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Abstract. We present a scheme for simultaneous calibration of a con-

tinuously moving and continuously zooming camera: placing an easily

distinguishable pattern in the scene, we calibrate the camera from an

unoccluded portion of the pattern image in each frame. We describe an

optimal method which provides an evaluation of the reliability of the

solution. We then propose a technique for avoiding the inherent degen-

eracy and statistical uctuations by model selection using the geometric

AIC and the geometric MDL.

1 Introduction

Visually presenting 3-D shapes of real objects is one of the main goals of many

Internet applications such as network cataloging and virtual museums. Today,

generating virtual images by embedding graphics objects in real scenes or real

objects in graphics scenes, known as mixed reality, is one of the central themes

of image and media applications. In order to reconstruct the 3-D shapes of real

objects or scenes for such applications, we need to know the 3-D position of the

camera that we use and its internal parameters. Thus, camera calibration is a

�rst step in all vision and media applications.

The standard method for it is pre-calibration: the camera internal parameters

are determined from images of objects or patterns of known 3-D geometry in a

controlled environment [1, 18, 29, 34, 36, 37]. Recently, techniques for computing

both the camera parameters and the 3-D positions of the camera from an image

sequence of the scene about which we have no prior knowledge have intensively

been studied [3, 24]. Such a technique, known as self-calibration, may be useful

in unknown environments such as outdoors. For stable reconstruction, however,

it requires a long sequence of images taken from unconstrained camera positions

and feature matching among frames. As a result, the amount of computation

is too large for real-time applications, and it cannot be applied if the camera

motion is constrained or the scene changes as the camera moves unless we are



Fig. 1. Simultaneous calibration of a moving camera: we observe an unoccluded part

of the image of a planar pattern placed in the scene.

given a priori information about the constraint or the scene change (see, e.g.,

[6, 9, 28] for self-calibration based on a priori information about the camera

motion).

In this paper, we focus on virtual studio applications [7, 30]: we take images

of moving objects such as persons and superimpose them in a graphics-generated

background in real time by computing the 3-D positions and zooming of a mov-

ing camera. Since the scene as well as the position and zooming of the camera

changes from frame to frame, we cannot pre-calibrate or self-calibrate the cam-

era.

This di�culty can be overcome by placing an easily distinguishable planar

pattern with a known geometry in the scene (Fig. 1): we detect an unoccluded

portion of the pattern image in each frame, compute the 3-D position and zoom-

ing of the camera from it, and remove the pattern image by segmentation. We

call this strategy simultaneous calibration. It has many elements that do not

appear in pre-calibration:

1. While manual interventions can be employed in pre-calibration, simultaneous

calibration must be completely automated. In particular, we must automat-

ically identify the 3-D positions of the marker points that are unoccluded in

each frame.

2. Since the number of unoccluded marker points is di�erent in each frame, the

accuracy of calibration is di�erent from frame to frame. Hence, not only do

we need an accurate computational procedure but also a scheme for evalu-

ating the reliability of the computed solution.

3. Since we have no control over the camera position relative to the pattern,

degenerate con�gurations can occur: when the camera optical axis is perpen-

dicular to the pattern, the 3-D position and focal length of the camera are

indeterminate because zooming out and moving the camera forward cause

the same visual e�ect.

4. As the object moves in the scene, some unoccluded marker points become

occluded while others become occluded. As a result, the computed camera

position may not be the same even if the camera is stationary in the scene.

This type of statistical uctuations becomes conspicuous when the camera

motion is small.



In this paper, we introduce a statistical model of image noise and describe a

procedure for computing an optimal solution that attains the Cramer-Rao lower

bound (CRLB) in the presence of noise. As a result, we can evaluate the reliability

of the solution by computing an estimate of the CRLB.

We then show that degeneracy and statistical uctuations can be avoided by

model selection. At each frame, we predict the 3-D position and zooming of the

camera in multiple ways from the past history. We then evaluate the goodness

of each prediction, or model, and adopt the best one. In this paper, we use the

geometric AIC introduced by Kanatani [12, 14] and the geometric MDL to be

de�ned shortly as the model selection criterion.

The geometric MDL we use is di�erent from the traditional MDL used in

statistics and some vision applications [8, 11, 21, 22, 31]. We compare the per-

formances of the geometric AIC and the geometric MDL by doing numerical

simulations and real image experiments.

