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DILATANT PLASTIC DEFORMATION OF
GRANULAR MATERIALS

KEN-ICHI KANATANI
Department of Computer Science, Gunma University, Kiryu, Gunma, 376 Japan

Abstract—A geometrical interpretation is given to the modified associated flow rule derived in the previous
paper[1]). According to it, the dilatancy must be regarded as an internal constraint of deformation. The
modified associated flow rule then gives equations of plastic deformation which exhibits the specified
dilatancy. Hardening and elastic strains can also be incorporated. It is shown that the deformation is
non-coaxial in general.

I. INTRODUCTION

IN THE previous paper[1], we re-examined Drucker’s plastic work postulate and showed that a
mechanically consistent plastic work postulate can be obtained for granular materials with
frictional stresses if internal constraints of deformation are taken into account. We derived
from it a modified version of the associated flow rule and applied it to nondilatant deformation
of granular materials. Then, characteristic surfaces and singular wave propagation were
analyzed. An extensive review on the background of the subject was also given there.

The deformation of granular materials is classified into several stages. First, under the
external forces the material begins an incipient dilatant deformation. Then, it passes a critical
state and goes into a flow regime without dilatancy. It is this last stage that the previous
theory[1] describes. In this paper, we consider the incipient dilatant plastic deformations of
granular materials, employing the same principle.

We first give a geometrical interpretation of the modified associated flow rule obtained in the
previous paper{l]. As was discussed there, the dilatancy must be regarded as an internal
constraint of deformation. In other words, the flow rule applies to deformations other than the
dilatancy, and the dilatancy is not expected to be derived from the flow rule[1]). Applying the
modified associated flow rule to the constraint, we derive equations of plastic deformations that
exhibit the specified dilatancy. Hardening and elastic strains can also be incorporated. It is
shown that the deformation is non-coaxial in general.

Today, as was discussed in [I], various types of yield functions, plastic potentials and
hardening rules have been elaborated for the fitting of experimental data. A number of ad hoc
assumptions are made without a theoretically sound basis, introducing a large number of
indeterminate material constants. Then, the analyses based on them are shown to agree with
experimental observations by a clever choice of the values for the material constants. However,
introduction of a large number of ad hoc assumptions, though it helps to gain experimental
support, often hinders our understanding of mechanical laws essential to the phenomenon. In
contrast, our theory is very simple in the sense that all the material constants involved are a
and k specifying the yield condition plus the dilatancy factor B alone, and is based on a
reasonable mechanical foundation[1]. Yet, it illuminates mechanical features characteristic to
granular materials. The theory is a natural extension of the previous one{l], and all the
equations are expressed in terms of three-dimensional Cartesian tensor equations.

2. GEOMETRICAL INTERPRETATION OF THE MODIFIED ASSOCIATED FLOW RULE

We now give a geometrical interpretation of the associated flow rule derived from a new
plastic work postulate in [1]. Suppose there is a constraint of deformation. For example, if the
material is incompressible, or nondilatant in the terminology of soil mechanics, we have

ex =0, 2.n

where ¢; is the strain tensor. We henceforth adopt the Cartesian tensor notation and the
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summation convention. Now, consider a constraint of deformation expressed as a single
equation
F(ei|)=09 (2.2)

which gives a hypersurface in the strain space.

Next, consider the associated constraining stress. It is a part of the stress which does not do
any work for admissible deformations but does work only for virtual deformations that violate
the constraint. Let an infinitesimal deformation e;— ¢; +de; be admissible. Then,

F(e;) = F(e; +de) =0, 2.3)
and hence
aF _
ae,_‘ deil = 0: (2.4)

which means that oF] de; is a vector normal to the hypersurface in the strain space. If oj; is the
constraining stress, it does not do work for the strain increment and hence

o5 de; =0. .5

Now, identify the stress space with the strain space, using the same coordinate axis for the
components of the same indices pair. Comparing eqn (2.4) with eqn (2.5), we can see that o
is parallel to aF de;. Let oy; be the total stress and let n; is F] de; multiplied by a constant such
that nyn; = 1. The magnitude £ of the component of a;; in the direction of the unit vector is

f = "iiaii' (2.6)

The region in the stress space in which the constraining stress is constant is a hyperplane whose

equation is given by eqn (2.6). The constraining stress is the normal drawn to the hyperplane
from the origin (Fig. 1) and is given by

0’;:,' = £n;. 2.n

This constraining stress depends not only on the total stress oy but also on the strain ¢,

because the hypersurface of the constraint is curved in general and hence the direction of the

surface normal depends on the present strain. If we consider the constraint of incompressibility
or nondilatancy, then

F(e;) = e 2.8
and the hypersurface is flat. Since 9F] d¢; = &; (Kronecker delta), the unit normal is

nj = 5"/\/3 v (29)

.p
€ Jn"
e;i —
Fle,)=0
- O
eii "
Fig. . Fig. 2.

