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Abstract. We first present an improvement of the subspace separa-
tion for motion segmentation by newly introducing the affine space con-
straint . We point out that this improvement does not always fare well
due to the effective noise it introduces. In order to judge which solution
to adopt if different segmentations are obtained, we test two measures
using real images: the standard F test, and the geometric model selection
criteria.

1 Introduction

Segmenting individual objects from backgrounds is one of the most important
of computer vision tasks. A significant clue is provided by motion: humans can
easily discern independently moving objects by seeing their motions without
knowing their identities. To solve this problem, Costeira and Kanade [2] pre-
sented a segmentation algorithm based on feature tracking. Since then, various
extensions have been proposed: Gear [3] used the reduced row echelon form and
graph matching, Ichimura [4] applied the discrimination criterion of Otsu [14]
and the QR decomposition for feature selection [5], and Inoue and Urahama [6]
introduced fuzzy clustering.

Costeira and Kanade [2] attributed their algorithm to the Tomasi-Kanade
factorization [17], but the underlying principle is a simple fact of linear algebra:
the image motion of points moving rigidly in the scene belongs to a 4-dimensional
subspace [3, 8, 10]. Directly exploiting this subspace constraint , Kanatani [8, 10]
introduced model selection to it and showed that his method, which he called sub-
space separation, far outperforms the Costeira-Kanade algorithm and Ichimura’s
method [4]. His method has also been used for analyzing the effect of illumination
on moving objects by Maki and Wiles [12] and Maki and Hattori [13].

In reality, the subspace constraint is a weak condition: the data points be-
long to a 3-dimensional affine space within that 4-dimensional subspace [3].
Using this stronger affine space constraint is expected to lead to more accurate
segmentation, but all the Costeira-Kanade-type algorithms [2–6] are unable to
exploit this constraint. This is because they rely on zero/nonzero discrimination
of the elements of a matrix computed from the data. In contrast, the subspace
separation [8, 10] is based on the analysis in the original data space rather than
particular matrix elements, so it can easily incorporate this constraint.



In this paper, we first present a new segmentation algorithm based on the
affine space constraint, which we call affine space separation, and demonstrate by
simulation that it indeed outperforms the subspace separation. We next show a
rather surprising fact that the affine space separation does not always fare well in
real situations. We assert that this is because for real data the degree of deviation
from the affine space constraint is different from the degree of deviation from
the subspace constraint; one may be larger or smaller than the other depending
on situations. We clarify this relationship by analysis and simulation.

Then, a question arises: if the subspace separation and the affine space sepa-
ration produce different solutions for the same image sequence, which should we
believe? To answer this question, one needs to evaluate the reliability of individ-
ual segmentations. Here, we test two measures using real images: the standard
F test, and the geometric model selection criteria [9].

In Sec. 2, we summarize the subspace separation [8, 10]. In Sec. 3, we describe
our affine space separation and compare its performance with the subspace sep-
aration. In Sec. 4, we explain the performance difference in terms of the effective
noise associated with the constraint. In Sec. 5, we present criteria for a posteriori
evaluation of segmentation. In Sec. 6, we test these criteria using real images. In
Sec. 7, we give our conclusion.

2 Subspace Separation

We first summarize the subspace separation [8, 10], on which our new algorithm
is built.

2.1 Subspace constraint

We track N rigidly moving feature points over M images and let (xκα, yκα)
be the image coordinates of the αth point in the κth frame. If all the image
coordinates are stacked vertically into a 2M -dimensional vector in the form

pα =
(
x1α y1α x2α y2α · · · yMα

)>
, (1)

the image motion of the αth point is represented by a single point pα in a
2M -dimensional space R2M .

