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SUMMARY

We propose a �simultaneous calibration� scheme for

computing the parameters of a continuously moving and

continuously zooming camera by placing a planar pattern

behind the object. We describe a procedure for computing

an analytical solution which is exact in the absence of noise,

estimating an optimal solution that attains the theoretical

accuracy bound in the presence of noise, and evaluating the

reliability of the computed solution. Finally, we show that

degenerate configurations in which the solution is indeter-

minate and statistical fluctuations of computation can be

avoided by �model selection.� This is done by comparing

the model predicted from the history of the camera motion

with the actually computed model by the �geometric AIC.�

We confirm the effectiveness of our method by simulations

and show real image examples. © 2001 Scripta Technica,

Electron Comm Jpn Pt 3, 84(7): 12�21, 2001
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1. Introduction

Visually presenting 3D shapes of real objects is

one of the main goals of many Internet applications

such as network cataloging and virtual museums [14], and

generating virtual images by embedding graphics objects

in real scenes or real objects in graphics scenes, known as

mixed reality [18], is one of the central themes of

image and media applications today [2, 10, 11, 19]. In

order to reconstruct the 3D shapes of real objects or

scenes for such applications, we need to know the 3D

position of the camera that we use and its internal

parameters, that is, we need to calibrate the camera.

The standard method is precalibration: we esti-

mate the internal parameters in advance. Recently,

techniques for computing both the camera parameters

and the 3D positions of the camera from multiple

images of the scene about which we have no prior

knowledge have been studied intensively [12, 15, 21].

Such a technique, known as self-calibration, may be

very useful in unknown environments such as out-

doors, but it requires complicated procedures. In in-

door environments where human control is possible,

doing 3D reconstruction after calibrating the camera

is much easier and more accurate.

In many applications, however, the camera posi-

tion and the zooming change from frame to frame.

Thus, the calibration must be done for each frame. This

can be done by placing an easily distinguishable planar

pattern with a known geometry in the scene (Fig. 1).

We call this simultaneous calibration. Although the

basic principle has been well known [3, 20], simulta-

neous calibration has many elements that do not ap-

pear in precalibration:
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x While manual interventions can be employed in

precalibration, simultaneous calibration must be

completely automated. For this purpose, we have

designed a special marker pattern that makes auto-

matic recognition easy [6, 8]. 

x In precalibration, the marker pattern can be placed

in such a way that the computation becomes easy,

whereas in simultaneous calibration the position

of the pattern relative to the camera is not known

a priori. Thus, the calibration accuracy is different

from frame to frame.

x A sufficient number of marker points can be given

in precalibration, while in simultaneous calibra-

tion only a small number of marker points may be

visible depending on the camera position.

x When the camera optical axis is perpendicular to

the pattern, zooming out cannot be distinguished

from moving the camera forward as long as we use

a planar pattern.

x Visible marker points change as the object moves

in the scene, so the computed camera position may

be slightly different from frame to frame even if

the camera is stationary in the scene. This type of

statistical fluctuation is conspicuous when the

camera motion is small.

In this paper, we describe a procedure for maximizing

the accuracy and evaluating the reliability of the computed

solution by applying the statistical optimization theory [4].

Then, we show that the degeneracy and statistical fluctua-

tions can be avoided by model selection. This is done by

comparing the model predicted from the history of the

camera motion with the actually computed model by the

geometric AIC [5]. We confirm the effectiveness of our

method by simulations and show real image examples.

2. Basic Principle

We fix an XYZ world coordinate system and place a

planar pattern in parallel to the XY plane at a known distance

d. We assume that all camera parameters other than the focal

length have already been precalibrated so that the imaging

geometry can be modeled as a perspective projection.

We place a hypothetical camera of focal length f0 in

such a way that the center of projection is at the origin, the

Z-axis coincides with the optical axis, and the world X- and

Y-axes are parallel to the image x- and y-axes. Then, we

rotate the camera by an unknown rotation matrix R, trans-

late it by an unknown vector t, and change the focal length

into f. We call {t, R} the motion parameters.

