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Abstract. The technique of “renormalization” for geometric estimation
attracted much attention when it was proposed in early 1990s for hav-
ing higher accuracy than any other then known methods. Later, it was
replaced by minimization of the reprojection error. This paper points
out that renormalization can be modified so that it outperforms repro-
jection error minimization. The key fact is that renormalization directly
specifies equations to solve, just as the “estimation equation” approach
in statistics, rather than minimizing some cost. Exploiting this fact, we
modify the problem so that the solution has zero bias up to high order er-
ror terms; we call the resulting scheme hyper-renormalization. We apply
it to ellipse fitting to demonstrate that it indeed surpasses reprojection
error minimization. We conclude that it is the best method available
today.
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A. Fitzgibbon et al. (Eds.): ECCV 2012, Part III, LNCS 7574, pp. 385–398, 2012
c© Springer-Verlag Berlin Heidelberg 2012

One of the most fundamental tasks of computer vision is to compute 2-D and
3-D shapes of objects from noisy observations by using geometric constraints.
Many problems are formulated as follows. We observe N vector data x1, ..., xN ,
whose true values x̄1, ..., x̄N are supposed to satisfy a geometric constraint in
the form

F (x; θ) = 0, (1)

where θ is an unknown parameter vector which we want to estimate. We call
this type of problem simply “geometric estimation”. In traditional domains of
statistics such as agriculture, pharmaceutics, and economics, observations are
regarded as repeated samples from a parameterized probability density model
pθ(x); the task is to estimate the parameter θ. We call this type of problem
simply “statistical estimation”, for which the minimization principle has been
a major tool: One chooses the value that minimizes a specified cost. The best



known approach is maximum likelihood (ML), which minimizes the negative log-
likelihood l = −

∑N
α=1 log pθ(xα). Recently, an alternative approach is more and

more in use: One directly solves specified equations, called estimating equations
[5], in the form of g(x1, ...,xN ,θ) = 0. This approach can be viewed as an ex-
tension of the minimization principle; ML corresponds to g(x1, ...,xN , θ) = ∇θl,
known as the score. However, the estimating equations need not be the gradient
of any function, and one can modify g(x1, ...,xN , θ) as one likes so that the re-
sulting solution θ have desirable properties (unbiasedness, consistency, efficiency,
etc.). In this sense, the estimating equation approach is more general and flexi-
ble, having the possibility of providing a better solution than the minimization
principle.

In the domain of computer vision, the minimization principle, in particular
reprojection error minimization, is the norm and is called the Gold Standard [6].
A notable exception is renormalization of Kanatani [7, 8]: Instead of minimizing
some cost, it iteratively removes bias of weighted least squares (LS). Renor-
malization attracted much attention because it exhibited higher accuracy than
any other then known methods. However, questions were repeatedly raised as to
what it minimizes, perhaps out of the deep-rooted preconception that optimal
estimation should minimize something. One answer was given by Chojnacki et
al., who proposed in [4] an iterative scheme similar to renormalization, which
they called FNS (Fundamental Numerical Scheme), for minimizing what is now
referred to as the Sampson error [6]. They argued in [3] that renormalization
can be “rationalized” if viewed as approximately minimizing the Sampson error.
Leedan and Meer [14] and Matei and Meer [15] also proposed a different Sampson
error minimization scheme, which they called HEIV (Heteroscedastic Errors-in-
Variables). Kanatani and Sugaya [13] pointed out that the reprojection error
can be minimized by repeated applications of Sampson error minimization: The
Sampson error is iteratively modified so that it agrees with the reprojection error
in the end. However, reprojection error minimization, which is ML statistically,
still has some bias. Kanatani [9] analytically evaluated the bias of the FNS solu-
tion and subtracted it; he called this scheme hyperaccurate correction. Okatani
and Deguchi [16, 17] removed the bias of ML of particular types by analyzing
the relationship between the bias and the hypersurface defined by the constraint
[16] and using the method of projected scores [17].

We note that renormalization is similar to the estimating equation approach
for statistical estimation in the sense that it directly specifies equations to solve,
which has the form of the generalized eigenvalue problem for geometric esti-
mation. In this paper, we show that by doing high order error analysis using
the perturbation technique of Kanatani [10] and Al-Sharadqah and Chernov
[1], renormalization can achieve higher accuracy than reprojection error mini-
mization and is comparable to bias-corrected ML. We call the resulting scheme
hyper-renormalization.