2 Basic Principle

We �x an XY Z world coordinate system in the scene and place a planar pattern

in parallel to the XY plane at a known distance d. We imagine a hypothetical

camera with a known focal length f

0

placed at the world origin O in such a

way that the optical axis coincides with the Z-axis and the image x- and y-

axes are parallel to the X- and Y -axes. The 3-D position of the actual camera

is regarded as obtained by rotating the hypothetical camera by R (rotation

matrix), translating it by t, and changing the focal length into f ; we call ft,

Rg the motion parameters. We regard the focal length f as a single unknown

internal parameter, assuming that other parameters, such as the image skew and

the aspect ratio, have already been pre-calibrated so that the imaging geometry

can be modeled as a perspective projection.

Suppose N points on the planar pattern with known coordinates (X

�

; Y

�

; d)

are observed at (x

�

; y

�

) in the image. If we de�ne the 3-D vectors
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we have the following relationship:

x

�

= Z[H
�
x

�

]: (2)

Here, Z[ � ] denotes normalization to make the third component 1, and H is the

matrix in the following form [12]:

H = diag(1; 1;

f

0

f

)R
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: (3)

Throughout this paper, i, j and k denote (1; 0; 0)

>

, (0; 1; 0)

>

, and (0; 0; 1)

>

,

respectively, and diag(� � �) denotes the diagonal matrix with diagonal elements

� � �.



3 Optimal Computation

Eq. (2) de�nes an image transformation called homography. Since the unknown

parameters are ft, Rg and f , the homography has seven degrees of freedom. If

the homography is unconstrained with eight degrees of freedom, we can apply

our statistically optimal renormalization-based algorithm [15]; its C++ code is

available via the Web

3

. Here, however, the homography is constrained. So, we

take the bundle-adjustment approach based on Newton iterations.

Let V [x

�

] be the covariance matrix of the data vector x

�

. We assume that

it is known only up to scale and write

V [x

�

] = �

2

V

0

[x

�

]: (4)

We call the unknown magnitude � the noise level and the matrix V

0

[x

�

] the

normalized covariance matrix . Since the third component of x is 1, V

0

[x

�

] is a

singular matrix of rank 2 with zeros in the third row and the third column. If

the noise has no particular dependence on position and orientation, it has the

form diag(1; 1; 0), which we use as the default value.

If the noise is Gaussian, an optimal estimate of H is obtained by maximum

likelihood estimation [12]: we minimize the average squaredMahalanobis distance

J =

1

N

N

X

�=1
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�
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�
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0
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�

]

�

(x

�

� Z[H
�
x

�

])); (5)

where and throughout this paper the operation ( � )

�

denotes the (Moore-

Penrose) generalized inverse and (a; b) denotes the inner product of vectors a

and b. We de�ne the following non-dimensional variables:

� =

f

f

0

; � =

t

d

: (6)

The �rst order perturbation of R is written as R ! R +�
 �R, where �


is a 3-D vector and �
 �R is a matrix whose columns are the vector products

of �
 and each columns of R [12]. We de�ne the gradient rJ and the Hessian

r

2

J with respect to f�, � , Rg in such a way that the Taylor expansion of J has

the form

J(�+��; � +�� ;R+�
 �R)

= J(�; � ;R) + (rJ;
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The solution that minimizes J is obtained by the following Newton iterations:

1. Give an initial guess of �, � , and R.

2. Compute the gradient rJ and the Hessian r

2

J (their actual expressions are

omitted).
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3. Compute ��, �� , and �
 by solving the linear equation

�

r

2

J

�

0

@

��

��

�


1

A

= �rJ: (8)

4. If j��j < �

�

, k��k < �

�

, and k�
k < �

R

, return �, � , and R and stop.

Otherwise, update �, � , and R in the form

� �+��; �  � +�� ; R R(�
)R; (9)

and go back to Step 2.

The symbol R(�
) denotes the rotation of angle k�
k around �
; �

�

, �

�

,

and �

R

are thresholds for convergence.

The initial guess of �, � , and R can be obtained by computing the homogra-

phyH between f
�
x

�

g and fx

�

g, say, by least squares or by the renormalization-

based method [15] without considering the constraint and approximately decom-

posing it into �, � , and R in the form of eq. (3) (an analytical procedure for this

is given in [20]). However, this procedure is necessary only for the initial frame.

For the subsequent frames, we can start from the solution in the preceding frame

or an appropriate prediction from it, as we will describe shortly.

