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SUMMARY

We first describe in a unified way how to compute the
covariance matrix from the gray levels of the image. We
then experimentally investigate whether or not the com-
puted covariance matrix actually reflects the accuracy of the
feature position by doing subpixel correction using variable
template matching. We also test if the accuracy of the
homography and the fundamental matrix can really be
improved by optimization using the covariance matrix com-
puted from the gray levels. © 2002  Wiley Periodicals, Inc.
Electron Comm Jpn Pt 3, 86(1): 1–10, 2003; Published
online in Wiley InterScience (www.interscience.wiley.
com). DOI 10.1002/ecjc.10042
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1. Introduction

The authors have presented various optimization
techniques for feature-based problems, such as 3D recon-
struction, camera calibration, and image mosaicking, using
the covariance matrix of a feature point as the measure of
its uncertainty [4, 6, 8, 9]. In most cases, we have assumed
isotropic homogeneous noise for the covariance matrix.

In the past, various methods have been proposed for
computing the covariance matrix from the image gray

levels [1, 10, 12, 13]. It has not been clear, however, whether
or not the computed covariance matrix actually reflects the
“accuracy” of the feature position. It has also not been clear
if a better result can be obtained using such covariance
matrices rather than simply assuming “isotropic homoge-
neous noise.”

It is true that many authors have demonstrated by
simulation the effectiveness of using feature covariance, but
they have generated the noise according to the assumed
covariance. Can we really relate the accuracy of the feature
position in the actual image to the covariance matrix derived
from the gray levels? This question has frequently been
posed, but so far no satisfactory answer has been given.

In this paper, we first describe in a unified way how
to compute the covariance matrix from the gray levels of
the image. We then compare the accuracy of the feature
position located by template matching with its covariance
matrix computed from the gray levels. We also test if the
accuracy of the homography and the fundamental matrix
can really be improved by optimization using such covari-
ance information.

2. Covariance of Feature Position

The position of a feature point has a certain degree of
uncertainty, whether it is extracted manually using a mouse
or automatically using a feature detector such as SUSAN
[14] and the Harris operator [2]. Let (x

_
, y
_
) be its true

position, and (x, y) its observed position. Regarding ∆x =
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x − x
_
 and ∆y = y − y

_
 as random variables, we define the

covariance matrix of this observation by

where E[⋅] denotes expectation. The constant σ, which we
call the noise level, represents the absolute magnitude of the
noise, while the matrix Σ0, which we call the normalized
covariance matrix, describes the relative magnitude of the
noise and its directional dependence [3].

The reason why we divide the covariance matrix into
the noise level and the normalized covariance matrix is that,
as will be shown in the next section, the covariance matrix
computed from the gray levels is defined only up to a
constant multiplier. Another reason is that multiplying the
covariance matrix by a constant does not affect the optimi-
zation solution [3].

In general, the noise distribution is classified as in
Fig. 1 according to its dependence on the position and
direction. If the noise characteristics do not depend on the
position or direction (isotropic homogeneous noise), we can
use the following default value for the normalized covari-
ance matrix Σ0:

3. Covariance Matrix Computation

The computation of the covariance matrix from the
image gray levels is roughly classified into the residual-
based approach [10, 12] and the derivative-based approach
[1, 13].

3.1. Residual-based approach

Let Np be a rectangular grid centered on a feature
point p. The (self-)residual* is defined by

where x and y are real numbers and wij is an appropriate
(e.g., Gaussian) weight (Fig. 2). The gray level I(i, j) is
regarded as a continuous function via an appropriate inter-
polation. Since J(x, y) is a nonnegative function which takes
its minimum at x = y = 0, it can be approximated by the
following quadratic function over a neighborhood X of the
origin (0, 0):

The Hessian H is defined by

The elements n1, n2, and n3 are determined by the following
least-squares minimization:

Here, w(x, y) is an appropriate weight, typical examples
being the Gaussian weight w(x, y) = e−(x2+y

2) / σ2

 and the
Gibbs weight w(x, y) = e−J(x,y) / σ2

 with an appropriate con-
stant σ.

