP® + 2P + 4cQ)Z
+P? +4cPQ+12AB=0. (6)

3. Choose from among the two solutions the one for
which the following is smaller (ideally zero):

7% —3PZ% 4+ 2(P* +2Q)Z — 4(PQ n 4’4—3) ‘ .

c
(7

4. Compute

1 2B 1 2A
X__Z<1+ Z—P)’ Y__Z(H Z—P)'
(8)

5. Return the following focal lengths f and f':

1 1
f= S —
V1+ X/||F"E|? 1+ Y/|Fk|?

9)

Since the solution of the quadratic equation (6) can be
explicitly expressed by the quadratic formula, the focal
lengths f and f' are given as closed-from expressions
in ||F||?, ||FFT|?, and the scalar invariants defined
by egs. (3).

The case in which the above algorithm fails is when
() |F" k||, | Fk|, or (k,Fk) vanishes or (ii) Z = P.
We will later investigate when and how this occurs
and show that this corresponds to degenerate camera
configurations.

3. COMPUTATION OF THE MOTION

Once f and f' are determined, the motion parame-
ters {t, R} are determined by the following procedure
[9, 10]:

1. Compute the following essential matrizc:

. (o)

1
E = diag(1, 1, - )Fdiag(1, 1,
g( f) g( 7

2. Compute the unit eigenvector ¢ of EE' for the
smallest eigenvalue.

3. Apply SVD to —t x E as follows.

—txE=VAU'. (11)

4. Compute the rotation R as follows:
R = Vdiag(1,1,det VU U".  (12)

In eq. (10), diag(- - -) denotes the diagonal matrix with
diagonal elements - - - in that order. The left-hand side
of eq. (11) is an exterior product of —t and E: for
a vector a and a matrix A, we define a X A to be
the matrix consisting of columns that are the vector
products of @ and the individual columns of A. On the
right-hand side of eq. (11), A is a diagonal matrix with
diagonal elements (singular values) in non-increasing
order; V and U are orthogonal matrices.

However, the solution is not unique. Since the fun-
damental matrix F' is determined only up to scale, its
sign is indeterminate. Also, the eigenvector t of EE"
can be determined only up to sign. Hence, there ex-
ist four solutions depending on the choice of the signs
of +E and +t. If {¢, R} are the true solution, the
other solutions are {t, R}, {¢t, I+ R}, {—t, I+ R}, and
{—t, R}, where Iy = 2tt' — I denotes the 180° rota-
tion around ¢ [9]. This indeterminacy stems from the
fact that the mathematical expression for perspective
projection is the same if the object is behind the cam-
era. The four solution correspond to the pairs {front,
front}, {front, behind}, {behind, front}, {behind, be-
hind} for the relative positions of the object to the two
cameras. In 3-D reconstruction, the one for which the
object is in front of the two cameras is chosen [10].

The use of SVD in the above procedure is merely a
convenience of description; the translation ¢ and the
rotation R can be obtained by direct manipulations
without SVD [12]. The advantage of the above pro-
cedure is the fact that it implicitly incorporates least-
squares optimization so that it produces for an arbi-
trary matrix E an exact unit vector £ and an exact
rotation matrix R such that ¢ X R is approximately a
multiple of E by a constant.

4. JUSTIFICATION OF THE ALGORITHM

If the fundamental matrix F' is defined by focal
lengths f and f' and motion parameters {¢t, R}, the
matrix E (the essential matriz) defined by eq. (10)
should have the expression ¢ x R [9, 10]. A matrix E
has the form ¢ X R for a vector ¢ and a rotation ma-
trix R if and only if one of the singular values of E is
zero and the other two are equal (the decomposability
condition [7]). This statement is invariant to coordi-
nate rotations in each frame, so it can be described in
terms of scalar invariants of E [8]. In fact, we obtain
the following expression [3, 9, 13]:

T2 1 4
IEE|" = SIE]" (13)

Thus, the focal lengths f and f' are determined by
letting

K(f,f) = IBETIP - JIBI,  (9)

and solving K(f, f') = 0, which is a polynomial equa-
tion of degree 8 in 1/f and 1/f (degree 4 in each).
It appears that a single equation is unable to deter-
mine two unknowns f and f’, but it turns out that
the solution is a singularity of K(f, f'): we have

K(fafI)ZKf(fafl)ZKJ”(fv.fl):O’ (15)

where the subscript means partial differentiation [10,
13] (see Appendix B).