4 Reliability Evaluation

The squared noise level �

2

can be estimated from the residual

^

J (the minimum

value of J) in the following form [12]:

�̂

2

=

^

J

2� 7=N

: (10)

Let r

2

^

J be the resulting Hessian. The covariance matrix of f

^

�,
^
� ,

^

Rg is esti-

mated in the following form:
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^

�; �̂ ;

^
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2�̂

2
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r

2

^

J

�

�1

: (11)

This gives an estimate of the Cramer-Rao lower bound (CRLB) on V [

^

�;
^
� ;

^

R]

[12].

The (1,1) element of V [

^

�;
^
� ;

^

R] gives the variance V [

^

�] of �. It follows that

if the error distribution is approximated to be Gaussian, the 99.7% con�dence

interval of f has the form

^

�� 3

q
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f

f

0

<

^

�+ 3

q

V [

^

�]: (12)

The submatrix of V [

^

�;
^
� ;

^

R] de�ned by its second to fourth rows and columns

gives the covariance matrix V [
^
� ] of � . Let �
 and l be, respectively, the angle

and axis of the rotation

^

R

�

R

>

relative to the true rotation

�

R. Let �
 = �
l.

The submatrix of V [

^

�;
^
� ;

^

R] de�ned by its �fth to seventh rows and columns

gives the covariance matrix V [

^

R] of �
.



empirical CRLB

focal length (pixles) 33.4 34.0

translation (cm) 32.9 32.6

rotation (deg) 0.413 0.414

Fig. 2. Simulated image of a grid pattern (left); the standard deviations of the opti-

mally computed solutions and estimates of their Cramer-Rao lower bounds (right).

(a) (b) (c)

Fig. 3. (a) Histogram of the computed focal length. (b) Error distribution of the

computed translation. (c) Error distribution of the computed rotation.

5 Examples of Reliability Evaluation

5.1 Numerical simulation

Fig. 2 shows a simulated image of a grid pattern viewed from an angle. We added

Gaussian random noise of mean 0 and standard deviation 1 (pixel) to the x and

y coordinates of the vertices independently and computed the focal length and

the motion parameters 1,000 times, using di�erent noise each time. The standard

deviations of the computed solutions and estimates of their CRLBs are listed in

Fig. 2.

Fig. 3(a) is the histogram of the computed focal length

^

f . The vertical lines

indicate the estimated CRLB. Fig. 3(b) is a 3-D plot of the distribution of the

error vector �t =

^

t�

�

t of translation. The ellipse indicates the estimated CRLB

in each orientation. Fig. 3(c) is a 3-D plot of the error vector �
 of rotation

depicted similarly.

From these results, we can con�rm that the estimated CRLB can be used as

a reliability measure of the solution.

5.2 Tennis court scene

Fig. 4(a) is a real image of a tennis court. Since the size of the court is stipulated

by an international rule, we can compute the 3-D camera position and the focal

length by using this knowledge. The focal length is estimated to be 955 pixels.



(a) (b) (c)

Fig. 4. (a) A real image of a tennis court. (b) The computed camera position viewed

from above. (c) A virtual scene generated from (a).

The camera is estimated to be at 627cm above the ground. The standard devi-

ations of the focal length, the translation, and the rotation are evaluated to be

6.99 pixels, 16.14cm, and 0.151 deg, respectively.

Fig. 4(b) shows the top view of the tennis court generated from Fig. 4(a).

The estimated camera position is plotted there and encircled by an ellipse, which

indicates three times the standard deviation of the estimated position in each

orientation (actually it is an ellipsoid viewed from above).

The images of the poles and the persons in Fig. 4(b) can be regarded as their

\shadows" on the ground cast by hypothetical light emitted from the camera, so

we can compute their heights [5, 10]. The right pole is estimated to be 113cm in

height. The person near the camera is estimated to be 171cm tall. This technique

can be applied to 3-D analysis of sports broadcasting [25, 28]. Since we know the

3-D structure of the scene, we can generate a virtual view of a new object placed

in the scene. Fig. 4(c) is a virtual view of a logo placed on the tennis court.

5.3 Virtual studio

Fig. 5(a) is a real image of a toy, behind which is placed a grid pattern colored

light and dark blue. The grid pattern is placed on the oor perpendicularly. The

camera optical axis is almost parallel to the oor. Unoccluded grid points in

the image were matched to their true positions in the pattern by observing the

cross ratio of adjacent points. This pattern is so designed that the cross ratio is

di�erent everywhere in such a way that matching can be done in a statistically

optimal way in the presence of image noise [17, 19].