The solution n = (n1, n2, n3)
, of the minimization (6)

can be obtained by solving the following normal equation,
which is obtained by differentiating Eq. (6) with respect to
x and y and equating the result to 0:

Fig. 1. Noise modeling: (a) isotropic homogeneous; (b)
isotropic inhomogeneous; (c) anisotropic homogeneous;

(d) anisotropic inhomogeneous.

(1)

(2)

*The third term Σ(i,j)∈NPwijI(i, j)2
 / 2 in the expansion of the right-hand side

of Eq. (3) is a constant. If the first term Σ(i,j)∈NpwijI(i + x, j + y)2
 / 2 does

not depend on x or y, it equals the (weighted) autocorrelation except for
the sign.

(3)

Fig. 2. The residual surface.

(4)

(5)

(6)

(7)
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The matrix A and the vector b are defined by

where m(x, y) = (x2, 2xy, y2),. The integral ∫∫Xdxdy is
evaluated by numerical sampling in the region X. The
solution n of Eq. (7) determines the Hessian H in the form
of Eq. (5). Its inverse is identified with the normalized
covariance matrix Σ0 [10, 12]:

3.2. Derivative-based approach

If the correction terms x and y in Eq. (3) are small,
the Taylor expansion of I(i + x, j + y) yields the following
first-order approximation:

Here, Ii and Ij are the partial derivatives of I(i, j) with respect
to i and j (regarded as real variables), respectively. They are
numerically evaluated using a smooth differentiation filter
(Appendix 1). The Hessian H in Eq. (10) has the form

Its inverse is identified with the normalized covariance
matrix Σ0 [1, 13]:

3.3. Theoretical background

In both the residual- and derivative-based ap-
proaches, the inverse of the Hessian of the residual surface
is identified with the normalized covariance matrix; the
only difference is whether it is approximated over the
neighborhood Np of the feature point p or evaluated via the
Taylor expansion around p.

Since the Hessian H represents the curvature of the
residual surface at p, a large Hessian means that the gray
level changes rapidly as we slightly move from p in its
neighborhood (Fig. 2). This implies that the feature position
can easily be located precisely by template matching. If the
Hessian H is small, on the other hand, the feature position
is difficult to locate precisely, because the gray level varies
only slightly in its neighborhood. Thus, it is intuitively clear
that the Hessian H is related to the uncertainty of the feature
position. Mathematically, this is formulated as follows.

It is known in statistics that the covariance matrix of
a maximum likelihood estimate can be approximated by its
Cramer–Rao lower bound, which is given by the inverse of
the Hessian (or the Fisher information matrix) of the loga-
rithmic likelihood function. If locating a feature point by
template matching is regarded as a statistical estimation
problem, Eqs. (11) and (12) respectively correspond to the
Fisher information matrix and the Cramer–Rao lower
bound (Appendix 2). Consequently, the inverse of the Hes-
sian H can be identified with the covariance matrix that
measures the uncertainty of the feature position.

The above observation amounts to approximating the
distribution of the deviation (x, y) from the true value by the
Gaussian distribution,

of mean 0 and standard deviation σ. From the definition of
the Hessian H, Eq. (13) can also be written in the form

In many computer vision applications, the uncertainty of a
quantity is frequently modeled by this type of Gibbs distri-
bution associated with the residual J, which is often called
the energy by physical analogy [7]. In fact, Singh [12]
approximated the normalized covariance matrix by the
sample covariance matrix obtained by discrete sampling of
e−J(x,y) / σ2

.
On the other hand, the derivative-based approach can

be interpreted as detecting optical flow using the gradient
constraint [3, 11] (Appendix 3). In fact, the inverse of Eq.
(11) is used as the covariance matrix that measures the
uncertainty of the computed flow [11]. It can be seen from
Eq. (11) that the Hessian H has determinant 0 when the gray
level is constant in some direction, causing what is known
as the aperture problem.