The XY Z camera coordinate system is regarded as the world coordinate
system with the Z-axis taken along the optical axis. Fix an arbitrary object
coordinate system to the object, and let tκ and {iκ, jκ, kκ} be, respectively,
its origin and orthonormal basis in the κth frame. Let (aα, bα, cα) be the object
coordinates of the αth point. Its position in the κth frame with respect to the
world coordinate system is given by

rκα = tκ + aαiκ + bαjκ + cαkκ. (2)

If orthographic projection is assumed, we have
(

xκα

yκα

)
= t̃κ + aαĩκ + bαj̃κ + cαk̃κ, (3)
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where t̃κ, ĩκ, j̃κ, and k̃κ are the 2-dimensional vectors obtained from tκ, iκ, jκ,
and kκ, respectively, by chopping off the third components. If the vectors t̃κ,
ĩκ, j̃κ, and k̃κ are stacked over the M frames vertically into 2M -dimensional
vectors m0, m1, m2, and m3, respectively, the vector pα has the form

pα = m0 + aαm1 + bαm2 + cαm3. (4)

This implies that the N points {pα} should belong to the 4-dimensional (linear)
subspace spanned by the vectors {m0, m1, m2, m3}. This subspace constraint
holds for all affine camera models including weak perspective and paraperspec-
tive [15], because eq. (2) holds irrespective of the metric condition [15, 17] that
demands {iκ, jκ, kκ} be orthonormal.

2.2 Subspace separation theorem

It follows that the motions of the feature points are segmented into indepen-
dently moving objects if the N points in Rn (n = 2M) are grouped into dis-
tinct 4-dimensional subspaces. Inspired by the Tomasi-Kanade factorization [17],
Costeira and Kanade [2] found that this can be done by zero/nonzero discrim-
ination of the elements of a matrix computed from the data. Kanatani [8, 10]
pointed out that the underlying principle can be proved as a pure mathematical
theorem independent of the Tomasi-Kanade factorization. We first reiterate this
fact here.

Let {pα} be N points that belong to an r-dimensional subspace L ⊂ Rn.
Define an N ×N matrix G = (Gαβ) by

Gαβ = (pα,pβ), (5)

where (a, b) denotes the inner product of vectors a and b. Let λ 1 ≥ · · · ≥
λN be the eigenvalues of G, and {v1, ..., vN} the orthonormal system of the
corresponding eigenvectors. Define an N ×N matrix Q = (Qαβ) by

Q =
r∑

i=1

viv
>
i . (6)

Divide the index set I = {1, ..., N} into m disjoint subsets Ii, i = 1, ..., m, and
let Li be the subspace defined by the ith set {pα}, α ∈ Ii. If the m subspaces
Li, i = 1, ..., m, are linearly independent, the following holds:

Theorem 1. The (αβ) element of Q = (Qαβ) is zero if the αth and βth points
belong to different subspaces:

Qαβ = 0, α ∈ Ii, β ∈ Ij , i 6= j. (7)

This can be proved without reference to the Tomasi-Kanade factorization [17] as
follows. For N (> n) vectors {pα}, there exist infinitely many sets of numbers
{c1, ..., cN}, not all zero, such that

∑N
α=1 cαpα = 0, but if the points {pα} belong
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to two subspaces L1 and L2 such that L1⊕L2 =Rn, the set of such “annihilating
coefficients” {cα} (“null space” to be precise) is generated by those for which∑

pα∈L1
cαpα = 0 and those for which

∑
pα∈L2

cαpα = 0. A formal proof is
given in [8, 10]. Maki and Wiles [12] and Maki and Hattori [13] found that in
this abstract form this theorem allows one to analyze the effect of illumination
on moving objects.

In the presence of noise, however, all the elements of Q are nonzero in general.
But if we progressively group points pα and pβ for which |Qαβ | is large and
interchange the corresponding rows and columns of Q, we should end up with
an approximately block-diagonal matrix. Costeira and Kanade [2] proposed this
type of strategy, known as the greedy algorithm.

Whatever realigning strategy is taken, however, all such algorithms [2–6]
are severely vulnerable to noise, because segmentation is based on zero/nonzero
discrimination of matrix elements, for which we do not know how small the
nonzero elements might be in the absence of noise, yet small nonzero elements
and large nonzero elements have the same meaning as long as they are nonzero.

In the presence of noise, a small error in one datum can affect all the ele-
ments of the matrix in a complicated manner, so finding a suitable threshold is
difficult even if the noise is known to be Gaussian with a known variance [3].
To avoid this difficulty, Kanatani [8, 10] worked in the original data space rather
than the matrix elements derived from it. Using synthetic and real images, he
demonstrated that his method far outperforms the Costeira-Kanade algorithm
[2] and Ichimura’s method [4].

