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Abstract. For fitting an ellipse to a point sequence, ML (maximum
likelihood) has been regarded as having the highest accuracy. In this pa-
per, we demonstrate the existence of a “hyperaccurate” method which
outperforms ML. This is made possible by error analysis of ML followed
by subtraction of high-order bias terms. Since ML nearly achieves the
theoretical accuracy bound (the KCR lower bound), the resulting im-
provement is very small. Nevertheless, our analysis has theoretical sig-
nificance, illuminating the relationship between ML and the KCR lower
bound.

1 Introduction

Circular and spherical objects in the scene are generally projected onto ellipses
on the image plane, and their 3-D shapes and positions can be computed from
their images [9]. For this reason, fitting ellipses (including circles) to a point
sequence is one of the first steps of various vision applications, and numerous
papers have been written on this subject. They are classified into two categories:

1. How can we judge whether a sequence of edge points entirely consists of
points on an ellipse or it contains other points (“outliers”)?

2. How can we fit the equation of an ellipse to a sequence of points known to
be on an ellipse as accurately as possible?

For the first task, many algorithms and their efficient implementation tech-
niques have been tested. There exists an abundance of literature on the second
task, too. Most of the proposed methods were based on heuristics combining
voting and least squares in many different forms [3, 4, 15, 20–22], but there are
also theoretical treatments, mainly by statisticians, regarding the problem as
statistical estimation [1, 2, 5, 16, 17, 19, 23]. However, their major concern is the
consistency and efficiency of the estimator in the asymptotic limit as the number
of points increases.
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A contrasting approach was presented by Kanatani [11], who generalized el-
lipse fitting into an abstract framework, which he called geometric fitting . Hav-
ing actual image processing in mind, he pursued fitting schemes whose accuracy
rapidly increases as the noise level decreases for a fixed number of points. He
asserted that such methods can tolerate larger image processing uncertainty for
a desired accuracy level [13].
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In his framework, a lower bound on the covariance matrix of the estimator is
obtained [11, 12]. Chernov and Lesort [6] called it the KCR (Kanatani-Cramer-
Rao) lower bound and showed that it can be derived under a weaker assumption.

It can be shown that ML (maximum likelihood) can attain that bound except
for higher order terms in the noise level [6, 11, 13]. It has turned out that all
existing iterative linear computing schemes, such as renormalization1 [10, 11,
14], HEIV [18], and FNS [7], has accuracy equivalent to ML [13]. It has been
experimentally confirmed that these methods indeed attain high accuracy very
close to the KCR lower bound.

We say that an estimation method has hyperaccuracy if it outperforms ML.
In this paper, we demonstrate that there does exist a hyperaccurate method.
Since ML nearly achieves the KCR lower bound, the accuracy improvement is
very small. Nevertheless, our analysis has theoretical significance, illuminating
the relationship between ML and the KCR lower bound.

2 KCR Lower Bound for Ellipse Fitting

We want to fit an ellipse to N points {(xα, yα)}, α = 1, ..., N . An ellipse is
represented by

Ax2 + 2Bxy + Cy2 + 2f0(Dx + Ey) + Ff2
0 = 0, (1)

where f0 is an arbitrary scaling constant2. If we define

u =
(
A B C D E F

)>
, ξ =

(
x2 2xy y2 2f0x 2f0y f2

0

)>
, (2)

eq. (1) is written as
(u, ξ) = 0. (3)

Throughout this paper, we denote the inner product of vectors a and b by (a, b).
Since the magnitude of the vector u is indeterminate, we adopt normalization
‖u‖ = 1. Geometrically, eq. (3) describes a hyperplane in the 6-dimensional
space R6 of the variable vector ξ. The N points {(xα, yα)}, α = 1, ..., N , can be
regarded as points in R6 via the embedding ξ : R2 → R6 defined by the second
of eqs. (2). Thus, ellipse fitting in R2 is converted to hyperplane fitting in R6.