3.4. Real image examples

In Fig. 3(a), the covariance matrix evaluated at each
vertex of a 3 × 3 grid arbitrarily placed in the image is
displayed as an ellipse that represents the standard deviation
in every orientation [3]. Since the absolute size of the ellipse
is indeterminate, we adjusted the scale for the ease of
visualization. The ellipses in solid lines are obtained by the
residual-based approach; those in dashed lines are obtained
by the derivative-based approach.

We can see that the ellipses are large in a region in
which the gray levels have small variations but are small in
the parts where the gray levels have large variations, such

(8)

(9)

(10)

(11)

(12)

(13)

(14)
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as at the corners of objects. We can also see that ellipses on
an object boundary are elongated along that boundary.
These agree with our intuition.

In Fig. 3(b), on the other hand, the feature points were
manually selected using a mouse. It is seen that the uncer-
tainty is almost isotropic and homogeneous. The reason
seems to be that for choosing image features, humans
unconsciously avoid points in regions in which gray levels
have small variations or on object boundaries. Instead,
humans tend to choose easy-to-detect points, such as cor-
ners or isolated points, around which the gray levels have
large variations in all directions.

In Fig. 3(c), the feature points were extracted by
SUSAN [14]. Again, the uncertainty is almost isotropic and
homogeneous. This is because most feature detectors in-
cluding SUSAN, whatever algorithm is used, effectively
compute the covariance internally and output those points
which have large gray level variations around them in all
directions. The Harris operator [2], for instance, directly
computes the Hessian in Eq. (11). The Kanade–Lucas–
Tomasi feature tracker [15] also uses the same computation
internally.

From these observations, we can conclude that as
long as feature points are extracted manually or by a feature
detector, it suffices to assume the isotropic homogeneous
model of Eq. (2). It is, therefore, when feature points are
specified randomly or independently of the image content,
as in Fig. 3, that we need to evaluate the covariance matrix
from the gray levels.

4. Feature Point Matching

4.1. Variable template matching

The next question is: When a feature point is specified
randomly or independently of the image content, does the

covariance matrix computed from the gray levels really
express the accuracy of locating it? To investigate this, we
conduct the following experiments.

Using two images of the same scene, we match a
randomly specified point p in one image to the other.
Cutting out a neighborhood Np of p, we define a template
T(i, j) centered on it and do variable template matching by
taking account of rotations and scale changes.

We manually place the template T(i, j) at a pixel (a,
b) close to the corresponding point in the other image I(i, j)
(such an approximate point can be automatically found by
a coarse-to-fine strategy, but this is irrelevant in our context,
so we omit this stage). Then, we adjust the translation, the
rotation, and the scale by template matching.

Suppose the template T(i, j) matches the image I(i, j)
if it is translated by (x, y), rotated by angle θ, and scaled s
times from this position. The values (x, y), θ, and s are
determined by minimizing

where we define the similarity mapping T (x,y,θ,s)
(a,b)  by

We numerically search the discretized parameter
space of x, y, θ, and s for the minimum by recursively
subdividing the search region (we omit the details). If the
illumination and exposure conditions change between the
two images, we use instead of Eq. (15)

Fig. 3. Feature covariance evaluated from the residual surface (solid lines) and the gray-level derivatives (dashed lines).
Feature points are (a) generated regularly, (b) chosen by hand, and (c) detected by SUSAN.

(15)

(16)
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where

which is a constant independent of x, y, s, and θ (Appendix 4).

4.2. Real image experiments

Figure 4(a) shows two images of an outdoor scene.
We arbitrarily placed a 3 × 3 grid in the left image. In the
right image, we manually defined, using a mouse, a grid (in
solid lines) that approximately corresponds to the grid in
the left image. Then, we corrected each vertex position by
similarity template matching. The corrected grid is shown
in dashed lines.