It can be shown by a lengthy calculation that if we
define new variables

o= (})2—1, y= <f/)2—1, (16)

the function K is a polynomial of degree 4 in x and y
(degree 2 in each) in the following form:

K = (k, Fk)*z’y’ + 2(k, Fk)*|F " k|’zy
+2(k, Fk)?||Fk|*zy® + | F " k||*2” + || Fk||*y”
+4(k, Fk)(k, FF " Fk)zy + 2|FF " k|*z

+2|FTFkly + | FFTI - 3 ((k, FR)ay

2
+HIF k|2 + IIFkI|2y+||FI|2) : (17)

Assuming that || F " k||, || Fk||, and (k, Fk) do not van-
ish, we switch to new variables

X =|FTkl’z, Y =|Fk|’y, (18)
and put
Z=cXY+X+Y. (19)
Then, eq. (17) is written in the form
K =2(g(z )+AX+BY+M), (20)

where g(Z) is the following quadratic polynomial:
1 ., 1

In the above equations, ¢, A, B, P, and @ are con-
stants defined by egs. (3), (4), and (5). From eq. (20),
the condition K = Kx = Ky = 0 is written as the
following three equations:

g(Z)+A(X+%)+B(Y+%) —0,  (22)
1 2B 1 2A

Substituting eqs. (23) into eq. (22), we obtain the fol-
lowing cubic equation in Z:

448 ) —0. (24)

7% —3PZ%42(P? +2Q)Z—4(PQ+ 245

If, on the other hand, eqs. (23) are substituted into
eq. (19), we obtain the following cubic equation in Z:

2
1)Z2+p(p_g)z+ﬂ=0_
¢ ¢ ¢

(25)
Eliminating Z* from eqs. (24) and (25), we obtain
the quadratic equation (6). From among the two so-
lutions, we choose the one that satisfies egs. (24) (or
equivalently eq. (25)). Once Z is determined, eqgs. (23)
determine X and Y, and eqgs. (16) and (18) determine
the focal lengths f and f'.

Z3 — (2P -

5. DEGENERATE CONFIGURATIONS

We translate and scale the zy coordinate system so
that the solution comes to the origin (0,0). This is
done by using new coordinates (z',y') given by

o =FP+)-1, y=7"@y+1)-1, (26

where f and f’ are the true values of f and f'.
terms of these new coordinates, the polynomial K is
written in the form

K = (k, Ek)*z'*y'? + 2(k, Ek)?| E" K|*"%y
+2(k, Bk)*| Ek|*z'y”* + | B k||*2"®
+|Ek||*y'? + 4(k, Ek)(k, EE " Ek)x'y/
+2||EE k||’z + 2| E" Ek|*y + ||EE"|?

5 (0, BRY 2y + | BTk + | BRIy

+IE17)?, (27)
where

E = diag(1,1, %)Fdiag(l, 1, %). (28)

Since E is the true value of the essential matrix E, it
has the form ~
E=tx R (29)

for some vector ¢ and some rotation matrix R. For
this expression, it is easy to show [9, 10] that

- _ T 1, =
IBE" | = SIE|* = 2|i¢l*. (30)
It is also easy to show the following:
IETK| = |itllsing, || EK|| = ||¢]| sin6’,

|E" Ek| = |[t]|* sin 6,
—||#|| sin ¢ sin § sin @',

IEET k|| = |[t]|* sin®,
(k, Ek) =
(k, EE" Ek) = —||t||° sin ¢ sin fsin 6. (31)
Here, 6 is the angle between the translation ¢ and the
optical axis direction k of the first camera; 8’ is the
angle between the translation ¢ and the optical axis di-
rection k' = Rk of the second camera; ¢ is the angle
between the plane defined by k and ¢ and the plane
defined by k' and t. Substituting the above expres-
sions into eq. (27), we can easily confirm that K =
K, = K, =0atz' =y = 0. The second derivatives
at ' =y’ = 0 are given by

K.o = ||t]|*sin® 6,

K.y = ||t||*(2sin® ¢ — 1) sin” §sin” ¢,

K, = ||1i||4$in4 0. (32)
The necessary condition for indeterminacy of the so-

lution is the vanishing of the determinant K., Ky, —
K.,? of the Hessian of K(z,y). We have

KooKy — Ko, = ||t||® (1— (2sin” ¢—1)2) sin*@sin* §'.

(33)
This vanishes when sind = 0, or sind = 0, or
(2sin? $—1)% = 1. The last case occurs when sin ¢ =0
or sin¢ = +1. Let us investigate each case separately:

Case 1 (sinf = 0): This occurs when § =0 or 7, i.e.,
the optical axis of the first camera is parallel to
the translation direction. In this case, we have

K('y) = Iltll‘ly'2si 0. (34)

Evidently, 2’ is indeterminate.



