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Optimal Grid Pattern for Automated Camera Calibration

Using Cross Ratio*

Chikara MATSUNAGAT, Nonmember, Yasushi KANAZAWAT!,

SUMMARY With a view to virtual studio applications, we
design an optimal grid pattern such that the observed image of a
small portion of it can be matched to its corresponding position in
the pattern easily. The grid shape is so determined that the cross
ratio of adjacent intervals is different everywhere. The cross ra-
tios are generated by an optimal Markov process that maximizes
the accuracy of matching. We test our camera calibration sys-
tem using the resulting grid pattern in a realistic setting and show
that the performance is greatly improved by applying techniques
derived from the designed properties of the pattern.

key words: cross ratio, Markov process, error analysis, reliabil-
ity evaluation, bootstrap, virtual studio

1. Introduction

Visually presenting 3-D shapes of real objects is one
of the main goals of many Internet applications such
as network cataloging and virtual museums, and gen-
erating virtual images by embedding graphics objects
in real scenes or real objects in graphics scenes, known
as mized reality or augmented reality, is one of the cen-
tral themes of image and media applications today. For
such applications, we need to know the 3-D position of
the camera that we use and its internal parameters.
Thus, camera calibration is a first step in all vision and
media applications.

The standard method is pre-calibration: we deter-
mine the internal parameters of the camera by taking
images of marker patterns in a controlled environment
in advance [12]. Recently, techniques for computing the
3-D position and the internal parameters of the cam-
era at the same time by observing multiple images of a
natural scene have been studied intensively [9]. Such a
technique, known as self-calibration, may be very useful
in unknown environments such as outdoors. However,
it cannot be applied if the scene changes as the camera
moves.
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In this paper, we focus on virtual studio applica-
tions [2],[11]: we take images of moving objects such
as persons and superimpose them in a graphics back-
ground in real time by computing the 3-D positions
and the internal parameters of a moving camera. Since
the camera parameters, such as zooming, as well as
the scene itself may change in the course of the cam-
era motion, we cannot pre-calibrate or self-calibrate the
camera.

This difficulty can be avoided by placing an eas-
ily distinguishable planar pattern in the scene (Fig. 1):
we detect the image of the pattern in each frame, com-
pute the 3-D position and the internal parameters of
the camera from it [3], and remove the image of the
pattern by image segmentation. We call this process
simultaneous calibration.

Unlike pre-calibration, for which manual interven-
tion is allowed, simultaneous calibration must be auto-
mated completely. In particular, we must match a given
image of a portion of the pattern to its corresponding
position in the pattern. In this paper, we design a grid
pattern in such a way that the cross ratio of adjacent
intervals is different everywhere. Since the cross ratio
is invariant to perspective projection [5],[8], observed
grid points can be matched to their absolute positions
easily by comparing the cross ratios.

We optimize the grid shape so that the accuracy
of matching is maximized in the presence of noise. In-
troducing a statistic model of image noise, we generate
the grid intervals by an optimal Markov process that
maximizes the accuracy of matching. Since the pattern
is theoretically designed by statistical analysis, we can
derive many effective recognition techniques from the
analysis by which the pattern is designed. We test our

=

Fig. 1 Simultaneous calibration of a moving camera.
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camera calibration system using the designed pattern
in a realistic setting and show that the performance is
greatly improved by applying such techniques.

2. Cross Ratio

The cross ratio can be defined in many different ways
[3],[10]. Here, we define the cross ratio 7; of four num-
bers {.’L‘i_l, Tiy, Lit1, fL'H_Q} by

T;— Ti—q / Tito — T
T; =
Tit1 — Ti-1 Tit2 — Tit1

1

= , 1
(T+4/L) A+ /1) @

where we have defined the ith interval width [; by
li = x341 — 25 (2)

Our task is to generate a sequence {z;} in such
a way that we can easily find the number ¢ for which
{zi—1, i, Tit1, Tiyo} have a specified cross ratio 7.
This is achieved by determining the sequence {z;} so
that each of the cross ratios {r;} is as different from
others as possible.