If the covariance matrix reflects the accuracy of lo-
cating the feature position, the deviation (∆x, ∆y) of the
corrected position from its true position should have a
positive correlation with the magnitude of the covariance
matrix. Thus, we repeated the experiment described above
many times in different feature locations and in different
images. Figure 4(b) plots, on logarithmic scales, the abso-
lute deviation √∆x2 + ∆y2  on the vertical axis versus the
square root of the trace of the covariance matrix computed
from the first image on the horizontal axis. The latter should
be proport ional  to the root-mean-square error
√E[∆x2 + ∆y2] , as seen from Eq. (1).

In this experiment, the true positions were deter-
mined as follows. Noting that the two images of a far scene

should be related by a homography, we carefully chose by
hand a large number (53 in this case) of corresponding
points in the two images and optimally computed the ho-
mography from them (the details will be given later). Then,
we mapped the vertices in the left image of Fig. 4(a) to the
right image via the computed homography and regarded the
resulting positions as the true corresponding points.

We can see from Fig. 4(b) that although there are large
variations, the plots cluster roughly along a line with slope
1. This implies that the accuracy of template matching has
more or less a positive correlation with the covariance
matrix computed from the gray levels.

5. Covariance-Based Optimization

The remaining question is: Does the covariance ma-
trix computed from the gray levels really improve the
accuracy of the optimization using it? We now investigate
this by computing the homography and the fundamental
matrix from two images.

Suppose we are given two sets of corresponding
points {(xα, yα)} and {(xα

g , yα
g )} along with their covariance

matrices {Σα
0} and {Σα

0g}, α = 1, . . . , N. We represent these
points by vectors

where f0 is an appropriate scale constant, such as the image
size, taken so that xα / f0, yα / f0, xα

g
 / f0, and yα

g
 / f0 have the

order of 1. Since the third components are 1, their normal-
ized covariance matrices are singular with rank 2 in the
form

(17)

(18)

Fig. 4. (a) Two images of an outdoor scene. The left grid is mapped to the right image and corrected with subpixel
accuracy. (b) Correlation between the covariance matrix and the template matching accuracy: the 

residual-based approach (×); the derivative-based approach (+).

(19)
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Theoretically, the derivative-based approach may be
more consistent than the residual-based approach (Appen-
dixes 2 and 3). In the actual computation, however, differ-
entiation needs to be approximated by a difference filter,
which is susceptible to noise and greatly influenced by the
associated smoothing operation (Appendix 1). The resid-
ual-based approach, on the other hand, relies on integration
(approximated as summation), which is more robust than
differentiation. Since in most cases no marked difference is
found in the final results, we adopt the residual-based
approach in the subsequent experiments.

5.1. Optimal homography computation

If we take two images of a planar object or a far scene,
the two images are related by a mapping called homogra-
phy. Namely, there exists a nonsingular matrix H such that
{xα} and {xα

g } are related in the following form [3, 6]:

Here, Z[⋅] designates scale normalization to make the third
component 1. The matrix H is also called the homography
whenever no confusion can arise. Since it is defined only
up to a scale factor, we normalize it to ||H|| = 1 [the norm
of a matrix A = (Aij) is defined by ||A|| = √Σi,j=1

3 Aij
2 ].

Computing the homography from images is a neces-
sary step in many vision applications such as image
mosaicking and camera calibration [6, 8]. In the presence
of image noise, a statistically optimal estimate of H is
obtained by minimizing the following function [3]:

Here, (a, b) denotes the inner product of vectors a and b; a
× A is the matrix whose columns are the vector products of
a and the columns of A; A × a is the matrix whose rows are
the vector products of a and the rows of A [3]. The operation
(⋅)r

− denotes the (Moore–Penrose) generalized inverse com-
puted after replacing the smallest n – r eigenvalues by zeros
[3]. The program code for computing the minimizing solu-
tion of Eq. (22) by a technique called renormalization is
publicly available.*

Figure 5(a) shows two images of a far scene. We
arbitrarily placed a grid in the left image and mapped it to
a roughly corresponding position in the right image by
hand, using a mouse. Then, we corrected the vertex posi-
tions by similarity template matching. The covariance ma-
trices computed from the gray levels are displayed as
ellipses at the vertices. Using these covariance matrices, we
optimally computed the homography H from the corrected
point matches.