Suppose a point on the planar pattern with coordi-

nates �X, Y, d� is observed at �x, y� in the image. Define the

3D vectors

We have the following relationship in the absence of noise

[4]:

The operation Z [�] denotes normalization to make the third

component 1. The matrix H has the following form [4]:

The superscript , denotes transpose, and we put

k   �0, 0, 1�,; diag(���) denotes the diagonal matrix with

diagonal elements ���. Equation (2) defines an image trans-

formation called homography [4]; the matrix H is also

called the �homography� when no confusion can occur. A

program for optimally computing the homography and

evaluating its reliability is publicly available [7, 17].

We set the distance d of the pattern from the hypo-

thetical camera and its focal length f0 to standard values.

The coordinates (X, Y) of marker points are known. The

image coordinates (x, y) are observed data. Hence, the

unknowns are the motion parameters {t, R} and the focal

length f after the camera motion. Since the rotation matrix

R has only three degrees of freedom, the total number of

unknowns is seven. Hence, they can be determined if four

or more marker points are observed.

Fig. 1. Calibration of a moving camera.

(1)

(2)

(3)
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3. Optimal Computation

Suppose we observe N marker points. Let XD and xD
be the values of X and x of the D-th point, respectively. Let

V[xD] be the covariance matrix of xD. Since its absolute

magnitude is difficult to predict, we assume that it is known

up to scale and write

We call the unknown constant H the noise level and the

known matrix V0[xD], which describes the relative charac-

teristics of the noise, the normalized covariance matrix.

Since the third component of x is 1, V0[xD] is a singular

matrix of rank 2 with zeros in the third row and the third

column. If the noise has no particular dependence on posi-

tions or orientations, we use the default value diag(1, 1, 0).

An optimal estimate of H is obtained by minimizing

the sum of the squared Mahalanobis distances

Throughout this paper, we denote the inner product of

vectors a and b by (a, b), and (�)� means the (Moore�Pen-

rose) generalized inverse.

Let us introduce the following nondimensional vari-

ables:

If no noise exists, an exact solution that minimizes Eq. (5)

can be obtained analytically (Appendix 1). In the presence

of noise, we apply Newton iterations starting from the

analytical solution. We write the gradient �J and the Hes-

sian �2J of the function J with respect to the unknowns I,

t, and R as follows:

The procedure for the Newton iterations is as follows:

(1) Give an initial guess of I, t, and R.

(2) Compute the gradient �J and the Hessian �2J.

(3) Compute the update increments 'I, 't, and 'W

by

(4) Update I, t, and R as follows and go back to Step

2 until |'I| � HI, ||'t|| � HW, and ||'W|| � HR:

Here, R�'W� denotes the rotation matrix of angle ||'W||

around 'W, and HI, HW, and HR are thresholds for conver-

gence. See Ref. 9 for the actual expressions for the elements

of the gradient �J and the Hessian �2J.

4. Reliability Evaluation

The squared noise level H2 can be estimated from the

residual Ĵ as follows [4] (Appendix 2):

Let �2Ĵ be the resulting Hessian. The covariance matrix of

{f, t, R̂} is estimated in the following form [4] (if the true

values of {I, t, R} are substituted, this gives a theoretical

lower bound on the covariance matrix V[f, t, R̂] [4]):

The (1, 1) element gives the variance V[f] of I. If the error

distribution is approximated to be Gaussian, the 99.7%

confidence interval of f is given by

The submatrix of V[f, t, R̂] defined by its second to fourth

rows and columns gives the covariance matrix V[t] of the

(normalized) translation t. Let R be the true rotation. Let

'W and l be, respectively, the angle and axis of the relative

rotation R̂R ,. We define the error vector of the rotation by

The submatrix of V[f, t, R̂] defined by its fifth to seventh

rows and columns gives the covariance matrix V[R̂] of 'W.

5. Simulation 1

Figure 2 shows a simulated image of a grid pattern

viewed from an angle. We added Gaussian random noise of

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)
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mean 0 and standard deviation 1 (pixel) to the x and y

coordinates of the vertices independently and computed the

focal length and the motion parameters 1000 times.

Figure 3(a) is the histogram of the computed focal

length f; Fig. 3(b) is the corresponding histogram of the

analytical solution. The vertical lines in the figures indicate

the theoretical lower bound on the standard deviation

around the true value f.
Figure 4(a) is the 3D plot of the error vectors of

translation; Fig. 4(b) is the corresponding result for the

analytical solution. The ellipses in the figures indicate the

theoretical lower bound on the standard deviation in each

orientation.