If the cross ratios {7;} are given, the sequence {z;}
is determined as follows. Suppose we have already gen-

erated {xo, ..., i, Ziy1}. If 7; is given, the next number
Z;42 is determined from Eq. (1) in the form
(1 +7%)

Tits = Tiy1 + —————— 1, 3

where we have defined the ith adjacency ratio v; by
Tit1 — Ti
= DL T T 4
L —— (4)

However, the cross ratios {r;} cannot be given arbi-
trarily, because the resulting sequence {z;} must have
certain properties.

First of all, {z;} must be an increasing sequence.
Also, it should be as homogeneous over the entire se-
quence as possible. Furthermore, intervals of very small
separation cannot be discerned in the camera image, so
the ratio of the minimum width /,,;, to the average in-
terval width /o must be specified. Since the absolute
scale of the pattern does not affect our analysis, we can
normalize [y to be 1 without losing generality.

It is very difficult to find a sequence {7;} such that
{z;} is a homogeneous increasing sequence with the av-
erage interval being 1 and the minimum width being
Imin as specified. Our strategy here is to generate the
sequence {7;} stochastically, according to a probability
distribution defined in such a way that the resulting se-
quence {z;} has the desired properties. Moreover, as
we will show shortly, we can optimize the probability
distribution so that the matching performance is max-
imized by analyzing the statistical properties of image
noise.

3. Error Analysis

Suppose x;—1, %i, Tit1, and x4 have errors Ax;_1,
Az;, Az;y1, and Az;yo, respectively. The errors in the
intervals [;_1, l;, and l;41 are
Ali_l = A:I,'z — Al‘i_l, Al, = AZIIH_l — AZII,‘,
Al,’_H = A.’L’H.g — A.”L’H.l. (5)

It follows from Eq. (1) that the cross ratio 7; has the
following error to a first approximation:

or; or; or;
k2 A . ZA k2
Al S T e A T

oT; oT; oT;
k2 A K3 _ K3 A X
Tol Tt (al,-_l azi> i

672- 67'2' 67'2'
+ (6l, - 6li+1> ACL‘,.H + 7'_'_ AiL'H.Q.(ﬁ)

If the noise is an independent Gaussian variable of mean
0 and standard deviation o, the variance of Ar; is

v = () + i - )
+(ai ~ o) * (a?,l) ).
i Til;

Oli—q - Lii(lici + 1)
or T2z Jli + 2+ Liga 1) 1
l

AT,' = Al1+1

where

al; (lim1 /1) (Lig1 /i)
67’,’ _ Ti l (8)
Olivi  liga/L(L+1iga /i) I

Hence, the standard deviation /V[r;] of 7; has the fol-
lowing expression:

o
V[TZ] = fSWi (Ti)v

5(ri) = /42 + (4 - B,)?

+ (Bl - 01)2 +Ci27

4= T _ T2 +%(2+Dy))
o1+ o D;
T (14+7)7
Ci=———, Dj=-—_"" | 9

4. Optimal Conditional Probability

If I; and ~; are given, the standard deviation /V[r;]
is a function of 7;. It follows that the matching error
is minimized if we generate the cross ratio 7 densely in
the domain over which the standard deviation is small
and sparsely in the domain over which it is large. This
means that we should define the probability density
D1,4(7) conditioned on I and «y to be inversely propor-
tional to s,(7), i.e.,
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p () = G (10)

(1)

where ;. is the normalization constant. From the
normalization condition [’ p; (7)dT = 1, we obtain

c,,7:1//:sj(77). (11)

From Eq. (3), the condition that the expected
length of z;2 — ;41 be 1 is written as

/Tbi (1 +7:)l;

T 7 (14 gy P (AT =1 (12)

Substituting Egs. (10) and (11) into this, we obtain
1+1/1 /Tb 1+y)r-1/(1+1) dr
A S AL

It follows that if we define

Tr=1/1+0)(1+7) dr

fl’ )= / s 14
’Y( ) - T—l/(1+’7) S,Y(T) ( )
the upper bound 7, of the domain [7,, 73] is determined
for a given lower bound 7, as the solution of the equa-

tion f;,(z) = 0. It has two solutions, one of which is
7, itself. We denote the other solution by 7 ,(7,).

=0. (13)

a

5. Optimal Sequence

Since measurement error in one position affects two con-
secutive interval widths, three consecutive adjacency
ratios, and four consecutive cross ratios, the desired
distribution of the cross ratio 7 depends on the interval
width | and the adjacency ratio v defined by the pre-
ceding positions. Hence, the resulting sequence {xz;} is
a Markov process.

