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Abstract. Feature point tracking over a video sequence fails when the
points go out of the field of view or behind other objects. In this paper, we
extend such interrupted tracking by imposing the constraint that under
the affine camera model all feature trajectories should be in an affine
space. Our method consists of iterations for optimally extending the
trajectories and for optimally estimating the affine space, coupled with
an outlier removal process. Using real video images, we demonstrate that
our method can restore a sufficient number of trajectories for detailed
3-D reconstruction.

1 Introduction

The factorization method of Tomasi and Kanade [15] can reconstruct the 3-D
shape of a scene from feature point trajectories tracked over a video sequence.
The computation is very efficient, requiring only linear operations. The solution
is sufficiently accurate for many practical purposes and can be used as an initial
value for iterations of a more sophisticated reconstruction procedure [3].

However, the feature point tracking fails when the points go out of the field
of view or behind other objects. In order to obtain a sufficient number of feature
trajectories for detailed 3-D reconstruction, we need to extend such interrupted
tracking to the final frame. There have been several such attempts in the past.

Tomasi and Kanade [15] reconstructed the 3-D positions of partly visible
feature points from their visible image positions and reprojected them onto the
frames in which they are invisible. The camera positions were estimated from
other visible feature points.

Saito and Kamijima [12] projectively reconstructed tentative 3-D positions
of the missing points by sampling two frames in which they are visible and
then reprojected them onto the frames in which they are invisible. The camera
positions were computed up to projectivity.

Using the knowledge that all trajectories of feature points should be in a
4-D subspace of the data space, Jacobs [5] randomly sampled four trajectories,
constructed a high-dimensional subspace by letting the missing data have free
values, and computed its orthogonal complement. He repeated this many times
and computed by least squares a 4-D subspace approximately orthogonal to the



resulting orthogonal complements1. Partial trajectories were extended so that
they were compatible with the estimated subspace. A similar method was also
used by Kahl and Heyden [6].

Brandt [1] reconstructed tentative 3-D positions of the missing points using
a tentative camera model and reprojected them onto all frames. From the visible
and reprojected feature points, he estimated the camera model. Iterating these,
he optimized both the camera model and the feature positions.

For all these methods, we should note the following:
– We need not reconstruct a tentative 3-D shape. 3-D reconstruction is made

possible by some geometric constraints over multiple frames. One can directly
map 2-D point positions to other frames if such constraints2 are used.

– If a minimum number of frames are sampled for tentative 3-D reconstruction,
the accuracy of computation depends on the sampled frames. Rather, one
should make full use of all information contained in all frames.

– The observed trajectories are not necessarily correct, but existing methods
treat outlier removal and trajectory extension separately.

In this paper, we present a new scheme for extending partial trajectories
based on the constraint that under the affine camera model all trajectories should
be in a 3-D affine space, which we call the “affine space constraint”. Our method
consists of iterations for optimally extending the trajectories and for optimally
estimating the affine space.

If the motion were pure rotation, one could do exact maximal likelihood
estimation, e.g., by using the method of Shum et al. [13], but it cannot be
applied to translational motions. Here, we simplify the optimization procedure
by introducing to each partial trajectory a weight that reflects its length. Also,
we incorporate outlier removal and trajectory extension into a single process,
testing in every step of the optimization if each trajectory, extended or not, is
reliable and removing unreliable ones as outliers.

Thus, the contribution of this paper is as follows:
1. We present a succinct mathematical formulation for extending interrupted

trajectories based on the affine space constraint without referring to any
particular camera model such as orthography. Our constraint is stronger
than that used by Jacobs [5]. No reprojection of tentative 3-D reconstruction
is necessary.

2. We present a procedure that integrates reliability evaluation of perfect and
imperfect trajectories, outlier removal, and optimization of the affine space
into a single process.

Sec. 2 summarizes our affine space constraint. Sec. 3 describes our initial
outlier removal procedure. Sec. 4 describes how we extend partial trajectories
1 In actual computation, he interchanged the roles of points and frames: he sampled

two frames, i.e., two lists of x coordinates and two lists of y coordinates. The math-
ematical structure is the same.

2 The projective reconstruction of Saito and Kamijima [12] is equivalent to the use of
the trilinear constraint [3].
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and test their reliability. In Sec. 5, we show real video examples and demonstrate
that our method can restore a sufficient number of trajectories for detailed 3-D
reconstruction. Sec. 6 presents our conclusion.