3 Affine Space Separation

We now present a new segmentation algorithm based on a stronger constraint.

3.1 Affine space constraint

We have overlooked a crucial fact about eq. (4): the coefficient of m0 is identically
1 , implying that the N points {pα} should belong to a 3-dimensional affine
space within the 4-dimensional subspace. This affine space constraint has long
been known [3] but so far has not been utilized in any way. This is because no
theorem corresponding to Theorem 1 is available for this constraint; as long as
segmentation is based on zero/nonzero discrimination of matrix elements, there
is no way to exploit this constraint.

However, it can immediately be incorporated into the subspace separation
[8, 10], in which model selection and robust fitting are introduced in the original
data space. We now replace the subspace constraint involved there by the affine
space constraint; we call the resulting algorithm the affine space separation.
Doing simulation, we will demonstrate that it indeed outperforms the subspace
separation.
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3.2 Affine space merging

Initially regarding individual points as groups consisting of one element, we
successively merge two groups by fitting a 3-dimensional affine space to them.
Let A i and A j be candidate affine spaces to merge, and let Ni and Nj be the
respective numbers of points in them.

Let JA
i and JA

j be the individual residuals, i.e., the sums of the squared
distances of the data points to the fitted affine spaces A i and A j . Let JA

i⊕j be
the residual that would result if a single affine space is fitted to the Ni + Nj

points. It is reasonable not to merge the two groups if JA
i⊕j is much larger than

JA
i + JA

j . But how large should JA
i⊕j be for this judgment? In fact, we always

have JA
i⊕j ≥ JA

i + JA
j because a single affine space has fewer degrees of freedom

to adjust than two affine spaces. It follows that we need to balance the increase
in the residual against the decreases in the degree of freedom. For this purpose,
Kanatani used his geometric AIC [7]. His method is translated into the affine
space constraint as follows.

We assume that the tracked feature points are disturbed from their true
positions by independent Gaussian noise of mean zero and standard deviation
ε, which we call the noise level . Since a 3-dimensional affine space in Rn has
4(n− 3) degrees of freedom1, the geometric AIC has the following form [7]:

G-AICA
i⊕j = JA

i⊕j + 2
(
3(Ni + Nj) + 4(n− 3)

)
ε2. (8)

If two 3-dimensional affine spaces are fitted to the Ni points and the Nj points
separately, the degree of freedom is the sum of those for individual affine spaces.
Hence, the geometric AIC is given as follows [7]:

G-AICA
i,j = JA

i + JA
j + 2

(
3(Ni + Nj) + 8(n− 3)

)
ε2. (9)

Merging A i and A j is reasonable if G-AICA
i⊕j < G-AICA

i,j . However, this cri-
terion can work only for Ni + Nj > 4. Also, all the affine spaces are included
in subspaces of higher dimensions, so the matrix Q still provides information
about the possibility of merging. Following Kanatani [8, 10], we integrate these
two criteria to define the following similarity measure between the affine spaces
A i and A j :

sij =
G-AICA

i,j

G-AICA
i⊕j

max
pα∈Ai,pβ∈Aj

|Qαβ |. (10)

Two affine spaces with the largest similarity are merged successively until the
number of affine spaces becomes a specified number m. If some of the resulting
affine spaces contain less than four elements, they are taken as first candidates
to be merged.

For evaluating the geometric AIC, we need to estimate the noise level ε.
This can be done using the knowledge that the points {pα} should belong to a
1 It is specified by four points in Rn, but they can move within that affine space into

three directions. So, the degree of freedom is 4n− 4× 3.
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(a)

(b)

Fig. 1. Image sequences of points in (a) 3-dimensional motion and (b) 2-dimensional
motion.

(4m− 1)-dimensional affine space in Rn in the absence of noise. Let JA
t be the

residual for fitting a (4m− 1)-dimensional affine space to {pα}. Then, JA
t /ε2 is

subject to a χ2 distribution with (n− 4m + 1)(N − 4m) degrees of freedom [7],
so we obtain the following unbiased estimator of ε2:

ε̂2A =
JA

t

(n− 4m + 1)(N − 4m)
. (11)

3.3 Dimension correction and robust fitting

We also incorporate two addtional techniques which proved very effective in the
subspace separation [8, 10]. The first is dimension correction: as soon as more
than four elements are grouped together, we optimally fit a 3-dimensional affine
space to them and replace the points with their projections onto the fitted affine
space for computing the matrix Q. This effectively reduces the noise in the data
if the local grouping is correct.