After separating the toy image from the background by using a chromakey

technique, we computed the 3-D position and focal length of the camera by

observing an unoccluded portion of the grid pattern (see [19] for the image

processing details). The focal length is estimated to be 576 pixels. The standard

deviations of the focal length, the translation, and the rotation are evaluated to

be 38.3 pixels, 5.73cm, and 0.812 deg, respectively.

Fig. 5(b) is the top view of the estimated camera position and its uncertainty

ellipsoid (three times the standard deviation in each orientation). Fig. 5(c) is a

composition of the toy image and a graphics scene generated by VRML.



(a) (b) (c)

Fig. 5. (a) Original image. (b) Estimated camera position and its reliability. (c) A

virtual scene generated from (a).

6 Trajectory Stabilization

If the camera optical axis is perpendicular to the planar pattern, the Hessian

r

2

J in eq. (8) is a singular matrix, so the solution is indeterminate. This does

not occur in practice due to image noise, but the resulting solution is numerically

unstable. Also, as pointed out in Introduction, the computed camera position

uctuates when the camera motion is small. We now present a technique for

avoiding degeneracy and statistical uctuations by model selection.

6.1 Model selection criteria

The homography H given by eq. (3) is parameterized by ft, Rg and f , having

seven degrees of freedom. If the motion and zooming of the camera are con-

strained in some way (e.g., the camera is translated without rotation or zoom-

ing), the homographyH has a smaller degree of freedom, and a smaller number

of parameters need to be estimated. In general, parameter estimation becomes

stabler as the number of parameters decreases.

It follows that we can stably estimate the parameters or avoid degeneracy if

we know the constraint on the camera motion or zooming [6, 9, 28]. In practice,

however, we do not know how the camera is moving or zooming. Our strategy

here is to assume probable constraints (translation only, etc.), which we call

models, compare each other, and adopt the best one. A naive idea for this is to

compute the residual

^

J for each model and choose the one for which it is min-

imum. However, this does not work: the general model always has the smallest

residual, since the residual decreases as the degree of freedom increases.

The best known criterion for balancing the residual and the degree of the

freedom of the model is Akaike's AIC [2] designed for statistical estimation and

used in some vision applications [4]. Kanatani's geometric AIC [12, 14] is a

variant of Akaike's AIC speci�cally designed for geometric estimation and has

been applied to a variety of vision applications [13, 16, 23, 31, 32, 33, 35]. In the

present case, the geometric AIC for minimizing eq. (5) is written as

G-AIC =

^

J + 2k�

2

; (13)



where k is the degree of freedom of the homography H . The square noise level

�

2

is estimated from the general model in the form of eq. (10).

Another well known criterion is Rissanen's MDL (minimum description

length) based on the information theoretic code length of the model [26, 27]. It

is derived by analyzing the function space of \stochastic models" identi�ed with

parameterized probability densities in the asymptotic limit of a large number of

observations. Here, the models we want to compare are geometric constraints,

not parameterized probability densities. Also, we are given only one set of data

(i.e., one observation) for each frame. Hence, Rissanen's MDL cannot be used in

its original form.

The starting point of Rissanen's MDL is the observation that encoding a

real number requires an in�nite code length. Rissanen's idea is to quantize the

parameters to obtain a �nite code length, taking into account the fact that real

numbers cannot be estimated completely [27]. The quantization width is deter-

mined by attainable estimation accuracy, which in turn is determined by the

data length n. Since the code length diverges as n!1, asymptotic approxima-

tion comes into play. In this sense, the \minimum description length" actually

means the \minimum growth rate" of the description length.

Suppose we hypothetically repeat independent observations, although the

actual observation is done only once. The accuracy of estimation increases as the

number of hypothetical observations, so we can de�ne the MDL by asymptotic

analysis. But increasing the number n of observations e�ectively reduces the

noise level � to O(1=

p

n). It follows that we can de�ne the MDL as the \growth

rate" of the description length as � ! 0. The �nal form is as follows (we omit

the details of the code length analysis):

G-MDL =

^

J � k�

2

log �

2

: (14)

We call this criterion the geometric MDL

4

. This form can also be obtained from

Rissanen's MDL by replacing n by 1=�

2

and is di�erent from any MDLs used in

statistics and vision applications [8, 11, 21, 22, 31] in that ours does not contain

the logarithm of the number of the data.

6.2 Degeneracy detection

If degeneracy occurs, the con�dence interval (12) expands in�nitely wide if no

noise exist. In the presence of noise, it has a �nite width. We decide that degen-

eracy has occurred if the con�dence interval (12) contains negative values of f .