For comparison, we also computed the homography
H0 using the default values in Eq. (2) and the “true” ho-
mography H, which was estimated by using many (53 in
this case) points carefully chosen by hand. The discrepan-
cies of H and H0 from H measured in norm are

Figure 5(b) shows 24 instances of such errors for different
images and different grid positions. From this, we conclude
that the accuracy is more or less improved by optimization
using the covariance matrix computed from the images.

5.2. Optimal fundamental matrix computation

As is well known, corresponding points in two im-
ages of the same scene satisfy the epipolar equation [3, 4]

(20)

(21)

(22)

Fig. 5. (a) Corresponding points and their covariance matrices. (b) Errors in the homography computation using the
covariance matrices evaluated from the gray levels (solid lines) and their default values (dashed lines). 

The numbers on the abscissa indicate individual instances.

(23)
*http://www.ail.cs.gunma-u.ac.jp/Labo/programs-e.html
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where F is a singular matrix of rank 2, called the fundamen-
tal matrix. Since its absolute scale is indeterminate, we
normalize it to ||F|| = 1.

Computing the fundamental matrix is a first step of
3D reconstruction from images [4]. In the presence of
image noise, a statistically optimal estimate of F is obtained
by minimizing the following function [3]:

The program code for computing the solution by renormali-
zation is also available publicly.*

Figure 6(a) shows two images of an indoor scene. We
arbitrarily placed a 3 × 3 grid in the left image and mapped
it to a roughly corresponding position in the right image by
hand, using a mouse. Then, we corrected the vertices by
similarity template matching. The covariance matrices
computed from the gray levels are displayed as ellipses at
the vertices. Using these covariance matrices, we optimally
computed the fundamental matrix F from the corrected
point matches.

For comparison, we also computed the fundamental
matrix F0 using the default values in Eq. (2) and the “true”
fundamental matrix F, which was estimated by using many
(68 in this case) points carefully chosen by hand. The
discrepancies of F and F0 from F measured in norm are

Figure 6(b) shows 24 instances of such errors for different
images and different grid positions. From this, we conclude
that the accuracy is more or less improved by optimization
using the covariance matrix computed from the images.

6. Conclusions

Our conclusion is as follows:
• It suffices to assume the default value for the

covariance matrix if feature points are chosen by
hand or by a feature detector.

• If feature points are specified randomly or inde-
pendently of the image content, then:

– the covariance matrix computed from the gray
levels of the image has a positive correlation with
the accuracy of template matching;

– the accuracy of optimization is improved, though
only slightly, by the use of the covariance matrix
computed from the gray levels of the image.

An example of the latter situation is the following
semiautomatic image matching system. First, the computer
defines a regular grid in the first image. Then, a human
operator roughly specifies its corresponding position in the
second image, using a mouse, or alternatively adjusts the
grid copied by the computer in the second image, dragging
the mouse. Finally, the computer corrects each grid position
by template matching with subpixel accuracy.

The real image experiments in this paper were done
using such a system, which we experimentally constructed.
If we do image mosaicking or 3D reconstruction from
feature points obtained in this way, the accuracy is expected
to increase by doing optimization using the covariance
matrix computed from the gray levels of the image.

Fig. 6. (a) Covariance matrices and corresponding points. (b) Errors in the fundamental matrix computation using the
covariance matrices evaluated from the gray levels (solid lines) and their default values (dashed lines). The numbers on the

abscissa indicate individual instances.