Remark . Eq. (1) describes not necessarily an ellipse but also a parabola, a hy-
perbola, and their degeneracies (e.g., two lines), generically called a conic. For
this reason, fitting a curve in the form of eq. (1) is often called conic fitting [9].
Even if the points {(xα, yα)} are sampled from an ellipse, the fitted equation
may define a hyperbola or other curves in the presence of large noise, and a
technique for preventing this has been proposed [8]. Here, we do not impose any
constraints to prevent non-ellipses, assuming that noise is sufficiently small.
1 The program is available at http://www.suri.it.okayama-u.ac.jp
2 One can set f0 = 1 unless the data have too large magnitudes, in which case a large

value of f0 would stabilize numerical computation.
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Suppose each point (xα, yα) is perturbed from its true position (x̄α, ȳα) by
Gaussian noise of mean 0 and standard deviation σ in each component indepen-
dently. Then, the covariance matrix of ξα has the form 4σ2V0[ξα], where V0[ξα],
which we call the normalized covariance matrix , is given, after omitting higher
order terms3 in σ, by

V0[ξα] =


x̄2

α x̄αȳα 0 f0x̄α 0 0
x̄αȳα x̄2

α + ȳ2
α x̄αȳα f0ȳα f0x̄α 0

0 x̄αȳα ȳ2
α 0 f0ȳα 0

f0x̄α f0ȳα 0 f2
0 0 0

0 f0x̄α f0ȳα 0 f2
0 0

0 0 0 0 0 0

 . (4)

Since ξα has only 2 degrees of freedom (i.e., xα and yα), V0[ξα] has rank 2.
Let û be an estimator of u obtained by some means. Its accuracy is measured

by the following covariance matrix:

V [û] = E[(P uû)(P uû)>]. (5)

Here, E[ · ] denotes expectation with respect to the noise in the data {(xα, yα)},
and P u is the projection matrix (I denotes the unit matrix)

P u = I − uu>, (6)

which projects û onto the hyperplane orthogonal to u. Since the parameter
vector u is normalized to unit norm, its domain is the unit sphere S5 in R6.
Following the approach of Kanatani [11], we focus on the asymptotic limit of
small noise and identify the domain of the errors with the tangent hyperplane to
S5 at u. Namely, we evaluate the error after projecting it onto that hyperplane.
Thus, the covariance matrix V [û] is a singular matrix of rank 5.

In this setting, Kanatani [11, 13] proved that if ξα is regarded as an inde-
pendent Gaussian random variable of mean ξ̄α and covariance matrix V [ξα], the
following inequality holds for an arbitrary unbiased estimator û of u:

V [û] Â
( N∑

α=1

ξ̄αξ̄
>
α

(u, V [ξα]u)

)−
. (7)

Here, Â means that the difference of the left-hand side from the right is positive
semidefinite, and the superscript − denotes the generalized inverse (of rank 5).

Chernov and Lesort [6] called the right-hand side of eq. (7) the KCR
(Kanatani-Cramer-Rao) lower bound and showed that it holds except for terms
of O(σ4) even if û is not unbiased; it is sufficient that û is “consistent” in the
sense that û → u as σ → 0.

3 We confirmed by experiment that inclusion of the omitted higher order terms has
no noticeable effects in our numerical results shown later.
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3 Maximum Likelihood Estimation

The best known method for solving the above problem is the least squares (or
algebraic distance minimization), minimizing

JLS =
N∑

α=1

(u, ξα)2. (8)

This is a quadratic form JLS = (u, MLSu) in u if we define

MLS =
N∑

α=1

ξαξ>
α . (9)

Hence, the solution ûLS is the unit eigenvector of MLS for the smallest eigen-
value. However, the solution uLS is known to have large statistical bias [11].

If ξα is regarded as an independent Gaussian random variable of mean ξ̄α

and covariance matrix V [ξα], ML (maximum likelihood) is to minimize the sum
of the square Mahalanobis distances of the data points ξα to the hyperplane to
be fitted, minimizing

J =
N∑

α=1

(ξα − ξ̄α, V0[ξα]−(ξα − ξ̄α)), (10)

subject to the constraint (u, ξ̄α) = 0, α = 1, ..., N . We can use V0[ξα] instead
of the full covariance matrix 4σ2V0[ξα], because the solution is unchanged if
V0[ξα] is multiplied by a positive constant. Introducing Lagrange multipliers
for the constraint (u, ξ̄α) = 0, we can reduce the problem to unconstrained
minimization of the following function [7, 11, 18]:

J =
N∑

α=1

(u, ξα)2

(u, V0[ξα]u)
. (11)