2 Affine Space Constraint

We first summarize the geometric constraints on which our method is based.
The same constraints have already been used in our previous studies [7–9, 14].
We reiterate them here, because they play a fundamental role in our trajectory
extension method.

Suppose we track N feature points over M frames. Let (xκα, yκα) be the
coordinates of the αth point in the κth frame. We stack all the coordinates
vertically and represent the entire trajectory by the following 2M -D trajectory
vector :

pα =
(
x1α y1α x2α y2α · · · xMα yMα

)>
. (1)

For convenience, we identify the frame number κ with “time” and refer to the
κth frame as “time κ”.

We regard the XY Z camera coordinate system as the world frame, relative to
which the scene is moving. Consider a 3-D coordinate system fixed to the scene,
and let tκ and {iκ, jκ,kκ} be, respectively, its origin and basis vectors at time
κ. If the αth point has coordinates (aα, bα, cα) with respect to this coordinate
system, the position with respect to the world frame at time κ is

rκα = tκ + aαiκ + bαjκ + cαkκ. (2)

We assume an affine camera, which generalizes orthographic, weak perspec-
tive, and paraperspective projections [10]: the 3-D point rκα is projected onto
the image position (

xκα

yκα

)
= Aκrκα + bκ, (3)

where Aκ and bκ are, respectively, a 2× 3 matrix and a 2-D vector determined
by the position and orientation of the camera and its internal parameters at time
κ. Substituting Eq. (2), we have

(
xκα

yκα

)
= m̃0κ + aαm̃1κ + bαm̃2κ + cαm̃3κ, (4)

where m̃0κ, m̃1κ, m̃2κ, and m̃3κ are 2-D vectors determined by the position and
orientation of the camera and its internal parameters at time κ. From Eq. (4),
the trajectory vector pα in Eq. (1) can be written in the form

pα = m0 + aαm1 + bαm2 + cαm3, (5)

where m0, m1, m2, and m3 are the 2M -D vectors obtained by stacking
m̃0κ, m̃1κ, m̃2κ, and m̃3κ vertically over the M frames, respectively.
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Eq. (5) implies that all the trajectories are constrained to be in the 4-D
subspace spanned by {m0, m1, m2, m3} in R2M . This is called the subspace
constraint [7, 8], on which the method of Jacobs [5] is based.

In addition, the coefficient of m0 in Eq. (5) is identically 1 for all α. This
means that the trajectories are in the 3-D affine space within that 4-D subspace.
This is called the affine space constraint [9].

If all the feature points are tracked to the final frame, we can define the coor-
dinate origin at the centroid of their trajectory vectors3 {pα}, thereby regarding
them as defining a 3-D subspace in R2M . The Tomasi-Kanade factorization [15]
is based on this representation, and Brandt [1] tried to find this representation
by iterations. In this paper, we directly use the affine space constraint without
searching for the centroid.

Unlike existing studies, we describe our trajectory extension scheme without
referring to any particular camera model, such as orthographic, weak perspec-
tive, or paraperspective projection, except that it is affine. Of course, existing
methods described with respect to a particular camera model can automatically
be generalized to all affine cameras, but our formulation makes this fact more
explicit.

3 Outlier Removal

Before extending partial trajectories, we must remove incorrectly tracked tra-
jectories, or “outliers”, from among observed complete trajectories.

This problem was studied by Huynh and Heyden [4], who fitted a 4-D sub-
space to the observed trajectories by LMedS [11], removing those trajectories
sufficiently apart from it. However, their distance measure was introduced merely
for mathematical convenience without giving much consideration to the statis-
tical behavior of image noise.

Sugaya and Kanatani [14] fitted a 4-D subspace to the observed trajectories
by RANSAC [2, 3] and removed outliers using a χ2 criterion derived from the
error behavior of actual video tracking. Here, we modify their method specifi-
cally for the affine space constraint. Our method is a direct consequence of the
principle given in [14], but we describe it here, because it plays a crucial role for
our optimization procedure we introduce later.