Fig. 1. The constraint of deformation and the constraining stress.
Fig. 2. Geometrical interpretation of the modified associated flow rule.
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and the magnitude of the constraining stress is
=0l V3(=-VQp), 2.10)

where p = — o33 is the hydrostatic pressure. Thus, the constraining stress for the constraint of
incompressibility is

a5 =— pdj .11

as is expected. -
On the other hand, consider a yield condition in the form of

f(az) =0, 2.12)

which gives a hypersurface, ie. the yield surface, in the stress space. Now, take a new
Cartesian coordinate system in the stress space such that one axis is in the direction of the unit
normal n;; of the surface of ‘constraint. Let o, be the components of the stress with respect to
the remaining coordinate axes and express the yield condition in terms of £ and o,

f(oﬂm g) =0. (2. 13)

As was discussed in [1], the new plastic work postulate leads to the modified associated flow
rule

é?‘ = A af(aga(oii)' f) , (2.14)
aa'j'i £=const.

where ¢% is the plastic strain-rate and A is a scalar quantity. In [1], we considered the constraint
of incompressibility. There, the hydrostatic pressure p was used instead of £ by virtue of eqn
(2.10), and o, was identified with the stress deviator

G = 0 = 30udji .15

since &y is perpendicular to pdy, i.e. p§;d;i = 0.

Consider a geometrical interpretation of eqn (2.14). Let us consider a hyperplane in the
stress space passing the present stress oj; and having a surface normal parallel to n;. (The stress
space and the strain space are identified as before.) Then, eqn (2.14) implies that the plastic
strain-rate ¢é% is parallel to the hyperplane, where the constraining stress is constant, and
perpendicular to the intersection of the hyperplane and the yield surface. Thus, in order to obtain the
direction of €%, we may first construct the normal dff doy; of the yield surface and then project it
onto the hyperplane (Fig. 2). The strain-rate so obtained is parallel to the tangent plane to the
surface of the constraint at the present strain ¢ in the strain space. This is an obvious requirement
for any possible strain-rate not to violate the constraint.

3. PLASTIC DEFORMATION OF DILATANT . MATERIALS

As was discussed in [1], the plastic flow originates in microscopic slips and hence is
incompressible in nature. The dilatancy, i.e. the non-elastic change in specific volume of gran-
ular materials occurs due to the fact that the material consists of particles in contact with each
other. Hence, the dilatancy is geometrical in nature and, therefore. must be regarded as an
internal constraint of deformation. In other words, the plastic flow rule applies to defor-
mations other than the dilatancy. and the dilatancy is not expected to be derived from the flow
rule(1].

The dilatancy depends on the internal packing configuration of the constituent particles.
which in turn is determined not only by the type of the material but also by the past history of
deformation. Here. we restrict our theory to a given initial state of the material and only
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consider small deformations without unloading. In this range of deformation, we can ap-
proximate the dilatancy relation by

v = Bya 3.1

where v is the volumetric strain and v, is the shear strain. We call the constant B the dilatancy
factor, which takes on a value determined by the type of the material and its past history of
deformation. Of course, we can assume a more complicated relation and derive a theory similar
to the subsequent one. The validity of the law (3.1) must be judged from the objects and the
purposes of particular applications of the theory.

In the Cartesian tensor notation, the volumetric strain v and the shear strain y, for general
deformations are given, respectively, by

v=ew 1= V(@G 3.2)
where
& = i — 3eud; (3.3)
is the strain deviator. Hence, the constraint of deformation is
ew = BV(&ié2), G4
ie.
Fley) = e — BV(8é/2). (3.9

The unit normal to the hypersurface of the constraint is

S ) _E_e'i)
" =3+ B0 (5" 7 o) (3.6)
The magnitude of the constraining stress is given by
2 - =
=- V3 (p +9—5—"L) 3.7
6 (/Y%

\

As the yield condition we adopt the extended von Mises equation
V(6;6:2) = ap + k. (38

following Drucker—Prager{2] and the previous paper[1]. (The validity of this equation is also
discussed in [1].) The normal to the yield surface is

of gji

- E_ .
G0 Nap+h) 3 S 3.9)