Case 2 (sin@ = 0): This occurs when ' = 0 or ,
i.e., the optical axis of the second camera is par-
allel to the translation direction. In this case, we
have

1
K(z',y') = §||t||4:1:'251n4 6. (35)

Evidently, 3’ is indeterminate.

Case 3 (sin¢ = 0): This occurs when ¢ = 0 or m,
i.e., the optical axes of the two cameras are copla-
nar. In this case, we have

K, y') = %||t||4(ac’ sin?0 — o sin® 0').  (36)

Evidently, we have infinitely many solutions such
that 2’ sin? § = 3/ sin? §'.

Case 4 (sin¢ = +1): This occurs ¢ = /2 or 37/2,
i.e., the plane defined by the optical axis of the
first camera and ¢ and the plane define by the
optical axis of the second camera and ¢ are or-
thogonal. In this case, we have

K@',y) = %I|t||4(w'y' sin” @sin” 0’ + «’ sin” 9
+y' sin” 6')°. (37)

Evidently, we have infinitely many solutions such
that zysin® @sin® @’ + zsin” @ + ysin §’ = 0.

We thus obtain the following proposition, which is
identical to that given by Newsam et al. [15]:

Proposition 1 The focal lengths are indeterminate if
and only if (i) the optical azes of the two cameras are
coplanar or (i) the plane defined by the optical azis of
the first camera and the translation direction and the
plane define by the optical axis of the second camera
and the translation direction are orthogonal.

We have also observed the following fact:

Proposition 2 The solution is completely indetermi-
nate if the two optical azes and the translation direc-
tion are collinear. In other degenerate cases, the solu-
tion is determined up to one indeterminate parameter.

It can be seen after some manipulations that
|IFTE||, |FE|, and (k,Fk) are linearly related to
|E k||, || Ek||, and (k, Ek) and vice versa. It follows
that (||F k|, ||Fk|, (k, Fk)) # (0,0,0) if and only
it (||IE" k||, | Ek||, (k, Ek)) # (0,0,0). On the other
hand, eq. (20) implies

K, =2¢'(Z)(cY+1)+24, K, =24 (Z)(cY +1)+2A.

(38)
Hence, we have Z = P or equivalently ¢'(Z) = (Z —
P)/2 = 0 if and only if A = B = 0. From eq. (22),
this means g(P) = 0. But g(P) = ¢'(P) = 0 implies
that g(Z) has the form g(Z) = (Z — P)?/4, which in
turn implies that eq. (20) has the form

K:%(XY+X+Y—P)2. (39)

This case corresponds to Case 4 in the above list.
Thus, our algorithm fails if and only if the cameras are
in a degenerate configuration as described in Proposi-
tion 1.

6. SINGLE FOCAL LENGTH SOLUTION

If the cameras are in a degenerate configuration, we
can determine f and f by assuming that they are
identical. Letting f = f' in our algorithm, we obtain
the following procedure:

1. Compute the following quantities:
= %(k,Fk;)‘*,
as = (k, Fk)*(||[F k| + ||FK|*),
as = S (IFT kI ~ |[FE|1)?
+(k, Fk)(4(k, FF T Fk) — (k, Fk)|| F|*),

as = 2(|FF k| + | FTFk|*) - (IF " k||”
+IFK|*)IF?,

1
as = |[FF"|" - S| F|I* (40)

2. Define the following polynomial:
K(z) = a1z* + a22® + as2” + aax + a5, (41)

3. If a1 = a2 = a3 = 0, stop. Otherwise, compute
the common root of K(z) and K'(z).
4. Return the following focal length f:

1
f= Jirs (42)

The common root of K (z) and K’ (z) is computed as
follows. If a; # 0, the three equations K (x) = 0, K'(x)
=0, and zK'(x) = 0 are written in the form

air asz a3;c2 + asx + as z? 0
4a; 3a2x? + 2031 + a4 22 )=(0].
4a;, 3as 20312 + asx 1 0

(43)
Hence, we obtain the following quadratic equation:

a1 a: a3z’ +asxz+as
4a1 3axx® + 2a3% + a4
4a; 3as 2a32> + asx

= a1(3a3 — 8a1a3)z” + 2a1(azas — 6a1a4)x
“+aq (a2a4 — 160,10,5) = 0. (44)

If we obtain two solutions (the above equation may
degenerate into a linear equation), we choose the one
that satisfies K(z) = 0. If a1 = 0 but az # 0, the
three equations K(z) = 0, K'(z) = 0, and zK'(z) =
0 are written in the form

a2 a3 a4 +as x> 0
3a2 2a3z + a4 2 | = 0 |. 45
3as 2as3 a4 1 0

Hence, we obtain the following linear equation to de-
termine a single solution:

a2 a3z a4T +as
3a2 2a3x + a4
3a2 2a3 asx

= 2as(a3 — 3a2a4)x + a2(azas — Yazas) = 0.  (46)

If a1 = a2 = 0 but as # 0, we have a linear equation
K'(x) = 0 to determine a single solution.