Figure 5(a) is the 3D plot for the error vector 'W of

rotation defined by Eq. (14); Fig. 5(b) is the corresponding

result for the analytical solution. The ellipses in the figures

indicate the theoretical lower bound on the standard devia-

tion in each orientation.

Table 1 lists standard deviations of the optimal and

analytical solutions for 1000 trials and their corresponding

theoretical lower bounds.

Fig. 2. A simulated image of a grid pattern.

Fig. 3. Histogram of the computed focal length. 

(a) Optimal solution. (b) Analytical solution.

Fig. 4. Error distribution of the computed translation.

(a) Optimal solution. (b) Analytical solution.

Fig. 5. Error distribution of the computed rotation. (a)

Optimal solution. (b) Analytical solution.

Table 1. Standard deviations of the optimal and

analytical solutions and their corresponding theoretical

lower bounds

Optimal Analytical Bound

Focal length

(pixels)

33.4 39.3 34.0

Translation

(cm)

32.9 38.5 32.6

Rotation (deg) 0.413 1.292 0.414
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From these results, we can see that our optimization

scheme improves the accuracy as compared with the initial

analytical solution. We can also see that the accuracy almost

attains the theoretical lower bound.

6. Real Image Experiment 1

Figure 6 is a real image of an object, behind which is

placed a grid pattern perpendicularly on the floor. The

camera optical axis is almost parallel to the floor. This

pattern is so designed that the image grid can be matched

to the original grid in an optimal way by measuring the cross

ratio of adjacent vertices [6, 8].

The pattern is colored light and dark blue, so the

object image can be segmented by using a chromakey

technique. We calibrated the camera, using the grid pattern

image. See Ref. 8 for the image processing details. The

focal length is estimated to be 576.1 pixels. The standard

deviations of the focal length, the translation, and the rota-

tion are evaluated to be 38.32 pixels, 5.73 cm, and 0.812

deg, respectively.

Figure 7 is a composition of the toy image and a

graphics scene generated by VRML [1]. Figure 8 is the top

view of the estimated camera position and its uncertainty

ellipsoid (three times the standard deviation in each orien-

tation).

7. Real Image Experiment 2

Figure 9 is a real image of a tennis court. Since the

size of the court is stipulated by an international rule, we

Fig. 6. An object and a grid pattern behind it.

Fig. 7. Composition with a virtual scene.

Fig. 8. Estimated camera position and its reliability.

Fig. 9. A real image of a tennis court.
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can compute the 3D camera position and the focal length

by using this knowledge. Figure 10 shows the top view of

the tennis court generated from Fig. 9 by applying the

computed homography. The estimated camera position and

the uncertainty ellipsoid are shown in the same way as in

Fig. 8.

The focal length is estimated to be 954.8 pixels. The

camera is estimated to be 627.1 cm above the ground. The

standard deviations of the focal length, the translation, and

the rotation are evaluated to be 6.99 pixels, 16.14 cm, and

0.151 deg, respectively.

The images of the poles and the persons in Fig. 10

can be regarded as their �shadows� on the ground cast by

hypothetical light emitted from the camera, so we can

compute their heights. The right pole is estimated to be

113.4 cm high. The person near the camera is estimated to

be 170.5 cm tall. Using this technique, we can compute the

3D positions and shapes of the scenes and persons from one

image in sports broadcasting [13, 16].

8. Degeneracy Criterion

As pointed out in Section 1, the Hessian �2J in Eq.

(8) becomes singular when the camera optical axis is per-

pendicular to the planar pattern, so the inverse in Eq. (9)

cannot be computed. It can be computed in the presence of

noise, but the resulting value is unreliable. We decide that

the solution is meaningless due to degeneracy if the confi-

dence interval (13) contains negative values. This criterion

is written as V[f] ! f2 /9. Since the variance V[f] is given

by the (1,1) element of Eq. (12),  i t  equals

2e2��2Ĵ�11
� /N det��2Ĵ�, where ��2Ĵ�11

�  is the (1,1)-cofactor

of the Hessian �2Ĵ (the determinant of the submatrix ob-

tained by removing the first row and the first column of

�2Ĵ). Hence, our criterion is

This expression can be computed stably because no matrix

inversion is involved, but the solution to be substituted

cannot be computed stably. Therefore, we substitute an

approximation to it instead of the exactly optimal solution

(the details are shown shortly).