In Sec. 2, we summarize the fundamentals of geometric estimation. In
Sec. 3, we describes the iterative reweight, the most primitive form of the non-
minimization approach. In Sec. 4, we reformulate Kanatani’s renormalization as
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an iteratively improvement of the Taubin method [19]. In Sec. 5, we do a detailed
error analysis of the generalized eigenvalue problem. In Sec. 6, the procedure of
hyper-renormalization is derived as an iterative improvement of what is called
HyperLS [11, 12, 18]. In Sec. 7, we apply our technique to ellipse fitting to demon-
strate that it indeed outperforms reprojection error minimization. In Sec. 8, we
conclude that hyper-renormalization is the best method available today.

2 Geometric Estimation

Equation (1) is a general nonlinear equation in x. In many practical problem,
we can reparameterize the problem to make F (x; θ) linear in θ (but nonlinear
in x), allowing us to write Eq. (1) as

(ξ(x), θ) = 0, (2)

where and hereafter (a, b) denotes the inner product of vectors a and b. The
vector ξ(x) is some nonlinear mapping of x from Rm to Rn, where m and n
are the dimensions of the data xα and the parameter θ, respectively. Since the
vector θ in Eq. (2) has scale indeterminacy, we normalize it to unit norm: ‖θ‖
= 1.

Example 1 (Ellipse fitting). Given a point sequence (xα, yα), α = 1, ..., N ,
we wish to fit an ellipse of the form

Ax2 + 2Bxy + Cy2 + 2(Dx + Ey) + F = 0. (3)

If we let

ξ = (x2, 2xy, y2, 2x, 2y, 1)>, θ = (A,B,C,D,E, F )>, (4)

Eq. (3) has the form of Eq. (2).

Example 2 (Fundamental matrix computation). Corresponding points
(x, y) and (x′, y′) in two images of the same 3-D scene taken from different
positions satisfy the epipolar equation [6]

(x, Fx′) = 0, x ≡ (x, y, 1)>, x′ ≡ (x′, y′, 1′)>, (5)

where F is a matrix of rank 2 called the fundamental matrix , from which we can
compute the camera positions and the 3-D structure of the scene [6, 8]. If we let

ξ = (xx′, xy′, x, yx′, yy′, y, x′, y′, 1)>,

θ = (F11, F12, F13, F21, F22, F23, F31, F32, F33)>, (6)

Eq. (5) has the form of Eq. (2).

We assume that each datum xα is a deviation from its true value x̄α by indepen-
dent Gaussian noise of mean 0 and covariance matrix σ2V0[xα], where V0[xα] is
a known matrix that specifies the directional dependence of the noise and σ is
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an unknown constant that specifies the absolute magnitude; we call V0[xα] the
normalized covariance matrix , and σ the noise level .

Let us write ξ(xα) simply as ξα. It can be expanded in the form

ξα = ξ̄α + ∆1ξα + ∆2ξα + · · · , (7)

where and hereafter bars indicate terms without noise and the symbol ∆k means
kth order noise terms O(σk). Using the Jacobian matrix of the mapping ξ(x),
we can express the first order noise term ∆1ξα in terms of the original noise
terms ∆xα as follows:

∆1ξα =
∂ξ(x)
∂x

∣∣∣∣
x=x̄α

∆xα. (8)

We define the covariance matrix of ξα by

V [ξα] = E[∆1ξα∆1ξ
>
α ] =

∂ξ(x)
∂x

∣∣∣∣
x=x̄α

E[∆xα∆x>
α ]

∂ξ(x)
∂x

∣∣∣∣>
x=x̄α

= σ2V0[ξα], (9)

where E[ · ] denotes expectation, and we define

V0[ξα] ≡ ∂ξ(x)
∂x

∣∣∣∣
x=x̄α

V0[xα]
∂ξ(x)
∂x

∣∣∣∣>
x=x̄α

. (10)

The true values x̄α are used in this definition. In actual computation, we replace
them by their observations xα. It has been confirmed by many experiments that
this does not affect the final result of practical problems. Also, V0[ξα] takes only
the first order error terms into account via the Jacobian matrix, but it has been
confirmed by many experiments that incorporation of higher order terms does
not affect the final result.