By differentiation with respect to u, we have

∇uJ =
N∑

α=1

2(ξα, u)ξα

(u, V0[ξα]u)
−

N∑
α=1

2(ξα, u)2V0[ξα]u
(u, V0[ξα]u)2

. (12)

The ML estimator û is obtained by solving ∇uJ = 0, or

Mu = Lu, (13)

M =
N∑

α=1

ξαξ>
α

(u, V0[ξα]u)
, L =

N∑
α=1

(ξα,u)2V0[ξα]
(u, V0[ξα]u)2

. (14)

The FNS of Chojnacki et al. [7] solves eq. (13) by iteratively computing eigen-
value problems; the HEIV of Leedan and Meer [18] iteratively computes gener-
alized eigenvalue problems. In theory, the renormalization of Kanatani [11] also
solves eq. (13) with the same accuracy as the FNS and the HEIV [13].
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4 Error Analysis of ML

Substituting ξα = ξ̄α + ∆ξα in the matrix M in eqs. (14), we obtain

M = M̄ + ∆1M + ∆2M , (15)

∆1M =
N∑

α=1

∆ξαξ̄
>
α + ξ̄α∆ξ>

α

(u, V0[ξα]u)
, ∆2M =

N∑
α=1

∆ξα∆ξ>
α

(u, V0[ξα]u)
, (16)

where M̄ is the value of the matrix M defined by the true values {ξ̄α} of {ξα}.
The matrix L in eqs. (14) is written as

L =
N∑

α=1

(ξ̄α + ∆ξα,u)2V0[ξα]
(u, V0[ξα]u)2

=
N∑

α=1

(∆ξα, u)2V0[ξα]
(u, V0[ξα]u)2

= ∆2L. (17)

Letting u be the noise-free value of the solution, we expand the ML estimator
û in the form

û = u + ∆1u + ∆2u + · · · , (18)

where ∆ku denotes terms which contain kth powers of the components of ∆ξα

having a magnitude of O(σk). Substituting eq. (18) into eq. (13), we obtain

(M̄ + ∆1M + ∆∗
1M + ∆2M + ∆∗

2M + · · ·)(u + ∆1u + ∆2u + · · ·)
= ∆2L(u + ∆1u + ∆2u + · · ·), (19)

where ∆∗
1M and ∆∗

2M are, respectively, the perturbation terms arising by re-
placing u in the denominator (u, V0[ξα]u) in M̄ and ∆1M by û (the corre-
sponding perturbation of ∆2M is of O(σ3)). They have the form

∆∗
1M = −2

N∑
α=1

((∆1u, V0[ξα]u) + O(σ2))ξ̄αξ̄
>
α

(u, V0[ξα]u)2
, (20)

∆∗
2M = −2

N∑
α=1

((∆1u, V0[ξα]u) + O(σ2))(∆ξαξ̄
>
α + ξ̄α∆ξ>

α )
(u, V0[ξα]u)2

. (21)

Equating terms of O(1), O(σ), and O(σ2) on both sides of eq. (19), we obtain
the following expressions (we omit the derivation):

∆1u = −M̄
−

∆1Mu (22)

∆2u = −M̄
−

∆2Mu + M̄
−

∆1MM̄
−

∆1Mu + M̄
−

∆∗
1MM̄

−
∆1Mu

−M̄
−

∆∗
2Mu + M̄

−
∆2Lu − ‖M̄−

∆1Mu‖2u. (23)

From the first of eqs. (14), we have M̄u = 0 and hence M̄
−

u = 0. It follows
that terms on the right-hand sides of eqs. (22) and (23) are orthogonal to u

except the last term −‖M̄−
∆1Mu‖2u, which is parallel to u, accounting for

the normalization ‖u‖ = 1 (Fig. 1).
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u
u

O
Fig. 1. The orthogonal and the parallel components of the error in û.