9. Trajectory Stabilization

As pointed out in Section 1, statistical fluctuations

cannot be avoided if image processing is done inde-

pendently at each frame even when the camera motion is

continuous. The fluctuations are particularly conspicuous

when the camera motion is small. In order to prevent them,

we predict the camera motion and do model selection by

the geometric AIC [5] (Appendix 2). Let fi and {ti, Ri}, be

the focal length and the motion parameters of the current

frame, respectively, and fi�1 and {ti�1, Ri�1} those of the

preceding frame. Here, we consider the following six mod-

els:

x Stationary model (zero degrees of freedom): We

fix f   fi, t   ti, and R   Ri. Let Ĵ be the corre-

sponding residual.

x t-fixed model (three degrees of freedom): We fix

f   fi and t   ti and optimize R by iterations from

the initial value Ri. Let Ĵsc be the corresponding

residual.

x t-predicted model (three degrees of freedom): We

fix f   fi, predict t   2ti � ti�1, and optimize R by

iterations from the initial value RiRi�1
, Ri. Let Ĵpc be

the corresponding residual.

x f-fixed model (six degrees of freedom): We fix

f   fi and optimize {t, R} by iterations from the

initial values {ti, Ri}. Let Ĵs be the corresponding

residual. We estimate the square noise level H2 by

x f-predicted model (six degrees of freedom): We

predict f   2fi � fi�1 and optimize {t, R} by itera-

tions from the initial values {2ti � ti�1, RiRi�1
, Ri}.

Let Ĵp be the corresponding residual. We estimate

the square noise level H2 by

Fig. 10. The computed camera position viewed from

above.

(15)

(16)

(17)
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x General model (seven degrees of freedom): We

optimize f and {t, R} by iterations starting from

the prediction of the f-predicted model. Let Ĵg be

the corresponding residual.

Since the solution of the general model cannot be

determined stably when degeneracy occurs, the occurrence

of degeneracy is judged using the f-predicted model.

Namely, we estimate the square noise level H2 by Eq. (17)

and evaluate the criterion (15), approximating the solution

of the general model by the solution of the f-predicted

model.

If degeneracy is not detected, we compare the station-

ary model, the f-fixed model, the f-predicted model, and the

general model. Estimating the square noise level H2 by Eq.

(11), we evaluate the geometric AICs of these models in the

following form (Appendix 2):

If degeneracy is detected, we compare the stationary

model, the t-fixed model, the t-predicted model, and the

f-fixed model. Estimating the square noise level H2 by Eq.

(16), we evaluate the geometric AIC of these models in the

following form (Appendix 2):

In either case, we choose the model that gives the

smallest geometric AIC. By model selection, not only can

we remove statistical fluctuations that occur when the cam-

era motion is small, we can also obtain a stable trajectory

when the camera passes through a degenerate configura-

tion. Also, we need not compute the initial guess analyti-

cally frame by frame.

10. Simulation 2

We simulate a camera motion in a plane perpendicu-

lar to a 3 u 3 grid pattern as shown in Fig. 11; the camera

rotates so that it always gazes at the center of the grid. The

camera faces the pattern perpendicularly at frame 13 and

stops at frame 20. The camera stays there over frames 20 to

24 and then recedes backward over frames 25 to 30. Adding

random Gaussian noise of mean 0 and standard deviation

0.5 (pixel) to each coordinate of the grid points inde-

pendently, we compute the focal length and the camera

trajectory.

Figures 12 and 13 show the computed focal length

and the camera trajectory, respectively. Degeneracy is de-

tected at frames 13 and 14. In order to emphasize the fact

that the independent estimation fails, we let f be f in Fig.

12 and the camera position be at the center of the grid in

Fig. 13 when degeneracy is detected.

The models selected by the geometric AIC are, in the

order of the camera motion, 3, 4, 5, 4, 3, 5, 3, 3, 5, 3, 3, 5,

3, 3*, 3*, 4, 3, 4, 5, 3, 5, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, where 0,

1, 2, 3, 4, and 5 stand for the stationary model, the t-fixed

model, the t-predicted model, the f-fixed model, the f-pre-

(18)

(19)

Fig. 11. Simulated camera motion.