This means that we adopt the following criterion:

V [

^

�] >

^

�

2

9

: (15)

The variance V [

^

�] equals the (1,1) element of the covariance matrix V [

^

�;
^
� ;

^

R]

given by eq. (11), so it is equal to 2�̂

2

(r

2

^

J)

y

11

=N det(r

2

^

J), where (r

2

^

J)

y

11

is the

4

Since the additive terms can be ignored when � � 1, changing the unit of length

does not a�ect the relative comparison of models asympotitically.



(1,1)-cofactor of the Hessian r

2

^

J (the determinant of the submatrix obtained

by removing the �rst row and the �rst column of r

2

^

J). Hence, eq. (15) can be

rewritten in the form

18�̂

2

N

�

r

2

^

J

�

y

11

�

^

�

2

det

�

r

2

^

J

�

> 0: (16)

Since matrix inversion is no longer involved, this expression can always be stably

evaluated.

6.3 Models of zooming and motion of the camera

We predict the focal length f and the motion parameters ft, Rg in the next

frame from the values f

i

and ft

i

, R

i

g of the current frame and the values f

i�1

and ft

i�1

, R

i�1

g of the preceding frame. Here, we consider the following six

models:

Stationary model: We assume that the camera is stationary: f = f

i

, t = t

i

,

and R = R

i

. Let

^

J

�

be the corresponding residual. This model has zero

degrees of freedom.

t-�xed model: We assume that the camera only rotates. We let f = f

i

and t =

t

i

and optimally compute the rotation R by Newton iterations starting from

R

i

. Let

^

J

s

0

be the corresponding residual. This model has three degrees of

freedom.

t-predicted model: Assuming that the zooming does not change, we linearly

extrapolate the camera position and let t = 2t

i

� t

i�1

. Then, we optimally

compute the rotation R by Newton iterations starting from R

i

R

>

i�1

R

i

. Let

^

J

p

0

be the corresponding residual. This model has three degrees of freedom.

f-�xed model: Assuming that the zooming does not change, we optimally

compute the motion parameters ft, Rg by Newton iterations starting from

ft

i

, R

i

g. Let

^

J

s

be the corresponding residual. This model has six degrees

of freedom. The square noise level �

2

is estimated by

�̂

2

s

=

^

J

s

2 � 6=N

: (17)

f-predicted model: We linearly extrapolate the focal length and let f = 2f

i

�

f

i�1

. Then, we optimally compute the motion parameters ft, Rg by Newton

iterations starting from f2t

i

�t

i�1

, R

i

R

>

i�1

R

i

g. Let

^

J

p

be the corresponding

residual. This model has six degrees of freedom. The square noise level �

2

is

estimated by

�̂

2

p

=

^

J

p

2� 6=N

: (18)

General model: We optimally compute the focal length f and the motion pa-

rameters ft, Rg by Newton iterations starting from the solution obtained

from the f -predicted model. Let

^

J

g

be the corresponding residual. This

model has seven degrees of freedom.



Degeneracy is detected from the f -predicted model. Namely, we estimate the

square noise level �

2

by eq. (18) and evaluate the criterion (16). If degeneracy

is not detected, we compare the stationary model, the f -�xed model, the f -

predicted model, and the general model. Estimating the square noise level �

2

by eq. (10), we evaluate the geometric AICs and the geometric MDLs of these

models in the following form:

G-AIC

�

=

^

J

�

; G-AIC

s

=

^

J

s

+

12

N

�̂

2

; G-AIC

p

=

^

J

p

+

12

N

�̂

2

;

G-AIC

g

=

^

J

g

+

14

N

�̂

2

; G-MDL

�

=

^

J

�

; G-MDL

s
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J
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�

6

N

�̂

2

log �̂
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G-MDL
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J
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�

6

N

�̂

2

log �̂

2

; G-MDL

g

=

^

J

g

�

7

N

�̂

2

log �̂

2

: (19)

The model that gives the smallest AIC or the smallest MDL is chosen.

If degeneracy is detected, we compare the stationary model, the t-�xed

model, the t-predicted model, and the f -�xed model. Estimating the square

noise level �

2

by eq. (17), we evaluate the geometric AICs and the geometric

MDLs of these models in the following form:

G-AIC

�

=

^

J

�

; G-AIC

s
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=

^

J

s
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N
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2
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; G-AIC
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0
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^

J

p
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N

�̂

2

s

;

G-AIC

s

=

^

J

s
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12

N

�̂

2

s

; G-MDL

�

=

^

J

�

; G-MDL

s
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The model that gives the smallest AIC or the smallest MDL is chosen.