3.1 Procedure

Let n = 2M , where M is the number of frames, and let {pα}, α = 1, ..., N , be
the observed complete trajectory vectors. Our outlier removal procedure is as
follows:
3 If the origin of the scene coordinate system is at the centroid of the feature points,

we have
∑N

α=1
aα =

∑N

α=1
bα =

∑N

α=1
cα = 0, so we can see from Eq. (5) that m0

is at the centroid of the trajectory vectors in R2M . If we let pα = pα −m0, we

obtain from Eq. (5)
(
p′1 · · · p′N

)
=

(
m1 m2 m3

)(
a1 · · · aN
b1 · · · bN
c1 · · · cN

)
or “W = MS” as

commonly described in the literature.
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1. Randomly choose four vectors q1, q2, q3, and q4 from among {pα}.
2. Compute the n× n moment matrix

M3 =
4∑

i=1

(qi − qC)(qi − qC)>, (6)

where qC is the centroid of {q1, q2, q3, q4}.
3. Let λ1 ≥ λ2 ≥ λ3 be the three eigenvalues of the matrix M3, and {u1, u2,

u3} the orthonormal system of corresponding eigenvectors.
4. Compute the n× n projection matrix

P n−3 = I −
3∑

i=1

uiu
>
i . (7)

5. Let S be the number of points pα that satisfy

‖P n−3(pα − qC)‖2 < (n− 3)σ2, (8)

where σ is an estimate of the noise standard deviation.
6. Repeat the above procedure a sufficient number of times4, and determine

the projection matrix P n−3 that maximizes S.
7. Remove those pα that satisfy

‖P n−3(pα − qC)‖2 ≥ σ2χ2
n−3;99, (9)

where χ2
r;a is the ath percentile of the χ2 distribution with r degrees of

freedom.

The term ‖P n−3(pα−qC)‖2, which we call the residual , is the squared distance
of point pα from the fitted 3-D affine space. If the noise in the coordinates of
the feature points is an independent Gaussian random variable of mean 0 and
standard deviation σ, the residual ‖P n−3(pα − qC)‖2 divided by σ2 should be
subject to a χ2 distribution with n−3 degrees of freedom. Hence, its expectation
is (n − 3)σ2. The above procedure effectively fits a 3-D affine space that maxi-
mizes the number of the trajectories whose residuals are smaller than (n− 3)σ2.
After fitting such an affine space, we remove those trajectories which cannot be
regarded as inliers with significance level 1% (Fig. 1). We have confirmed that
the value σ = 0.5 can work well for all image sequences we tested [14].

3.2 Final affine space fitting

After removing outlier trajectories, we optimally fit a 3-D affine space to the
resulting inlier trajectories. Let {pα}, α = 1, ..., N , be their trajectory vectors.
We first compute their centroid and the n× n moment matrix

pC =
1
N

N∑
α=1

pα, M =
N∑

α=1

(pα − pC)(pα − pC)>. (10)

4 In our experiment, we stopped if S did not increase for 200 consecutive iterations.
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Fig. 1. Removing outliers by fitting a 3-D affine space.

Let λ1 ≥ λ2 ≥ λ3 be the largest three eigenvalues of the matrix M , and
{u1,u2,u3} the orthonormal system of corresponding eigenvectors. The opti-
mally fitted 3-D affine space is spanned by the three vectors of u1, u2, and u3

starting from pC .
Mathematically, this affine space fitting is equivalent to the factorization

operation using SVD (singular value decomposition) [15]. It follows that no SVD
is necessary for 3-D reconstruction once an affine space is fitted5.

4 Trajectory Extension

We now describe our trajectory extension scheme.

4.1 Reliability test

If the αth feature point can be tracked only over κ of the M frames, its trajectory
vector pα has n − k unknown components (as before, we put n = 2M and
k = 2κ). We partition the vector pα into the k-D part p

(0)
α consisting of the

k known components and the (n− k)-D part p
(1)
α consisting of the remaining

n − k unknown components. Similarly, we partition6 the centroid pC and the
basis vectors {u1, u2, u3} into the k-D parts p

(0)
C and {u(0)

1 , u
(0)
2 , u

(0)
3 } and the

(n− k)-D parts p
(1)
C and {u(1)

1 , u
(1)
2 , u

(1)
3 } in accordance with the division of pα.