3 Iterative Reweight

The oldest method that is not based on minimization is the following iterative
reweight :

1. Let Wα = 1, α = 1, ..., N , and θ0 = 0.
2. Compute the following matrix M :

M =
1
N

N∑
α=1

Wαξαξ>
α . (11)

3. Solve the eigenvalue problem Mθ = λθ, and compute the unit eigenvector
θ for the smallest eigenvalue λ.

4. If θ ≈ θ0 up to sign, return θ and stop. Else, let

Wα ← 1
(θ, V0[ξα]θ)

, θ0 ← θ, (12)

and go back to Step 2.
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The motivation of this method is the weighted least squares that minimizes

1
N

N∑
α=1

Wα(ξα, θ)2 =
1
N

N∑
α=1

Wαθ>ξαξ>
α θ = (θ, Mθ). (13)

This is minimized by the unit eigenvector θ of the matrix M for the smallest
eigenvalue. As is well known in statistics, the optimal choice of the weight Wα

is the inverse of the variance of that term. Since (ξα, θ) = (∆1ξα, θ) + · · · , the
leading term of the variance is

E[(∆1ξα, θ)2] = E[θ>∆1ξα∆1ξ
>
α θ] = (θ, E[∆1ξα∆1ξ

>
α ]θ) = σ2(θ, V0[ξα]θ).

(14)
Hence, we should choose Wα = 1/(θ, V0[ξα]θ), but θ is not known. So, we do
iterations, determining the weight Wα from the value of θ in the preceding
step. Let us call the first value of θ computed with Wα = 1 simply the “initial
solution”. It minimizes

∑N
α=1(ξα, θ)2, corresponding to what is known as least

squares (LS ), algebraic distance minimization, and many other names [6]. Thus,
iterative reweight is an iterative improvement of the LS solution.

It appears at first sight that the above procedure minimizes

J =
1
N

N∑
α=1

(ξα,θ)2

(θ, V0[ξα]θ)
, (15)

which is known today as the Sampson error [6]. However, iterative reweight
does not minimize it, because at each step we are computing the value of θ that
minimizes the numerator part with the denominator part fixed. Hence, at the
time of the convergence, the resulting solution θ is such that

1
N

N∑
α=1

(ξα, θ)2

(θ, V0[ξα]θ)
≤ 1

N

N∑
α=1

(ξα, θ′)2

(θ, V0[ξα]θ)
(16)

for any θ′, but the following does not necessarily hold:

1
N

N∑
α=1

(ξα, θ)2

(θ, V0[ξα]θ)
≤ 1

N

N∑
α=1

(ξα, θ′)2

(θ′, V0[ξα]θ′)
. (17)

The perturbation analysis in [10] shows that the covariance matrix V [θ] of
the resulting solution θ agrees with a theoretical accuracy limit, called KCR
(Kanatani-Cramer-Rao) lower bound [2, 8, 10], up to O(σ4). Hence, further co-
variance reduction is practically impossible. However, it has been widely known
that the iterative reweight solution has a large bias [8]. For ellipse fitting, for
example, it almost always fit a smaller ellipse than the true shape. Thus, the
following strategies were introduced to improve iterative reweight:

– Remove the bias of the solution.
– Exactly minimize the Sampson error in Eq. (15).

The former is Kanatani’s renormalization [7, 8], and the latter is the FNS of
Chojnacki et al. [4] and the HEIV of Leedan and Meer [14] and Matei and Meer
[15].
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4 Renormalization

Kanatani’s renormalization [7, 8] can be described as follows:

1. Let Wα = 1, α = 1, ..., N , and θ0 = 0.
2. Compute the following matrices M and N :

M =
1
N

N∑
α=1

Wαξαξ>
α , N =

1
N

N∑
α=1

WαV0[ξα]. (18)

3. Solve the generalized eigenvalue problem Mθ = λNθ, and compute the unit
eigenvector θ for the smallest eigenvalue λ in absolute value.

4. If θ ≈ θ0 up to sign, return θ and stop. Else, let

Wα ← 1
(θ, V0[ξα]θ)

, θ0 ← θ, (19)

and go back to Step 2.