(24)

(25)

(26)

*http://www.ail.cs.gunma-u.ac.jp/Labo/programs-e.html
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The conclusions in this paper were all derived from
relatively few experimental results. It would be ideal if
decisive conclusions could be obtained by simulations.
However, this is theoretically impossible, because simula-
tions only confirm the effectiveness of a method by simu-
lating the assumptions or models on which the method is
built. In contrast, the purpose of this paper is to examine to
what extent a method is effective for real data, for which
the assumptions or models may not necessarily be valid. In
this sense, we have illuminated both the usefulness and the
limitations of the statistical approach based on the covari-
ance of feature points.
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APPENDIX

1. Smooth Differentiation Filter

The smoothing filter with weight w(x, y) for a con-
tinuous image I(x, y) has the form

where C is the normalization constant. Differentiating this
with respect to x, we obtain

In discrete approximation, we have

Determining the constant C so that Ix(i, j) = 1 identically
for I(i, j) = i, we obtain the following differentiation filter
in the x direction:

Here, the weight w(x, y) is assumed to be an even function
of x and y. In our experiments, we used the Gaussian weight
w(x, y) = e−(x

2+y
2) / 2σ2

 and adjusted the standard deviation σ
according to the size of the neighborhood Np. The differen-
tiation filter in the y direction can be derived similarly.

2. Cramer–Rao Lower Bound

Given a two-variable function I(u, v) and data values
Iij, (i, j) ∈ Np, where Np represents the set of grid points in
the neighborhood of point p, consider the problem of deter-

(27)

(28)

(29)

(30)
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mining (x, y) such that Iij ≈ I(i + x, j + y), (i, j) ∈ Np. If we
introduce the model

this problem can be regarded as statistical estimation. If the
noise εij is an independent Gaussian random variable of
mean 0 and standard deviation σij, the likelihood of the data
Iij, (i, j) ∈ Np is written as

Suppose the true value of (x, y) is (0, 0). If we put
wij = σ2

 / σij
2, the score l = (∂logp / ∂x, ∂logp / ∂y), is written

in the form

where Ii and Ij represent the derivatives of I(u, v) with
respect to u and v, respectively, evaluated at (u, v) = (i, j).
From Eq. (33), the Fisher information matrix has the form

where H is the matrix defined in Eq. (11). In the above
derivation, we have used the fact that E[εijεkl] is σij

2 for i =
k and j = l and is 0 otherwise. From Eq. (34), we obtain the
following Cramer–Rao inequality for the covariance ma-
trix Σ(= σ2Σ0) of an estimate (x̂, ŷ) of (x, y) [3]:

Here, H means that the difference between the left-hand side
and the right-hand side is a positive semidefinite symmet-
rical matrix. The right-hand side is known as the Cramer–
Rao lower bound.

3. Covariance Matrix of Optical Flow

If x and y are small, we have the approximation
I(i + x, j + y) ≈ I + Iix + Iyy. Then, the maximum likelihood
solution that maximizes Eq. (32) is obtained by minimizing

This can be interpreted as computing the optical flow (x, y)
by solving the gradient constraint [3, 11]

by weighted least squares. Differentiating Eq. (36) with
respect to x and y and equating the result to 0, we obtain the
normal equation

where H and l are defined by Eqs. (11) and (33), respec-
tively. The covariance matrix of the solution is given by

This has the same form as the Cramer–Rao lower bound
given in Eq. (35).

4. Illumination-Invariant Template Matching

All we need is to introduce a coefficient c that com-
pensates the change of illumination and minimize

Differentiating this with respect to c and equating the result
to 0, we see that c is given by

Substitution of this into Eq. (40) yields Eq. (17). If the third
term Σ(i,j)∈Np

wij(T (x,y,θ,s)
(a,b) I(i, j))2 in the expansion of the

right-hand side of Eq. (40) does not depend on x, y, θ, or s,
minimizing Eq. (40) and minimizing Eq. (17) are both
equivalent to maximizing the following correlation func-
tion:

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)
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