7 Model Selection Examples

7.1 Numerical simulation

We simulate a camera motion in a plane perpendicular to a 3�3 grid pattern. In

the course of its motion, the camera is rotated so that the center of the pattern

is always �xed at the center of the image frame. First, the camera moves along a

circular trajectory as shown in Fig. 8(a). It perpendicularly faces the pattern at

frame 13 and stops at frame 20. The camera stays there for �ve frames (frames

20 � 24) and then recedes backward for another �ve frames (frames 25 � 30).

Adding random Gaussian noise of mean 0 and standard deviation 1 (pixel) to

each coordinate of the grid points independently at each frame, we compute the

focal length and the trajectory of the camera (Figs. 6(b) and 6(c)). Degeneracy

is detected at frames 12 and 13. In order to emphasize the fact that the frame-

wise estimation fails, we let f be 1 and the camera position be at the center of

the grid pattern in Figs. 6(b) and 6(c) when degeneracy is detected.
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Fig. 6. (a) Simulated camera motion. (b) Estimated focal lengths. (c) Estimated cam-

era trajectory. (d) Magni�cation of the portion of (c) for frames 20 � 24. In (b)�(d),

the solid lines indicate model selection by the geometric AIC; the thick dashed lines in-

dicate model selection by the geometric MDL; the thin dotted lines indicate frame-wise

estimation.

As we can see, both the geometric AIC and the geometric MDL produce a

smoother trajectory than frame-wise estimation and that the computed trajec-

tory smoothly passes through the degenerate con�guration. Fig. 6(d) is a mag-

ni�cation of the portion for frames 20 � 24 in Fig. 6(c). We can observe that

statistical uctuations exist if the camera position is estimated at each frame

independently and that the uctuations are removed by model selection.

From these results, it is clearly seen that the geometric MDL has a stronger

smoothing e�ect than the geometric AIC. This is because the penalty ��

2

log �

2

for each degree of freedom in the geometric MDL is generally larger than the

penalty 2�

2

in the geometric AIC (see eq. (13) and eq. (14)) so the geometric

MDL tends to select a simpler model than the geometric AIC.

7.2 Virtual studio

Fig. 7 shows �ve sampled frames from a real image sequence obtained in the

setting described in Section 5.3. The camera moves from right to left with a

�xed focal length. The camera optical axis becomes almost perpendicular to the



Fig. 7. Sampled frames from a real image sequence.

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14 16

fo
ca

l l
en

gt
h 

[p
ix

el
s]

frame number

G-AIC
G-MDL

G-MDL
G-AIC

(a) (b)

Fig. 8. (a) Estimated focal lengths. (b) Estimated camera trajectory. In (a) and (b),

the solid lines indicate model selection by the geometric AIC; the thick dashed lines in-

dicate model selection by the geometric MDL; the thin dotted lines indicate frame-wise

estimation.

grid pattern in the 15th frame. Degeneracy is detected there and thereafter.

Fig. 8(a) shows the estimated focal lengths; Fig. 8(b) shows the estimated

camera trajectory viewed from above. The frame-wise estimation fails when de-

generacy occurs. In this case, the estimation by the geometric MDL is more

consistent with the actual camera motion than the geometric AIC. But this is

because we �xed the zooming and moved the camera smoothly. If we added vari-

ations to the zooming and the camera motion, the geometric MDL would still

prefer a smooth motion. So, we cannot say which solution should be closer to

the true solution; it depends on what kind of solution we expect is desirable for

the application in question.

8 Concluding Remarks

Motivated by virtual studio applications, we have studied the technique for \si-

multaneous calibration" for computing the 3-D position and focal length of a

continuously moving and continuously zooming camera from an image of a pla-

nar pattern placed behind the object. We have described a procedure for com-

puting an optimal solution that provides an evaluation of the reliability of the

solution.

Then, we showed that degeneracy of the solution and statistical uctuations

of computation can be avoided by model selection: we predict the 3-D position

and focal length of the camera in multiple ways and select the best model using



the geometric AIC and the geometric MDL. Doing numerical and real-image

experiments, we have observed that the geometric MDL tends to select a simpler

model than the geometric AIC, thereby producing a smoother and more cohesive

estimation.
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