The second technique is an a posteriori reallocation. Since a point that is
misclassified in the course of merging never leaves that class, we attempt to
remove outliers from the m resulting classes A1, ..., Am by robust fitting. Points
near the origin may be easily misclassified, so we select from each class A i

half (but not less than four) of the elements that have large norms. We fit 3-
dimensional affine spaces A′1, ..., A′m to them again and select from each class
A i half (but not less than four) of the elements whose distances to the closest
affine space A ′

j , j 6= i, are large. We fit 3-dimensional affine spaces A′′1 , ..., A′′m
to them again and allocate each data point to the closest one. Finally, we fit
3-dimensional affine spaces A′′′1 , ..., A′′′m to the resulting point sets by LMedS
[16]. Each data point is reallocated to the closest one.
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Fig. 2. Misclassification ratio of segmentation vs. the noise level ε (pixels) for the
3-D motion of Fig. 1(a) and the 2-D motion of Fig. 1(b): (1) greedy algorithm, (2)
Ichimura’s method, (3) subspace separation, and (4) affine space separation.

3.4 Experiments

Fig. 1(a) is a sequence of five simulated images (512 × 512 pixels) of 20 points
in the background and 14 points in an object. They are independently moving
in three dimensions. Fig. 2(b) is a sequence of five simulated images (512× 512
pixels) of 20 points in the background and 5 points in an object. They are
independently moving in two dimensions.

We added Gaussian noise of mean 0 and standard deviation ε (pixels) to the
coordinates of all the points and classified them into two groups. If the motion
is 2-dimensional, the vector m3 in eq. (4) can be taken to be identically zero,
so the N points {pα} should belong to a 2-dimensional affine space within the
3-dimensional subspace spanned by {m0, m1, m2}. The algorithm described in
the preceding sections can easily be tailored to this case (we omit the details).

Fig. 2 plots the average ratio of misclassified points over 500 independent
trials for different ε for the 3-dimensional motion (a) and the 2-dimensional
motion (b): we compared (1) the greedy algorithm, (2) Ichimura’s method [4],
(3) the subspace separation [8, 10], and (4) our affine space separation. As we
see, the subspace separation indeed outperforms both the greedy algorithm and
Ichimura’s method, but the affine space separation further improves the accuracy.
The improvement is particularly remarkable for the 3-dimensional motion; for
the 2-dimensional motion the subspace separation already gives a nearly ideal
solution.

Thus, one is tempted to conclude that the affine space separation is better
than the subspace separation. We now assert that this is not necessarily so.

4 Effective Noise

4.1 Effective noise level

The performance gain of the affine space separation is brought about by using
a stronger constraint. In general, the stronger the constraint, the better the
inference based on it provided it strictly holds. However, any constraint is an
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Fig. 3. The perspective effects of the third frame of Fig. 1(a) for the angles of view α
= 0◦ (orthographic projection), 40◦, and 80◦.

idealization of the phenomenon, and slight deviations from it are regarded as
“noise”, which we call effective noise to distinguish it from other sources of
data inaccuracy (e.g., insufficient image resolution). Generally, the stronger the
constraint, the less strictly it holds. In other words, the effective noise is usually
larger for a stronger constraint than for a weaker constraint.

Suppose we have correctly segmented N points into m groups by subspace
separation, and let JS

1 , ..., JS
m be the residuals of fitting d-dimensional subspaces

to individual groups, where d = 3 or 4 depending on whether the motion is 2-
dimensional or 3-dimensional. The effective noise level εS is defined in such a
way that random noise of that magnitude would produce these residuals. Using
the same logic for deriving eq. (11), we obtain

ε2S =
∑m

i=1 JS
i

(n− d)(N − d)
. (12)

Similarly, if JA
1 , ..., JA

m are the residuals of fitting (d− 1)-dimensional affine
spaces to individual groups, the effective noise level εA is estimated from

ε2A =
∑m

i=1 JA
i

(n− d + 1)(N − d)
. (13)

4.2 Perspective effects

Since both the subspace constraint and the affine space constraint are based on
the affine camera model of eq. (4), the effective noise is not zero for a perspective
camera even when no image noise exists. Moreover, it should be different for the
subspace constraint and for the affine space constraint, since their strengths are
different. To confirm this, we added perspective effects to the image sequence
of Fig. 1(a) by changing the angle of view α with the field of view fixed. Fig. 3
shows the changes of the third frame of Fig. 1(a) for α = 0◦, 40◦, and 80◦ (α =
0◦ corresponds to orthographic projection).