We test if each of the partial trajectories is sufficiently reliable. Let pα be a
partial trajectory vector. If image noise does not exist, the deviation of pα from
the centroid pC should be expressed as a linear combination of u1, u2, and u3.
Hence, there should be constants c1, c2, and c3 such that

p(0)
α − p

(0)
C = c1u

(0)
1 + c2u

(0)
2 + c3u

(0) (11)
5 The statement that the method of Tomasi and Kanade [15] is based on matrix factor-

ization using SVD is not correct. It simply means 3-D affine reconstruction based on
the affine camera model. The SVD is merely one of many equivalent computational
tools for it.

6 This is merely for the convenience of description. In real computation, we treat
all data as n-D vectors after multiplying them by an appropriate diagonal matrix
consisting of 1s and 0s.
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for the known part. In the presence of image noise, this equality does not hold. If
we let U (0) be the k× 3 matrix consisting of u

(0)
1 , u

(0)
2 , and u

(0)
3 as its columns,

Eq. (11) is replaced by
p(0)

α − p
(0)
C ≈ U (0)c, (12)

where c is the 3-D vector consisting of c1, c2, and c3. Assuming that k ≥ 3, we
estimate the vector c by least squares in the form

ĉ = U (0)−(p(0)
α − p

(0)
C ), (13)

where U (0)− is the generalized inverse of U (0). It is computed by

U (0)− = (U (0)>U (0))−1U (0)>. (14)

The residual, i.e., the squared distance of point p
(0)
α from the 3-D affine

space spanned by {u(0)
1 , u

(0)
2 , u

(0)
3 } is ‖p(0)

α − p
(0)
C −U (0)ĉ‖2. If the noise in the

coordinates of the feature points is an independent Gaussian random variable of
mean 0 and standard deviation σ, the residual ‖p(0)

α −p
(0)
C −U (0)ĉ‖2 divided by

σ2 should be subject to a χ2 distribution with k − 3 degrees of freedom. Hence,
we regard those trajectories that satisfy

‖p(0)
α − p

(0)
C −U (0)ĉ‖2 ≥ σ2χ2

k−3;99 (15)

as outliers with significance level 1%.

4.2 Extension and optimization of trajectories

The unknown part p
(1)
α is estimated from the constraint implied by Eq. (11),

namely
p(1)

α − p
(1)
C = c1u

(1)
1 + c2u

(1)
2 + c3u

(1) = U (1)c, (16)

where U (1) is the (n − k) × 3 matrix consisting of u
(1)
1 , u

(1)
2 , and u

(1)
3 as its

columns. Substituting Eq. (13) for c, we obtain

p̂(1)
α = p

(1)
C + U (1)U (0)−(p(0)

α − p
(0)
C ). (17)

Evidently, this is an optimal estimate in the presence of Gaussian noise.
However, the underlying affine space is computed only from a small number
of complete trajectories; no information contained in the partial trajectories is
used, irrespective of how long they are. So, we incorporate partial trajectories
by iterations.

Note that if three components of pα are specified, one can place it, in gen-
eral, in any 3-D affine space by appropriately adjusting the remaining n − 3
components. In view of this, we introduce the “weight” of the trajectory vector
pα with k known components in the form

Wα =
k − 3
n− 3

. (18)

Let N be the number of all trajectories, complete or partial, inliers or outliers.
The optimization goes as follows:
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1. Set the weights Wα of those trajectories, complete or partial, that are so far
judged to be outliers to 0. All other weights are set to the value in Eq. (18).

2. Fit a 3-D affine space to all the trajectories. The procedure is the same
as described in Sec. 3.2 except that Eqs. (10) are replaced by the weighted
centroid and the weighted moment matrix:

pC =
∑N

α=1 Wαpα∑N
α=1 Wα

, M =
N∑

α=1

Wα(pα − pC)(pα − pC)>. (19)

3. Test each trajectory if it is an outlier, using Eq. (15).
4. Estimate the unknown parts of the inlier partial trajectory vectors, using

Eq. (17).

These four steps are iterated until the fitted affine space converges. Eq. (17)
implies that the estimated components do not contribute to the residual of the
extended vector pα from the affine space, so the reliability of extended trajec-
tories is tested only from their known components using Eq. (15). In the course
of this optimization, trajectories once regarded as outliers may be judged to
be inliers later, and vice versa. In the end, inlier partial trajectories are opti-
mally extended with respect to the affine space that is optimally fitted to all the
complete and partial inlier trajectories.