This has a different appearance from the procedure described in [7], in which the
generalized eigenvalue problem is reduced to the standard eigenvalue problem,
but the resulting solution is the same [8]. The motivation of renormalization is
as follows. Let M̄ be the true value of the matrix M in Eq. (18) defined by the
true values ξ̄α. Since (ξ̄α, θ) = 0, we have M̄θ = 0. Hence, θ is the eigenvector
of M̄ for eigenvalue 0. But M̄ is unknown, so we estimate it. Since E[∆1ξα] =
0, the expectation of M is to a first approximation

E[M ] = E[
1
N

N∑
α=1

Wα(ξ̄α+∆1ξα)(ξ̄α+∆1ξα)>] = M̄ +
1
N

N∑
α=1

WαE[∆1ξα∆1ξ
>
α ]

= M̄ +
σ2

N

N∑
α=1

WαV0[ξα] = M̄ + σ2N . (20)

Hence, M̄ = E[M ] − σ2N ≈ M − σ2N , so instead of M̄θ = 0 we solve
(M − σ2N)θ = 0, or Mθ = σ2Nθ. Assuming that σ2 is small, we regard it as
the eigenvalue λ closest to 0. As in the case of iterative reweight, we iteratively
update the weight Wα so that it approaches 1/(θ, V0[ξα]θ).

Note that the initial solution with Wα = 1 solves
(∑N

α=1 ξαξ>
α

)
θ =

λ
(∑N

α=1 V0[ξα]
)
θ, which is nothing but the method of Taubin [19], known to be

a very accurate algebraic method without requiring iterations. Thus, renormal-
ization is an iterative improvement of the Taubin solution. According to many
experiments, renormalization is shown to be more accurate than the Taubin
method with nearly comparable accuracy with the FNS and the HEIV. The
accuracy of renormalization is analytically evaluated in [10], showing that the
covariance matrix V [θ] of the solution θ agrees with the KCR lower bound up
to O(σ4) just as iterative reweight, but the bias is much smaller.
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Very small it may be, the bias is not 0, however. The error analysis in [10]
shows that the bias expression involves the matrix N . Our strategy is to optimize
the matrix N in Eq. (18) to N = (1/N)

∑N
α=1 WαV0[ξα] + · · · so that the bias

is zero up to high order error terms .

5 Error Analysis

Substituting Eq. (7) into the definition of the matrix M in Eq. (18), we can
expand it in the form

M = M̄ + ∆1M + ∆2M + · · · , (21)

where ∆1M and ∆2M are given by

∆1M =
1
N

N∑
α=1

W̄α

(
∆1ξαξ̄

>
α + ξ̄α∆1ξ

>
α

)
+

1
N

N∑
α=1

∆1W̄αξ̄αξ̄
>
α , (22)

∆2M =
1
N

N∑
α=1

W̄α

(
∆1ξα∆1ξ

>
α + ∆2ξαξ̄

>
α + ξ̄α∆2ξ

>
α

)
+

1
N

N∑
α=1

∆1Wα(∆1ξαξ̄
>
α + ξ̄α∆1ξ

>
α ) +

1
N

N∑
α=1

∆2Wαξ̄αξ̄
>
α . (23)

Let θ = θ̄ + ∆1θ + ∆2θ + · · · be the corresponding expansion of the resulting
θ. At the time of convergence, we have Wα = 1/(θ, V0[ξα]θ). Substituting the
expansion of θ, we obtain the expansion Wα = W̄α+∆1Wα+∆2Wα+ · · · , where

∆1Wα = −2W̄ 2
α(∆1θ, V0[ξα]θ̄), (24)

∆2Wα =
(∆1Wα)2

W̄α
− W̄ 2

α

(
(∆1θ, V0[ξα]∆1θ) + 2(∆2θ, V0[ξα]θ̄)

)
. (25)

(We omit the derivation). Similarly expanding the eigenvalue λ and the matrix
N yet to be determined, the generalized eigenvalue problem Mθ = λNθ has
the form

(M̄ +∆1M +∆2M +· · · )(θ̄+∆1θ+∆2θ+· · · )
= (λ̄+∆1λ+∆2λ+· · · )(N̄ +∆1N +∆2N +· · · )(θ̄+∆1θ+∆2θ+· · · ). (26)

Equating the noiseless terms on both sides, we have M̄θ̄ = λ̄Nθ̄, but since M̄θ̄
= 0, we have λ̄ = 0. Equating the first and the second order terms on both sides,
we obtain the following relationships:

M̄∆1θ + ∆1Mθ̄ = ∆1λN̄ θ̄, (27)

M̄∆2θ + ∆1M∆1θ + ∆2Mθ̄ = ∆2λN̄ θ̄. (28)
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Computing the inner product of Eq. (27) and θ̄ on both sides, we have