Fig. 12. Estimated focal length. Model selection (solid

lines), independent estimation (chained lines), and the

true values (dotted lines).
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dicted model, and the general model, respectively (the

asterisks indicate degeneracy).

Figure 14 is a magnification of the trajectory over

frames 20 to 24. Although the camera is stationary, we can

observe irregular fluctuations when the computation is

done independently at each frame. Our model selection

chooses the stationary model there, thereby removing the

fluctuations.

11. Concluding Remarks

With a view to mixed reality applications, we have

proposed a scheme for �simultaneous calibration� for com-

puting the camera parameters of a continuously moving and

continuously zooming camera by placing a planar pattern

behind the object.

We have described a procedure for computing an

analytical solution which is exact in the absence of noise,

estimating an optimal solution that attains the theoretical

accuracy bound in the presence of noise, and evaluating the

reliability of the computed solution. Finally, we have shown

that degenerate configurations in which the solution is

indeterminate and statistical fluctuations of computation

can be avoided by model selection. This is done by com-

paring the model predicted from the history of the camera

motion with the actually computed model by the geometric

AIC. We have confirmed the effectiveness of our method

by simulations and shown real image examples.

In this paper, the camera motion models were intro-

duced according to our empirical intuition. The question as

to how many models and what models we should introduce

needs to be studied further. Also, much remains to be

studied about the criterion for degeneracy detection and the

use of information criteria other than the geometric AIC

(e.g., MDL-like ones).
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APPENDIX

1. Analytical Solution

Given a homography H   �Hij� up to scale, it can be

analytically decomposed into the focal length f, the trans-

lation t, and the rotation R that satisfy Eq. (3) as follows

(see Ref. 9 for the derivation). First, we solve the following

linear equation in [ and K, say, by least squares:

Here, we let i   �1, 0, 0�, and j   �0, 1, 0�,. From the first

of Eqs. (6), the normalized focal length I is given by

The normalized translations W1 and W2 defined by the second

of Eqs. (6) are given by

The third element W3 is given as the solution of the quadratic

equation

where from among the two solutions the one that satisfies

W3 d 1 is chosen. For computing the rotation R, we first

compute the following singular value decomposition:

Here, A = diag(1, 1, I), and V and U are orthogonal

matrices, while L is the diagonal matrix having the singular

values as its diagonal element in the order of magnitude.

The rotation matrix R is given by

The solution is exact if there is no noise in the data. In the

presence of noise, it is an approximation in the least-squares

sense; R is always an exact rotation matrix.

2. Geometric Fitting

Geometric fitting is the problem of estimating the

parameter u given by a constraint

and multiple realizations {aD} of the variable a [4]. We

assume that the noise is Gaussian and the normalized co-

variance matrix V0[aD] (a singular matrix in general) is

known. The maximum likelihood estimation is to minimize

the sum of the square Mahalanobis distances

with respect to the unknowns u and {a
B

D} subject to the

constraint F�k��a
B

D, u�   0. Let Ĵ be the residual (the mini-
(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)
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mum of J), and H the noise level. It can be shown that

J /H2 is subject to a F2 distribution with rN � nc degrees of

freedom in the first order [4], where r is the rank (the

number of independent equations) of the constraint (A.7);

nc is the degree of freedom of the unknown u. An unbiased

estimator of the square noise level H2 is obtained in the

following form:

If the constraint (A.7) defines a d-dimensional model

(manifold) in the data space (the space of the variable a),

the geometric AIC is defined as follows [4, 5]:

Using this, we can detect degeneracy of the model by

comparing the geometric AICs of the general model and its

degeneracy, where the noise level is estimated from the

general model by Eq. (A.9).

The constraint (2) has rank r = 2; the dimension of

the model is d = 0. The degree of freedom of the unknowns

{t, R} and f is nc = 7 if the camera motion and zooming are

unconstrained. If they are constrained, we obtain the ex-

pressions given in Section 9. The function J given in Eq. (5)

involves division by N for computational convenience, so

Ĵ in Eqs. (A.9) and (A.10) is replaced by NJ^. Also, we

defined Eq. (A.10) divided by N to be the geometric AIC in

Section 9.
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