The magnitude of the component of this vector projected in the direction of ny; is
9 ! ( _B _ql_el__)
i 3(1,, ; 3+ B'/z) @ 4 (ap + k)t’“ ' (3.10
The component of the vector (3.9) perpendicular to n;; is 3f da;; — (nydfl doy )n;,, and hence

é% o ofl ao; = (mydfl o n . (3.11)
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In terms of the deviator part and the scalar part, this becomes

o [1+6/8° _&s ( _B___Guéu )5‘_”

87""‘[ 7 ap+k \*T 4 @p+ K)ewn) ) G.12
o 3 6",'5,' ]

eik—A[a+2———'—L—(aP+k)m , 3.13)

where A is a scalar quantity. It is easily checked that these equations are compatible with the
strain constraint (3.4).

Following the usual routine process, we can also incorporate hardening and elastic strains
into the theory. Without going into detail, we only show the final results. Let the total
strain-rate be resolved into the elastic part é5 and the plastic part é%; and assume linearity

%‘tﬁ = 265+ Aéu by (.14)

where p and A are constants and D/Dt is the Jaumann-Noll derivative[1]. Adopting the
isotropic hardening law

V(6;6:42) = ale)p + k(e), ' (3.15)

where e is the void ratio, we finally have

Dg; : 1+6/8° _d; ( B’ duén ) & }]

_—ll = oy - LN AR | S - P | ! SN R

Dt Zu[e,, A{ 2 ap+k T T T (ap + Kemm/ ) (3.16)
9’1=-K[é -A{a+§——‘ff‘—éf‘——-}] G.17)
dt " 2(ap + ke I’ :
Q=(1+e)A[a+§——‘fﬁ—éﬁ—‘—] (3.18)
dt 2(ap + k)ew S .

where we have put x = (2u +31)/3,

udiéid(ap + k) + axéy —(a'p + k') del dt

6 2 i€ {( 3 )_ B’ Guéu }'
(l+?)#+ak+(dp+k)€u “ 'u+2" 4 (ap + K)emm

A=

(3.19)

and a' =dalde, k' =dk/de.

There is plenty of room for possible plausible assumptions about eqns (3.14) and (3.15).
However, we do not go into it further, because our purpose is to illustrate the geometrical
nature of the dilatancy and not the experimental data fitting, as we have stated earlier.

4. CONDITION OF PLANE DEFORMATION

Let us briefly examine the expression of our theory for usual configurations of experiments.
In the following we do not consider hardening and elastic strains. The dilatancy factor 8 is most
easily measured by a triaxial compression test. If the strain is such that e, = e,,. €,, = — € and
other components are zero, then eqn (3.4) is expressed in terms of the volumetric strain
v =2¢,,— € in the form

v 4.n

=——yl_e
WA-8€

The effect of B on the plastic flow is most easily exhibited in the case of plane deformation. Let
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the coordinate axes coincide with the principal stress axes and let oy, o and o, be the principal
stress components. The deviator components are G,=a,+p (a=1, 2, 3), where p=
— (o, + a2+ o3)/3. Suppose the principal strain axes rotate counterclockwise relative to the
principal stress axes by @ in the x-y plane. Then, according to our theory, plane deformations
occur if and only if

_6(1/8* = 1/12) + V(1/8* - 1/12) cos 28
M= 60187 1/12) - V(1/BT—1/12) cos 26"

4.2)

where we have put n = — ¢,/,, the ratio of the stress deviator components. In order that the
plane deformation is coaxial, i.e. 8 =0, the ratio n must take on the value

_6V(1/82-1/12)+1
o=V (1gT-112)- 1

4.3)

On the other hand, if 1< n < no, corresponding plane deformations are not coaxial as is shown
in Fig. 3. The non-coaxiality is one of the consequences of the fact that the strain-rate depends
not only on the stress but also on the strain itself (i.e. the curved constraint).

11

1.0
0 0 il

Fig. 3. Relation between the stress deviator ratio and the non-coaxiality of deformation.

If we determine the internal angle of friction ¢ and the cohesion constant ¢ in such a way
that the yield condition coincides with the Coulomb condition expressed in terms of ¢ and ¢ when
the deformation is plane, we obtain after some calculations

a___2\/(|-1;+n’)sind> _2cV-n+n’)cos é 44)
1+n-(1-7)sing’ l+p-(1-7n)sind ° ’
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