(θ̄, M̄∆1θ) + (θ̄,∆1Mθ̄) = ∆1λ(θ̄, N̄ θ̄), (29)

but (θ̄, M̄∆1θ) = (M̄θ̄,∆1θ) = 0 and Eq. (22) implies (θ̄,∆1Mθ̄) = 0, so
∆1λ = 0. The matrix M̄ has rank n − 1, (n is the dimension of θ), θ̄ being
its null vector. Hence, if we let M̄

− be the pseudoinverse of M̄ , the product
M̄

−
M̄ equals the projection matrix P θ̄ in the direction of θ̄. It follows that by

multiplying both sides of Eq. (27) by M̄
− from left, ∆1θ is expressed as follows:

∆1θ = −M̄
−

∆1Mθ̄. (30)

Here, we have noted that since θ is normalized to unit norm, ∆1θ is orthogonal
to θ̄ so P θ̄∆1θ = ∆1θ. Substituting Eq. (30) into Eq. (28), we obtain

∆2λN̄ θ̄ = M̄∆2θ − ∆1MM̄
−

∆1Mθ̄ + ∆2Mθ̄ = M̄∆2θ + T θ̄, (31)

where we define the matrix T to be

T ≡ ∆2M − ∆1MM̄
−

∆1M . (32)

Because θ is a unit vector, it has no error in the direction of itself; we are
interested in the error orthogonal to it. So, we define the second order error of
θ to be the orthogonal component

∆⊥
2 θ ≡ P θ̄∆2θ = M̄

−
M̄∆2θ. (33)

Multiplying Eq. (31) by M̄
− on both sides from left, we obtain ∆⊥

2 θ in the
following form:

∆⊥
2 θ = M̄

−(∆2λN̄ − T )θ̄. (34)

Computing the inner product of Eq. (31) and θ̄ on both sides and noting that
(θ̄, M̄∆2θ) = 0, we obtain ∆2λ in the form

∆2λ =
(θ̄,T θ̄)
(θ̄, N̄ θ̄)

. (35)

Hence, Eq. (34) is rewritten as follows:

∆⊥
2 θ = M̄

−
( (θ̄, T θ̄)

(θ̄, N̄ θ̄)
N̄ θ̄ − T θ̄

)
. (36)

6 Hyper-renormalization

From Eq. (30), we see that E[∆1θ] = 0: the first order bias is 0. Thus, the bias
is evaluated by the second order term E[∆⊥

2 θ]. From Eq. (36), we obtain

E[∆⊥
2 θ] = M̄

−
( (θ̄, E[T θ̄])

(θ̄, N̄ θ̄)
N̄ θ̄ − E[T θ̄]

)
, (37)
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which implies that if we can choose such an N that its noiseless value N̄ satisfies
E[T θ̄] = cN̄ θ̄ for some constant c, we will have E[∆⊥

2 θ] = 0. Then, the bias
will be O(σ4), because the expectation of odd-order error terms is zero. After a
lengthy analysis (we omit the details), we find that E[T θ̄] = σ2N̄ θ̄ holds if we
define

N̄ =
1
N

N∑
α=1

W̄α

(
V0[ξα] + 2S[ξ̄αe>

α ]
)

− 1
N2

N∑
α=1

W̄ 2
α

(
(ξ̄α, M̄

−
ξ̄α)V0[ξα] + 2S[V0[ξα]M̄−

ξ̄αξ̄
>
α ]

)
, (38)

where S[ · ] denotes symmetrization (S[A] = (A + A>)/2) and the vectors eα

are defined via
E[∆2ξα] = σ2eα. (39)

From this result, we obtain the following hyper-renormalization:

1. Let Wα = 1, α = 1, ..., N , and θ0 = 0.
2. Compute the following matrices M and N :

M =
1
N

N∑
α=1

Wαξαξ>
α , (40)

N =
1
N

N∑
α=1

Wα

(
V0[ξα] + 2S[ξαe>

α ]
)

− 1
N2

N∑
α=1

W 2
α

(
(ξα, M−

n−1ξα)V0[ξα]+2S[V0[ξα]M−
n−1ξαξ>

α ]
)
. (41)

Here, M−
n−1 is the pseudoinverse of M with truncated rank n− 1, i.e., with

the smallest eigenvalue replaced by 0 in the spectral decomposition.
3. Solve the generalized eigenvalue problem Mθ = λNθ, and compute the unit

eigenvector θ for the smallest eigenvalue λ in absolute value.
4. If θ ≈ θ0 up to sign, return θ and stop. Else, let

Wα ← 1
(θ, V0[ξα]θ)

, θ0 ← θ, (42)

and go back to Step 2.