Fig. 4(a) plots the effective noise level vs. the angle of view α for the affine
space constraint (solid line) and the subspace constraint (dashed line). We can
see that the presence of perspective effects is equivalent to much larger noise
for the affine space constraint than the subspace constraint, which is relatively
insensitive to the angle of view.
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Fig. 4. (a) Effective noise level vs. the angle of view α (degrees) for the affine space
constraint (solid line) and the subspace constraint (dashed line). (b) Misclassification
ratio of segmentation vs. the noise level ε (pixels) for affine space separation (solid
lines) and subspace separation (dashed lines). For each, the angles of view are α = 0◦,
40◦, and 80◦ from bottom to top.

Fig. 4(b) shows the average misclassification ratio of the affine space sepa-
ration and the subspace separation when Gaussian noise of standard deviation
ε is added to image coordinates for the angles of view α = 0◦, 40◦, and 80◦.
The result is quite different from Fig. 2(a), because in the presence of the per-
spective effects the noise level ε on the horizontal axis of Fig. 2(a) should be
read to be the sum of the effective noise and the random noise. For the affine
space constraint, the effective noise is already high even when random noise is
small, so the misclassification ratio is very high as compared with the subspace
constraint. As random noise increases, however, the misclassification ratio of the
subspace separation grows more rapidly than the affine space separation, because
the latter has a higher capability of canceling random noise.

Thus, we are compelled to conclude that neither the affine space separation
nor the subspace separation is universally superior; their performance depends
on the balance between the perspective effects and the data accuracy.

5 A Posteriori Evaluation of Segmentation

If neither of the two methods is always better than the other, and if the two
methods produce different solutions, which should we believe? We present two
criteria for evaluating the reliability of individual segmentations.

5.1 F test for segmentation

Suppose the N points {pα} are segmented into m groups having Ni points, i =
1, ..., m. We first consider the subspace separation.

Let JS
i be the residual of fitting a d-dimensional subspace Li to the ith group.

The subspace Li has codimension n− d and d(n− d) degrees of freedom. Hence,
JS

i /ε2 should be subject to a χ2 distribution with

φS
i = (n− d)Ni − d(n− d) = (n− d)(Ni − d) (14)
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Fig. 5. The residual of subspace fitting.

degrees of freedom [7].
If we let JS

t be the residual of fitting an md-dimensional subspace Lt to the
entire N points {pα}, JS

t /ε2 should be subject to a χ2 distribution with

φS
t =

m∑

i=1

(n−md)Ni −md(n−md) = (n−md)(N −md) (15)

degrees of freedom irrespective of the correctness of the segmentation.
The residual JS

i is the sum of squared distances of the points of the ith group
to the subspace Li, which is the sum of their squared distances to the subspace Lt

and the squared distances of their projections onto Lt to the subspace Li (Fig. 5).
Let us call the former the external distances, and the latter the internal distances.
The sum of the squared internal distances for all the points is

∑m
i=1 JS

i − JS
t ;

the sum of the squared external distances is JS
t .

If the segmentation is correct (the null hypothesis), (
∑m

i=1 JS
i −JS

t )/ε2 should
also be subject to a χ2 distribution. The noise that contributes to the internal
distances and the noise that contributes to the external distances are orthogonal
to each other, hence independent. So, (

∑m
i=1 JS

i − JS
t )/ε2 has

m∑

i=1

φS
i − φS

t = (m− 1)d(N −md) (16)

degrees of freedom [7]. It follows that

FS =
(
∑m

i=1 JS
i − JS

t )/(m− 1)d(N −md)
JS

t /(n−md)(N −md)
(17)

should be subject to an F distribution with (m−1)d(N−md) and (n−md)(N−
md) degrees of freedom. If this segmentation is not correct (the alternative hy-
pothesis), the internal distances will increase on average while the external dis-
tances are not affected. It follows that if