It can be seen that the first order error ∆u1 yields variations corresponding
to the KCR lower bound. In fact, we have

E[∆1u∆1u
>] = E[M̄−

∆1Muu>∆1MM̄
−]

= E[M̄−
N∑

α=1

∆ξαξ̄
>
α + ξ̄α∆ξ>

α

(u, V0[ξα]u)
uu>

N∑
β=1

∆ξβ ξ̄
>
β + ξ̄β∆ξ>

β

(u, V0[ξβ ]u)
M̄

−]

= M̄
−

N∑
α,β=1

(u, E[∆ξα∆ξ>
β ]u)ξ̄αξ̄

>
β

(u, V0[ξα]u)(u, V0[ξβ ]u)
M̄

−

= M̄
−

N∑
α=1

4σ2ξ̄αξ̄
>
α

(u, V0[ξα]u)
M̄

− = 4σ2M̄
−

M̄M̄
− = 4σ2M̄

−
, (24)

where we have used the identity4 E[∆ξα∆ξ>
β ] = 4σ2δαβV0[ξα], which is a con-

sequence of our assumption that the noise in each xα is independent.
From the definition of M̄ and V0[ξα], we can see that eq. (24) coincides with

the KCR lower bound. Adding the second order error ∆2u affects this only by
O(σ4), since expectation of odd powers of ∆ξα is 0 due to the symmetry of
the noise distribution. Thus, as pointed out by Kanatani [11] and Chernov and
Lesort [6], the covariance matrix of ML attains the KCR lower bound except for
O(σ4). We now examine the effect of the second order error ∆2u.

5 Bias Evaluation for ML

Since E[∆ξα] = 0, we have E[∆1M ] = O. Hence, the first order error ∆1u
is “unbiased”. So, we evaluate the bias of the second order error ∆2u. The
expectation of ∆2M is

E[∆2M ] =
N∑

α=1

E[∆ξα∆ξ>
α ]

(u, V0[ξα]u)
=

N∑
α=1

4σ2V0[ξα]
(u, V0[ξα]u)

= 4σ2N , (25)

where we define

N =
N∑

α=1

V0[ξα]
(u, V0[ξα]u)

. (26)

4 The symbol δαβ is the Kronecker delta, taking on 1 for α = β and 0 otherwise.
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The expectation of M̄
−

∆1MM̄
−

∆1Mu is

E[M̄−
∆1MM̄

−
∆1Mu]

= E[M̄−
N∑

α=1

ξ̄α∆ξ>
α + ∆ξαξ̄

>
α

(u, V0[ξα]u)
M̄

−
N∑

β=1

ξ̄β∆ξ>
β + ∆ξβ ξ̄

>
β

(u, V0[ξβ ]u)
u]

=
N∑

α,β=1

M̄
−

ξ̄α(M̄−
ξ̄β)>E[∆ξα∆ξ>

β ]u + M̄
−

E[∆ξα∆ξ>
β ]u(ξ̄α,M̄

−
ξ̄β)

(u, V0[ξα]u)(u, V0[ξβ ]u)

= 4σ2
N∑

α=1

(M̄−
ξ̄α, V0[ξα]u)M̄−

ξ̄α + (ξ̄α, M̄
−

ξ̄α)M̄−
V0[ξα]u

(u, V0[ξα]u)2
. (27)

The expectation of ∆∗
1MM̄

−
∆1Mu is

E[∆∗
1MM̄

−
∆1Mu] = −2

N∑
α=1

E[(∆1u, V0[ξα]u)ξ̄α(ξ̄α, M̄
−

∆1Mu)]
(u, V0[ξα]u)2

= −2
N∑

α=1

E[(M̄−
∆1Mu, V0[ξα]u)(ξ̄α, M̄

−
∆1Mu)ξ̄α]

(u, V0[ξα]u)2

= −2
N∑

α=1

(M̄−
V0[ξα]u, E[(∆1Mu)(∆1Mu)>]M̄−

ξ̄α)ξ̄α

(u, V0[ξα]u)2
. (28)

We can evaluate E[(∆1Mu)(∆1Mu)>] as follows:

E[(∆1Mu)(∆1Mu)>] = E[
N∑

α=1

ξ̄α(∆ξα, u)
(u, V0[ξα]u)

N∑
β=1

ξ̄
>
β (∆ξβ , u)

(u, V0[ξβ ]u)
]

=
N∑

α,β=1

(u, E[∆ξα∆ξ>
β ],u)ξ̄αξ̄

>
β

(u, V0[ξα]u)(u, V0[ξβ ]u)
= 4σ2

N∑
α=1

ξ̄αξ̄
>
β

(u, V0[ξα]u)
= 4σ2M̄ . (29)

Thus, E[∆∗
1MM̄

−
∆1Mu] is

E[∆∗
1MM̄

−
∆1Mu] = 8σ2

N∑
α=1

(M̄−
V0[ξα]u, M̄M̄

−
ξ̄α)ξ̄α

(u, V0[ξα]u)2

= 8σ2
N∑

α=1

(V0[ξα]u, M̄
−

M̄M̄
−

ξ̄α)ξ̄α

(u, V0[ξα]u)2
= 8σ2

N∑
α=1

(V0[ξα]u,M̄
−

ξ̄α)ξ̄α

(u, V0[ξα]u)2
.