It turns out that the initial solution with Wα = 1 coincides with what is called
HyperLS [11, 12, 18], which is derived to remove the bias up to second order
error terms within the framework of algebraic methods without iterations. The
expression of Eq. (41) with Wα = 1 lacks one term as compared with the cor-
responding expression of HyperLS, but the same solution is produced. We omit
the details, but all the intermediate solutions θ in the hyper-renormalization
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iterations are also free of second oder bias. Thus, hyper-renormalization is an
iterative improvement of HyperLS . As in the case of iterative reweight and renor-
malization, the covariance matrix V [θ] of the hyper-renormalization solution θ
agrees with the KCR lower bound up to O(σ4).

Standard linear algebra routines for solving the generalized eigenvalue prob-
lem Mθ = λNθ assume that N is positive definite, but the matrix N in Eq. (41)
has both positive and negative eigenvalues. For the Taubin method and renor-
malization, the matrix N in Eq. (18) is positive semidefinite having eigenvalue
0. This, however, causes no difficulty, because the problem can be rewritten as

Nθ =
1
λ

Mθ. (43)

The matrix M in Eq. (40) is positive definite for noisy data, so we can use
a standard routine to compute the eigenvector θ for the largest eigenvalue in
absolute value. If the matrix M happens to have eigenvalue 0, it indicates that
the data are all exact, so its null vector is the exact solution.

7 Ellipse Fitting Experiment

We define 30 equidistant points on the ellipse shown in Fig. 1(a). The major and
minor axis are set to 100 and 50 pixels, respectively. We add random Gaussian
noise of mean 0 and standard deviation σ to the x and y coordinates of each point
independently and fit an ellipse to the noisy point sequence using the following
methods: 1. LS, 2. iterative reweight, 3. the Taubin method, 4. renormaliza-
tion, 5. HyperLS, 6. hyper-renormalization, 7. ML, 8. ML with hyperaccurate
correction [9].

For our noise, ML means reprojection error minimization, which can be com-
puted by repeated Sampson error minimization [13]. We used the FNS of Cho-
jnacki et al. [4] for minimizing the Sampson error, but according to our ex-
periments, the FNS solution agrees with the ML solution up to three or four
significant digits, as also observed in [13], so we identified the FNS with ML.

Figures 1(b), (c) show fitting examples for σ = 0.5; although the noise mag-
nitude is fixed, fitted ellipses are different for different noise. The true shape
is indicated by dotted lines. Iterative reweight, renormalization, and hyper-
renormalization all converged after four iterations, while FNS for ML computa-
tion required nine iterations for Fig. 1(b) and eight iterations for Fig. 1(c).

We can see that the LS and iterative reweight produce much smaller el-
lipses than the true shape. The closest ellipse is fitted by hyper-renormalization
in Fig. 1(b) and by ML with hyperaccurate correction in Fig. 1(c). For a fair
comparison, we need statistical tests.

Since the computed θ and its true value θ̄ are both unit vectors, we measure
their discrepancy by the orthogonal component ∆⊥θ = P θ̄θ, where P θ̄ (≡
I − θ̄θ̄

>) is the orthogonal projection matrix along θ̄ (Fig. 2(a)). We generated
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Fig. 1. (a) Thirty points on an ellipse. (b), (c) Fitted ellipses (σ = 0.5). 1. LS, 2.
iterative reweight, 3. the Taubin method, 4. renormalization, 5. HyperLS, 6. hyper-
renormalization, 7. ML, 8. ML with hyperaccurate correction. The dotted lines indicate
the true shape.

10000 independent noise instances for each σ and evaluated the bias B (Fig. 2(b))
and the RMS (root-mean-square) error D (Fig. 2(c)) defined by

B =
∥∥∥ 1

10000

10000∑
a=1

∆⊥θ(a)
∥∥∥, D =

√√√√ 1
10000

10000∑
a=1

‖∆⊥θ(a)‖2, (44)

where θ(a) is the solution in the ath trial. The dotted line in Fig. 2(c) indicates
the KCR lower bound [2, 8, 10]

DKCR =
σ√
N

√
trM̄−

, (45)

where M̄
− is the pseudoinverse of the true value M̄ (of rank 5) of the M in

Eqs. (11), (18), and (40), and tr stands for the trace. The interrupted plots
in Fig. 2(b) for iterative reweight, ML, and ML with hyperaccurate correction
indicate that the iterations did not converge beyond that noise level. Our con-
vergence criterion is ‖θ − θ0‖ < 10−6 for the current value θ and the value θ0

in the preceding iteration; their signs are adjusted before subtraction. If this cri-
terion is not satisfied after 100 iterations, we stopped. For each σ, we regarded
the iterations as nonconvergent if any among the 10000 trials did not converge.
Figure 3 shows the enlargements of Figs. 2(b), (c) for the small σ part.