F
(m−1)d(N−md)
(n−md)(N−md)(α) < FS , (18)

this segmentation is rejected with significance level α, where F
(m−1)d(N−md)
(n−md)(N−md)(α)

is the upper αth percentile of the F distribution with (m − 1)d(N − md) and
(n−md)(N −md) degrees of freedom.
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We can do the same for the affine space separation. Let JA
i be the residual

of fitting a (d−1)-dimensional affine space A i to the ith group. The affine space
A i has codimension n−d+1 and d(n−d+1) degrees of freedom. Hence, JA

i /ε2

should be subject to a χ2 distribution with

φA
i = (n− d + 1)Ni − d(n− d + 1) = (n− d+)(Ni − d) (19)

degrees of freedom. If we let JA
t be the residual of fitting an (md−1)-dimensional

affine space At to the entire N points {pα}, JA
t /ε2 should be subject to a χ2

distribution with

φA
t =

m∑

i=1

(n−md + 1)Ni −md(n−md + 1) = (n−md + 1)(N −md) (20)

degrees of freedom irrespective of the correctness of the segmentation. If this
segmentation is correct, (

∑m
i=1 JA

i − JA
t )/ε2 should also be subject to a χ2 dis-

tribution with
m∑

i=1

φA
i − φA

t = (m− 1)d(N −md) (21)

degrees of freedom. It follows that

FA =
(
∑m

i=1 JA
i − JA

t )/(m− 1)d(N −md)
JA

t /(n−md + 1)(N −md)
(22)

should be subject to an F distribution with (m− 1)d(N −md) and (n−md +
1)(N −md) degrees of freedom. Hence, if

F
(m−1)d(N−md)
(n−md+1)(N−md)(α) < FA, (23)

this segmentation is rejected with significance level α.

5.2 Model selection for segmentation

The result of an F test depends on the significance level, which we can arbitrarily
set. In contrast, model selection can dispense with any thresholds. Here, we apply
the geometric AIC and the geometric MDL [9] (see [18] for other types of model
selection criterion).

We first consider the subspace separation. The geometric AIC and the ge-
ometric MDL for the model that the segmentation is correct are, respectively,∑m

i=1 G-AICS
i and

∑m
i=1 G-MDLS

i , where G-AICS
i and G-MDLS

i are given as
follows:

G-AICS
i = JS

i + 2
(
dNi + d(n− d)

)
ε2,

G-MDLS
i = JS

i −
(
dNi + d(n− d)

)
ε2 log

( ε

L

)2

. (24)
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Here, L is a reference length, for which we can use an arbitrary value whose order
is approximately the same as the data, say the image size; the model selection
result is not affected as long as it has the same order of magnitude [9].

The geometric AIC and the geometric MDL for the general model that the
points {pα} can be somehow segmented into m motions are given as follows:

G-AICS
t = JS

t + 2
(
mdNi + md(n−md)

)
ε2,

G-MDLS
t = JS

t −
(
mdNi + md(n−md)

)
ε2 log

( ε

L

)2

. (25)

Since the latter model is correct irrespective of the segmentation result, we can
estimate the noise level ε from it, using

ε̂2 =
JS

t

(n−md)(N −md)
. (26)

The condition that the segmentation is not correct is G-AICS
t <

∑m
i=1 G-AICS

i

or G-MDLS
t <

∑m
i=1 G-MDLS

i , which are rewritten, respectively, as

2 < FS , − log
( ε

L

)2

< FS , (27)

where FS is the F statistic given by eq. (17). Thus, model selection reduces to
the F test, the difference being that the threshold is given without specifying
any significance level. When the noise is small, − log(ε/L)2 is usually larger than
2, so the geometric AIC is more conservative than the geometric MDL, which is
more confident of the particular result.