(30)

The expectation of ∆∗
2Mu is

E[∆∗
2Mu] = −2

N∑
α=1

E[(∆1u, V0[ξα]u)ξ̄α(∆ξα, u)]
(u, V0[ξα]u)2
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= 2
N∑

α=1

E[(M̄−
∆1Mu, V0[ξα]u)(∆ξα, u)ξ̄α]

(u, V0[ξα]u)2

= 2
N∑

α=1

(M̄−
V0[ξα]u, E[∆1Mu∆ξ>

α u])ξ̄α

(u, V0[ξα]u)2
. (31)

We can evaluate E[∆1Mu∆ξ>
α u] as follows:

E[∆1Mu∆ξ>
α u] = E[

N∑
β=1

(∆ξβ ,u)ξ̄β∆ξ>
α u

(u, V0[ξβ ]u)
] =

N∑
β=1

ξ̄β(u, E[∆ξβ∆ξ>
α ]u)

(u, V0[ξβ ]u)

= 4σ2 ξ̄α(u, V0[∆ξα]u)
(u, V0[ξα]u)

= 4σ2ξ̄α. (32)

Thus, E[∆∗
2Mu] is

E[∆∗
2Mu] = 8σ2

N∑
α=1

(M̄−
V0[ξα]u, ξ̄α)ξ̄α

(u, V0[ξα]u)2
= 8σ2

N∑
α=1

(V0[ξα]u, M̄
−

ξ̄α)ξ̄α

(u, V0[ξα]u)2
.

(33)
The expectation of ∆2L is

E[∆2L] = E[
N∑

α=1

(∆ξα, u)2V0[ξα]
(u, V0[ξα]u)2

] =
N∑

α=1

(u, E[∆ξα∆ξ>
α ]u)V0[ξα]

(u, V0[ξα]u)2

= 4σ2
N∑

α=1

V0[ξα]
(u, V0[ξα]u)

= 4σ2N . (34)

The expectation of ‖M̄−
∆1Mu‖2 is

E[‖M̄−
∆1Mu‖2] = E[(M̄−

∆1Mu,M̄
−

∆1Mu)]

= E[(
N∑

α=1

ξ̄α(∆ξα,u)
(u, V0[ξα]u)

, (M̄−)2
N∑

β=1

ξ̄β(∆ξβ ,u)
(u, V0[ξβ ]u)

)]

=
N∑

α,β=1

(u, E[∆ξα∆ξ>
β ]u)(ξ̄α, (M̄−)2ξ̄β)

(u, V0[ξα]u)(u, V0[ξβ ]u)

= 4σ2
N∑

α=1

(ξ̄α, (M̄−)2ξ̄α)
(u, V0[ξα]u)

= 4σ2tr(
N∑

α=1

ξ̄αξ̄
>
α

(u, V0[ξα]u)
(M̄−)2)

= 4σ2tr(M̄(M̄−)2) = 4σ2tr(M̄−
M̄M̄

−) = 4σ2tr(M̄−). (35)

From eqs. (25)∼(35), the bias of the second order error ∆2u of eq. (23) is

E[∆2u] = 4σ2
[ N∑

α=1

(M̄−
ξ̄α, V0[ξα]u)M̄−

ξ̄α + (ξ̄α, M̄
−

ξ̄α)M̄−
V0[ξα]u

(u, V0[ξα]u)2

−tr(M̄−)u
]

+ O(σ4). (36)
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6 Hyperaccuracy Correction

The above analysis implies that we can obtain a hyperaccurate estimator by
subtracting the bias E[∆2u], or its estimate, from the ML estimator û. Since the
term tr(M̄−)u is for adjusting û to have unit norm (Fig. 1), we need not consider
it if we normalize the solution in the end. So, we correct the ML estimator û in
the form

ũ = N [û − ∆cu], (37)

where N [ · ] denotes normalization into unit norm. The correction term ∆cu is
given by

∆cu = 4σ̂2
N∑

α=1

(M−ξα,V0[ξα]û)M−ξα+(ξα,M−ξα)M−V0[ξα]û
(û, V0[ξα]û)2

, (38)

which is obtained from eq. (36) by omitting O(σ4), replacing u by û, and re-
placing M̄ by M defined by {ξα}. The variance σ2 in eq. (24) is estimated
by

σ̂2 =
(û, Mû)
4(N − 5)

. (39)

The approximations involved in eq. (38) may introduce errors of O(σ) or higher,
but they do not affect the leading order of eq. (38).