We can see from Fig. 2(b) that LS and iterative reweight have very large bias,
in contrast to which the bias of the Taubin method and renormalization is very
small. The bias of HyperLS and hyper-renormalization is still smaller and even
smaller than ML. Since the leading covariance is common to iterative reweight,
renormalization, and hyper-renormalization, the RMS reflects the magnitude of
the bias as shown in Fig. 2(c). Because the hyper-renormalization solution does
not have bias up to high order error terms, it has nearly the same accuracy as
ML. A close examination of the small σ part (Fig. 3(b)) reveals that hyper-
renormalization outperforms ML. The highest accuracy is achieved, although
the difference is very small, by Kanatani’s hyperaccurate correction of ML [9].
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Fig. 2. (a) The true value θ̄, the computed value θ, and its orthogonal component ∆⊥θ
of θ̄. (b), (c) The bias (a) and the RMS error (b) of the fitted ellipse for the standard
deviation σ of the added noise over 10000 independent trials. 1. LS, 2. iterative reweight,
3. the Taubin method, 4. renormalization, 5. HyperLS, 6. hyper-renormalization, 7. ML,
8. ML with hyperaccurate correction. The dotted line in (c) indicates the KCR lower
bound.
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Fig. 3. (a) Enlargement of Fig. 2(b). (b) Enlargement of Fig. 2(c).

However, it first requires the ML solution, and the FNS iterations for its com-
putation may not converge above a certain noise level, as shown in Figs. 2(b),
(c). In contrast, hyper-renormalization is very robust to noise, because the initial
solution is HyperLS, which is itself highly accurate as shown in Figs. 2 and 3. For
this reason, we conclude that it is the best method for practical computations.

Figure 4(a) is an edge image of a scene with a circular object. We fitted an
ellipse to the 160 edge points indicated in red, using various methods. Figure 4(b)
shows the fitted ellipses superimposed on the original image, where the occluded
part is also artificially composed for visual ease. In this case, iterative reweight
converged after four iterations, and renormalization and hyper-renormalization
converged after three iterations, while FNS for ML computation required six
iterations. We can see that LS and iterative reweight produce much smaller
ellipses than the true shape as in Fig. 1(b), (c). All other fits are very close to
the true ellipse, and ML gives the best fit in this particular instance.
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Fig. 4. (a) An edge image of a scene with a circular object. An ellipse is fitted to the
160 edge points indicated in red. (b) Fitted ellipses superimposed on the original image.
The occluded part is artificially composed for visual ease. 1. LS, 2. iterative reweight,
3. the Taubin method, 4. renormalization, 5. HyperLS, 6. hyper-renormalization, 7.
ML, 8. ML with hyperaccurate correction.

8 Conclusions

We have reformulated iterative reweight and renormalization as geometric esti-
mation techniques not based on the minimization principle and optimized the
matrix N that appears in the renormalization computation so that the resulting
solution has no bias up to the second order noise terms. We called the resulting
scheme “hyper-renormalization” and applied it to ellipse fitting. We observed:

1. Iterative reweight is an iterative improvement of LS. The leading covariance
of the solution agrees with the KCR lower bound, but the bias is very large,
hence the accuracy is low.

2. Renormalization [7, 8] is an iterative improvement of the Taubin method [19].
The leading covariance of the solution agrees with the KCR lower bound,
and the bias is very small, hence the accuracy is high.

3. Hyper-renormalization is an iterative improvement of HyperLS [11, 12, 18].
The leading covariance of the solution agrees with the KCR lower bound
with no bias up to high order error terms. Its accuracy outperforms ML.

4. Although the difference is very small, ML with hyperaccurate correction
exhibits the highest accuracy, but the iterations for its computation may
not converge in the presence of large noise, while hyper-renormalization is
robust to noise.

We conclude that hyper-renormalization is the best method for practical com-
putations.
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