Next, we consider the affine space separation. The geometric AIC and the
geometric MDL of the ith group are

G-AICA
i = JA

i + 2
(
(d− 1)Ni + d(n− d + 1)

)
ε2,

G-MDLA
i = JA

i −
(
(d− 1)Ni + d(n− d + 1)

)
ε2 log

( ε

L

)2

. (28)

The geometric AIC and the geometric MDL for the general model are

G-AICA
t = JA

t + 2
(
(md− 1)Ni + md(n−md + 1)

)
ε2,

G-MDLA
t = JA

t −
(
(md− 1)Ni + md(n−md + 1)

)
ε2 log

( ε

L

)2

. (29)

The noise level ε is estimated from the general model, using

ε̂2 =
JA

t

(n−md + 1)(N −md)
. (30)

The condition that the segmentation is not correct is G-AICA
t <

∑m
i=1 G-AICA

i

or G-MDLA
t <

∑m
i=1 G-MDLA

i , which reduces to

2 < FA, − log
( ε

L

)2

< FA, (31)

where FA is the F statistic given by eq. (22).
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Fig. 6. Real images of moving objects (above) and the selected feature points (below).

6 Real Image Experiments

Fig. 6 shows a sequence of perspectively projected images (above) and feature
points manually selected from them (below). Three objects are fixed in the scene,
so they are moving rigidly with the scene, while one object is moving relative to
the scene. The image size is 512× 768 pixels.

We applied the greedy algorithm and Ichimura’s method [4] and found that
the resulting segmentations contained some errors. However, the subspace sepa-
ration and the affine space separation both resulted in the correct segmentation.
We then evaluated the reliability of this segmentation and observed the following:

1. The effective noise levels computed from eqs. (12) and (13) give εS = 0.64
(pixels) and εA = 0.94 (pixels), confirming our prediction that the affine
space separation has larger effective noise than the subspace separation.

2. The F statistics of eqs. (17) and (22) are FS = 0.893 and FA = 1.483.
The corresponding upper 5th percentiles are 1.346 and 1.293, respectively,
so with significance level 5% the subspace separation is not rejected but the
affine space separation is rejected.

3. From eqs. (27) and eqs. (31), the geometric AIC selects both segmentations
as correct. The subspace separation passes the test with a larger margin than
the affine subspace separation.

4. Letting L = 600, we have − log(ε̂/L) = 13.5, 13.1 for the subspace sepa-
ration and the affine space separation, respectively, so the geometric MDL
again selects both segmentations as correct. The geometric MDL accepts the
segmentation result much more leniently than the geometric AIC.

All these tests indicate that for this image sequence the subspace separation is
more reliable than the affine space separation. In other words, although both
segmentations happen to be correct for the current occurrence of noise, the
subspace separation has a larger chance of being correct than the affine space
separation if noise occurred differently .

To test this prediction, we did a bootstrap experiment [1]: we added random
Gaussian noise of mean 0 and standard deviation 1 (pixel) to the coordinates of
the detected feature points in Fig. 6 and did segmentation 500 times, each time
using different noise. We found that the subspace separation was correct 100%
while the affine space separation was correct only for 90.9% of the trials. We
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then increased the standard deviation to 2 (pixels) and found that the subspace
separation was still correct 100% while the affine space separation was correct
only 85.3%.

Thus, we have confirmed that if the two methods produced different seg-
mentations we would have to believe the subspace segmentation for this image
sequence, for which the perspective effect is relatively strong while the feature
detection is relatively accurate (since we did manual selection).

7 Concluding Remarks

In this paper, we first presented an improvement, in theory, of the subspace sepa-
ration [8, 10] for motion segmentation by incorporating the affine space constraint
and demonstrated by simulation that it outperforms the subspace separation.

Next, we pointed out that this gain in performance is due to the stronger
constraint based on the affine camera model and that this introduces effective
noise that accounts for the deviation from the model. We have confirmed this
by simulation.

Then, we presented two criteria for evaluating the reliability of a given seg-
mentation: the standard F test, and the geometric model selection criteria [9].
Using real images, we have demonstrated that these criteria enable us to judge
which solution to adopt if the two methods result in different segmentations.

We have observed that the affine space separation is more accurate than the
subspace separation when the perspective effects are weak and the noise in the
data is large, while the subspace separation is more suited for images with strong
perspective effects with small noise. In practice, we should apply both methods,
and if the results are different, we should select the more reliable one indicated
by our proposed criteria.

In this paper, we have assumed that the number of independent motions is
known. Model selection can also provide a powerful tool for estimating it (see
[10, 11] for some results).
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