However, the resulting solution is not guaranteed to be globally optimal; its
accuracy largely depends on the quality of the initial guess. The outlier removal
procedure of Sec. 3 is incorporated for obtaining as accurate an initial guess as
possible, even though all trajectories are reexamined later.

The iterations may not converge if the initial guess is very poor or a large
proportion of the trajectories are incorrect. In that case, we must conclude that
the original feature tracking does not provide meaningful information. However,
this did not happen in any of our experiments using real video sequences.

We need at least three complete trajectories for guessing the initial affine
space. If no such trajectories are given, we may use the method of Jacobs [5] for
an initial guess. However, it is much more practical to segment the sequence into
overlapping blocks, extending partial trajectories over each block separately and
connecting all the blocks to find complete trajectories.

5 Experiments

We tested our method using real video sequences. Fig. 2(a) shows five decimated
frames from a 50 frame sequence (320 × 240 pixels) of a static scene taken by
a moving camera. We detected 200 feature points and tracked them using the
Kanade-Lucas-Tomasi algorithm [16]. When tracking failed at some frame, we
restarted the tracking after adding a new feature point in that frame. Fig. 2(b)
shows the life space of the 871 trajectories thus obtained: they are enumerated
on the horizontal axis in the order of disappearance and new appearance; the
white part corresponds to missing data.
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Fig. 2. (a) Five decimated frames from a 50 frame sequence and 11 points correctly
tracked throughout the sequence. (b) The life spans of the detected 871 trajectories.

Among them, 29 are complete trajectories, of which 11 are regarded as inliers
by the procedure described in Sec. 3. The marks 2 in Fig. 2(a) indicate their
positions; Fig. 3(a) shows their trajectories.

Using the affine space they define, we extended the partial trajectories and
optimized the affine space and the extended trajectories. The optimization
converged after 11 iterations, resulting in the 560 inlier trajectories shown in
Fig. 3(b). The computation time for this optimization was 134 seconds. We used
Pentium 4 2.4GHz for the CPU with 1GB main memory and Linux for the OS.

Fig. 4 shows four enlarged trajectories that underwent significant corrections
by the optimization: the trajectories in Fig. 4(a), which appeared to scatter
inconsistently, were corrected into those in Fig. 4(b), which are more consistent
with the global motion. The solid lines indicate the original data; the dashed
lines indicate the estimated parts.

Fig. 5(a) is the extrapolated image of the 33th frame after missing feature
positions are restored: using the 180 feature points visible in the first frame, we
defined triangular patches, to which the texture in the first frame is mapped.

We reconstructed the 3-D shape by factorization based on weak perspective
projection [10]. Fig. 5(b) is the top view of the texture-mapped shape. Fig. 5(c)
shows the patches reconstructed from the 11 initial trajectories in Fig. 2(c).
Evidently, a meaningful 3-D shape cannot be reconstructed from such a small
number of feature points. Fig. 5(d) shows the patches reconstructed from ex-
tended trajectories without optimization; Fig. 5(e) is the corresponding shape
after optimization.

From these results, we can see that a sufficient number of trajectories can be
restored for detailed 3-D reconstruction by extending the partial trajectories and
that incorrect trajectories are removed or corrected by the optimization process.
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(a) (b)

Fig. 3. (a) The 11 complete inlier trajectories. (b) The 560 optimal extensions of the
trajectories.

(a) (b)

Fig. 4. (a) Four trajectories before optimization. The real lines show the original data,
and the dotted lines show the estimated parts. (b) The corresponding optimized tra-
jectories.

According to visual inspection, the reconstructed 3-D shape appears to be better
after the optimization, but the difference is small. This is probably because the
effects of trajectory errors are suppressed by the factorization algorithm [10],
which optimizes the solution using all the data in all the frames.

6 Concluding Remarks

We have presented a new method for extending interrupted feature point track-
ing for 3-D affine reconstruction. Our method consists of iterations for optimally
extending the trajectories and for optimally estimating the affine space. In every
step, the reliability of the extended trajectories is tested, and those judged to
be outliers are removed. Using real video images, we have demonstrated that a
sufficient number of trajectories can be restored for detailed 3-D reconstruction.
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Fig. 5. (a) The extrapolated texture-mapped image of the 33th frame. (b) The re-
constructed 3-D shape. (c) The patches reconstructed from the 11 initial complete (d)
The patches reconstructed from all extended trajectories without optimization. (d) The
corresponding result with optimization.
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