Given xy, ..., ;, T;+1, we generate the ith cross ra-
tio 7; according to the conditional probability (10) over
the domain [7,4,7p;] determined from Egs. (1) and (13)
in the form

1
(L4 /lmin) (1 + i)

where 73; is the solution of fi, ., () = 0 such that « F
Tai- The integral in Eq. (14) can be numerically eval-
uated (say, by the trapezoidal rule), and the solution
can be obtained by a numerical scheme (e.g., Newton
iterations). Then, ;12 is computed by Eq. (3), and we
repeat this procedure. Let us call the resulting sequence
{z;} the optimal sequence for short.

For comparison, we generate the ith interval /; in-
dependently and uniformly over a domain [lmin, lmax]
centered at 1 (i.e., lmax = 2 — lmin) and define z;41 =
x; + l;. Let us call the resulting independent additive
process {z;} the random sequence for short.

Figures 2(a) and (b) show an instance of the ran-
dom sequence and the optimal sequence, respectively,

Tai = s Toi = Ty (Tai),  (15)
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Fig. 2  (a) A random sequence. (b) An optimal sequence. (c)
An optimal sequence with buffer zones.
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Fig. 3  The error ratio of matching. 1. Random sequence. 2.
Optimal sequence. 3. Optimal sequence with buffer zones.

for lmin = 1/4 (Fig. 2(c) is an instance of the optimal
sequence with buffer zones to be explained later). We
added independent Gaussian noise of mean 0 and stan-
dard deviation €% of the average interval width to each
position and computed the cross ratios of all four con-
secutive positions. We matched each position with the
position that has the closest cross ratio. We repeated
this 100 times using different noise each time and plot-
ted the average error ratio in Fig. 3. We can observe
that the optimal sequence can reduce the error to about
70% as compared with the random sequence.

6. Absolute Bounds on Distribution

We now investigate stationary properties of our Markov
process. We first evaluate the absolute upper and lower
bounds on the cross ratio, the adjacency ratio, and the
interval width.

It is easily seen from Eq. (1) that the cross ratio 7;
takes its minimum when I;/l;; and l;/l;_; both take
their maximums. If we let lh.x and [, be the maxi-
mum and minimum of the interval width, respectively,
the cross ratio 7; takes its minimum when l;_; = l;41
= Imin and l; = l,x; it takes its maximum when [;_; =
lit1 = lmax and l; = lyin. Hence, if 1.y is given (lnin
is a parameter set by the user), the maximum and the
minimum of the cross ratio are, respectively,

1
Tmin = (1 + lmax/lrnin)2 ’
1

R (e ey 1o
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Since Ymin = Imin/!max a0d Ymax = lmax/!min, the above
equations are rewritten as follows:
1 1
Tmin = ] Tmax — . 17
(14 Ymax)? (14 Ymin)? ( )
Suppose l; = lmin and ¥; = Ymin. Equation (1)
implies that 7; ranges over

1
— < 'Lg max ]-
2(1+’Ymin)_T_T (18)
as lmin £ liy1 £ lnax- Hence,
1
Tmax = Tl ). 19
lmma'Ymm (2(1 +’)’mm)) ( )

Equation. (3) is rewritten as

7 (1 + )l

T—ra(l+ 70 (20

li+1 =
Letting l; = liin, l,’+1 = lmax> Yi = Ymin> a0d T; = Tmax
in the expression for l;11/l;, we can write the minimum
adjacency ratio Ymin = lmin/Imax in the form

o 1-— (]- + ’)/min)Tmax
Tmin (]- + ’Ymin)Tmax '

(21)

If this expression is substituted into the right-hand side
of Eq. (19), we obtain an equation to determine Tyax
by iterations: starting from an initial guess of Yuyin,
$aY, Ymin = lmin, W€ compute Tmax by Eq. (19), com-
pute Ymin by Eq. (21), and repeat this process until the
iterations converge.