The above algorithm works unless a1 = a2 = a3 =
0 (we will study this case shortly), because the input



F is assumed to have the single-focal-length solution
f = f' either from a priori knowledge or as a result
of the degeneracy check of the general algorithm. If
we want the above algorithm to work for an arbitrary
fundamental matrix F' for which K(z) = K'(z) = 0
may not have any solution, a reasonable strategy may
be to solve the cubic (or lesser degree) equation K'(z)
= 0 and choose the solution that minimizes |K(z)].

7. FOCAL LENGTH DEGENERACY

We switch to the z'y’ coordinate system given by
eq. (26) so that the solution is at the origin (0,0).
Letting f = f’ in eq. (27), we obtain the polynomial
K(z') in form

K(z') = a1a'* 4 @22 + asaz’?, (47)

where a1, a2, and as are the values of a1, a2, and as,
respectively, obtained by replacing F' in egs. (40) by
E defined by eq. (28). Evidently, K(0) = K'(0) = 0.
If eqs. (31) are substituted, K" (0) has the following
form:

K"(0) = |[¢]]* (4 sin? ¢ sin? § sin? 6' + (sin? f—sin? a')Q)

(48)
This vanishes when sin® ¢sin? §sin? 4’ = 0 and sin”® 4
=sin?§'.

The former condition means ¢ = 0, 7 (the two op-
tical axes and the translation direction are coplanar),
0 = 0, 7 (the first optical axis and the translation di-
rection are collinear), or § = 0, 7 (the second optical
axis and the translation direction are collinear).

The latter condition means §' = 6, § + 7 (the two
optical axes are parallel) or §' = —6, m — 8 (the two
optical axes intersect and form an equilateral triangle
with the baseline as its base).

It is easy to confirm that K (z') identically vanish if
sin® ¢sin® @sin® @ = 0 and sin®@ = sin® ¢’. Thus, we
obtain the following proposition:

Proposition 3 If the focal length is fized, it is inde-
terminate if and only if (1) the two optical azes are
parallel or (i) the two optical azes intersect and form
an equilateral triangle with the baseline as its base.

Brooks et al. [2] pointed out that the case (ii) was a
singular configuration for a stereo head with a hori-
zontally baseline, horizontal optical axes, and vertical
axes of camera rotation. Our result has shown that the
cases (i) and (ii) are the only possibilities of degener-
acy among all unconstrained camera configurations.

8. ACCURACY AND ROBUSTNESS

Our algorithm is, like all others [1, 5, 16, 17, 15],
a mapping from the fundamental matrix F' to the fo-
cal lengths f and f' and the motion parameter {t,
R}. Hence, it does not make sense to compare our
algorithm with others with respect to accuracy and
robustness: all algorithms produce exactly the same
result. The computation time, however, somewhat dif-
fers from algorithm to algorithm; because eigenvalue
computation and singular value decomposition are not
involved, our algorithm seems slightly faster than oth-
ers, although the speed is very much affected by the
machine and implementation.

On the other hand, the accuracy of f, f’, and {¢,
R} does not depend on the decomposition algorithm;

it depends solely on the accuracy of computing the
fundamental matrix F. We have already developed a
numerical scheme for optimally computing the funda-
mental matrix from point correspondences in the pres-
ence of noise and evaluating the reliability of the com-
puted solution [11]. The algorithm is strictly optimal
and is guaranteed to satisfy the theoretical accuracy
bound; there is no room for further improvement. Our
program is implemented in the C++ language and is
publicly available via the Web!.

9. CONCLUDING REMARKS

We have described an algorithm for decomposing
a given fundamental matrix into two focal lengths
and motion parameters in a closed-form expression in
terms of the elements of the fundamental matrix alone,
assuming that other camera parameters are known by
pre-calibration. It is based on the decomposability
condition of the essential matrix expressed in terms
of its scalar invariants. We have given a complete
analysis for degenerate camera configurations and ob-
tained the same result as Newsam et al. [15]. Finally,
we have given an algorithm for computing a single
focal length in the degenerate case. We have shown
that the solution is indeterminate only for the singu-
lar configurations that Brooks et al. [2] found for a
horizontally-constrained stereo head.