7 Experiments

Fig. 2(a) shows N = 20 points {(x̄α, ȳα)} taken on ellipse

x2

502
+

y2

1002
= 1 (40)

with equal intervals. From them, we generated data points {(xα, yα)} by adding
Gaussian noise of mean 0 and standard deviation σ to the x and y coordinates

 0

 0.05

 0.1

 0.01  0.02σ

(a) (b)

Fig. 2. (a) 20 points on an ellipse. (b) Noise level vs. fitting error: LS (broken line), ML
(thick solid line), hyperaccuracy correction (thin solid line), KCR lower bound (dotted
line).
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(a) (b)

Fig. 3. Two instances of the fitted ellipse: LS (broken line), ML (thick solid line),
hyperaccuracy correction (thin solid line), true ellipse (dotted line).

independently. Then, we fitted an ellipse by different methods. For computing
ML, we used the FNS of Chojnacki et al. [7].

Fig. 2(b) plots for different σ the fitting error evaluated by the following root
mean square over 10,000 independent trials:

E =

√√√√ 1
10000

10000∑
a=1

‖P uû(a)‖2. (41)

Here, û(a) is the ath value of û. Since its sign is indeterminate, we chose the
one for which (û(a), u) ≥ 0. The thick solid line is for ML; the thin solid line
is the result of our hyperaccurate correction. For comparison, we also plot the
LS (least squares) solution ûLS by the broken line. The dotted line is the square
root of the lower bound on E[‖P uu‖2] derived from eq. (7):

D = 2σ

√√√√tr
( N∑

α=1

ξ̄αξ̄
>
α

(u, V0[ξα]u)

)−
. (42)

As can be seen from Fig. 2(b), the LS solution is not very accurate, while ML
is very accurate; it almost coincides with the KCR lower bound when the noise
is small. As the noise increases, however, a small gap appears between ML and
the KCR lower bound. After adding the hyperaccurate correction, the accuracy
almost coincides with the KCR lower bound.

Fig. 3(a) shows one instance of the fitted ellipse (σ = 0.009). The dotted line
is the true ellipse; the broken line is for LS; the thick solid line is for ML; the thin
solid line is for our hyperaccurate correction. We can see that the fitted ellipse
is closer to the true shape after the correction. Fig. 3(b) is another instance (σ
= 0.009). In this case, the ellipse given by ML is already very accurate, and it
slightly deviates from the true shape after the correction.

Thus, the accuracy sometimes improves and sometimes deteriorates. Overall,
however, the cases of improvement is the majority; on average we observe slight
improvement as shown in Fig. 2(b). After close examination, we have observed
that the accuracy drop occurs almost always when the ellipse fitted by ML falls
inside the true shape. However, the majority of the fitted ellipses are outside the
true shape. Thus, the correction is effective on average.
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We infer that ML is likely to produce ellipses outside the true shape because
it is parameterized in the form of eq. (1). If the major or minor axis of the ellipse
is a, the coefficient of x2 or y2 is proportional to 1/a2. If 1/a2 is “unbiased”, a
is biased to be larger than the true value, as can be easily seen from the shape
of the graph of y = 1/x2.

8 Conclusions

We have demonstrated the existence of “hyperaccurate” ellipse fitting which
outperforms ML. This is made possible by error analysis of ML followed by sub-
traction of high-order bias terms. However, ML nearly achieves the KCR lower
bound, meaning that even if the bias is eliminated, the solution still fluctuates
with the magnitude corresponding to the KCR lower bound, which is theoret-
ically impossible to reduce. Thus, the accuracy improvement by our method is
almost unnoticeable in practice, compared to which removing outliers and sta-
bilizing the computation have far more practical significance. Nevertheless, our
analysis has theoretical significance, illuminating the relationship between ML
and the KCR lower bound.
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