In Appendix A, we recapitulate Bougnoux’s formula

[1] in the framework of this paper in a slightly different
from.
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APPENDIX A: BOUGNOUX’S FORMULA

Let e and e’ be the unit eigenvectors of F' and F,
respectively, for eigenvalue zero; they represent the
epipoles of the first and second images [3, 4, 13, 18].
We can eliminate the translation ¢ by using e and e’
and express F in the following two forms:

1

F ~ e x diag(1,1, ?)Rdiag(l, 1,1,

. . 1
F ~ diag(1,1, f)Rdiag(1,1, ?) xe.  (49)
Here, ~ means that one side is a multiple of the other
by a nonzero constant. For a matrix T' and a vector
u, we define T x u to be T'(u x T)". Eliminating
R from the above equations, we obtain the following
Kruppa equations [3, 6, 13, 14]:

. 1 . 1
Fdiag(1,1, F)FT ~ e x diag(1,1, P) X e,
. 1 . 1
Fdiag(1,1, F)F ~ €' x diag(1,1, F) x e'. (50)

In terms of z and y defined by egs. (16), these equa-
tions are rewritten as

F(I+ykk")F' ~ex (I+zkk') xe,
F (I+akk")F ~ ¢ x (I+ykk') xe, (51)

l

from which we obtain
FF' +y(Fk)(Fk)" ~ Pc+z(exk)(exk)', (52)

F'F+z(F k) (F k) ~Po+yle xk)(e xk)T,
(53)

where
P.=I-ee', Po=I-€eT. (54)

Multiplying k from the right on both sides of egs. (52)
and (53), we obtain

FF k+y(k,Fk)Fk = cP.k,
F'Fk+z(k,Fk)F k = ¢ Pk, (55)

where ¢ and ¢’ are unknown constants. Taking the
inner product of k and both sides of the second of
egs. (55), we obtain

|FE||*> + (k, Fk)*z = ||’ x k|*. (56)

Taking the inner product of F'k and both sides of
the second of eqs. (55), we obtain

(k, FF' Fk) + (k, Fk)||F " k|’z = ¢ (k, Fk). (57)
Eqgs. (56) and (57) can be solved for z in the form

_ IFK|” — (k, FFTFk)|le’ x k|*/(k, Fk)

lle’ < KIP[F T k|l? — (k, Fk)? (58)
Similarly, we obtained from the first of egs. (55)
|FTk|)> - (k, FF" Fk)|le x k||*/(k, Fk)
. e x RPIFRI = o FRy? - 9
Thus, f and f' are given by
=g e @

This result is essentially the same as the formula for
f given by Bougnoux [1], although the appearance is
slightly different.

APPENDIX B: SINGULARITY OF E

Since the scale of the essential matrix E is indeter-
minate, we can assume that || E|| = 1 without loosing
generality. This means that E is a point on an 8-
dimensional unit sphere S® centered at the origin in
the 9-dimensional parameter space. Eq. (13) states
that the true value E is an intersection of the sphere
S® with the manifold defined by ||[EET||> = 1. Let
E + AE be a neighboring point to E on the manifold.
To a first approximation, we obtain

1 = ||(B+AE)(E+AE)||?

= 1+2(EEE; AE), (61)

where we define the inner product gf matrices A =
(Aij) and B = (BZ]) by (A; B) = Zi,j:l AijBij. The
above equation implies that the “surface normal” to
the manifold | EET||?> = 1 at E is EE'E. Substitut-

ing eq. (29), we obtain
EE'E = ||t|’E. (62)

Since the manifold normal to the sphere S® at E is E
itself, the above equation implies that the sphere S®
is tangent to the manifold |[EE " ||* = 1 at E, sharing
a common tangent space there. If E is constrained to
be in a two-parameter subset of the sphere S® param-
eterized by f and f', the tangency relation also holds
for arbitrary perturbations of f and f'. Hence eq. (15)
holds.

Since |[EE"||> = 1 and S® are eight-dimensional as
manifolds, their intersection in the nine-dimensional
space should be a seven-dimensional manifolds in gen-
eral. Because of the above non-transversality, how-
ever, the intersection is a six-dimensional manifold.
The solution E is in the intersection of this six-
dimensional manifold with the eight-dimensional man-
ifold defined by det E = 0. It follows that the intersec-
tion is a five-dimensional manifold. Thus, the essential
matrix has five degrees of freedom corresponding to
the camera rotation and the normalized translation.