The remaining upper and lower bounds are given
as follows (Imin is a parameter set by the user):

lmin 1
y Ymax = ’
Ymin “Ymin

1
Tmin = .
(]- + ]-/')/min)2

7. Transition Probabilities

lmax -

Now that we have determined the absolute upper and
lower bounds Tmin, Tmax; Ymin; Ymax, lmin; and lmax;
we regard the cross ratio as having a common domain
[Tmin, Tmax| by letting the density be 0 for rpmin £ 7 £
Tai and Tp; £ 75 £ Tpax. Similarly, we regard the adja-
cency ratio and the interval width as having common
domains [Ymin, Ymax] a0d [lmin,lmax], respectively. We
now derive their transition probabilities.

If I;, v;, and 7; are given, Eq. (20) gives the differ-
ential dl;41 of [;41 in the form

L+

———;dT;. 23
(= (472" (23)
Let F(li+1]li,7v:) be the transition probability density
of l;11. The probability that l;;; is in the interval
[li+1, li+1 + dli+1] is F(li_H |l,, 'Yi)dli+1; which should be

dliy1 =

16

1.4 \

12 f

0.8

(1)
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, ]l
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|

Fig. 4 Distribution of the interval width.

equal to py, ~, (7;)dr;. Since 7; = 1/(1+1;/liv1) (1 +75),
we obtain

F(liyal|li,vi)

. (]. — (]. + ’Yi)Ti)2 1
RS VAR Gl ((1 +1i/liy) (1 + %)) '
(24)

Equation (20) is rewritten for the adjacency ratio
v = l;/l;—1 in the form

7i(1 +7s)
il = T, 25
Yi+1 1—n(l+7) (25)
and hence
1+
dvig1 = ————d7;. 26
Yit+1 1= 1+ 7)) T, (26)

Since 7; = 1/(141/7;41)(1+;) from Eq. (1), the tran-
sition probability density of the cross ratio is given by

G (it1lls, vi)
_ (]. — (]. + ’Yi)Ti)Q ' ( 1 )
1+ PENA i) A+ ) )
(27)

8. Stationary Probabilities

Now, we derive stationary probabilities, for which we
omit the indices 4, ¢ + 1, etc. The stationary probabil-
ity densities f(I) and g(v) of the interval width ! and
the adjacency ratio 7 are defined via the relationships

lmax fYmax
£y = / / F(U)7) f D g(y)dvl,

Imin min

Imax [ Ymax
o) = [ [T e sgan. (@)
Figures 4 and 5 plot f(l) and g(v) computed by simul-
taneously iterating Eqs. (28) for {min = 1/4. The inte-
gration was conducted by the trapezoidal rule. We also
computed a sequence {z;} of length 1,000 according to
the Markov process that we have defined. The resulting
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Fig. 5 Distribution of the adjacency ratio.
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Fig. 6 Distribution of the cross ratio.

histograms are superimposed on the same scale in the
figures. We can see that they agree with the theoretical
prediction very well.

The stationary probability density of the cross ra-
tio 7 is defined via the relationship

Imax “Ymax
o= [ [ @ fgaa e
Figures 6 shows the computed density and the experi-
mental histogram. They agree reasonably well.

9. Upper Bound on Matching Capability

Even if the distribution of the cross ratio is optimally
defined, the resulting sequence may still contain values
that are very close to each other as long as the gen-
eration is stochastic. This causes deterioration of the
matching capability in the presence of image noise. So,
we introduce a constraint that no two cross ratios be
very close to each other.

If the standard deviation of the noise in {z;} is o,
the standard deviation s; ,(7) of 7 conditioned on [ and
~ is given by Egs. (9):

s15(7) = T8,/(7). (30)

Each time we generate a cross ratio 7, we define buffer
zones of width s;.,(7) on both sides of 7 and forbid
subsequent cross ratios to occur in those zones.
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Fig. 7 The upper bound on the number of cross ratios.

If we continue this process indefinitely, the domain
[Tmin; Tmax| is ultimately covered with such prohibition
zones, so no new values can be generated any longer.
In other words, there is an upper bound on the number
of the cross ratios that can be generated.

The expectation of Eq. (30) over all possible values
of [ and 7 is given by

/ - / Vmax sty f(D)g(v)dydl

Imin min

o [ [T men. @y

5(7)

Imin ! ‘min

Consider an ideally packed state in which the cross
ratios are distributed over [Timin,7max] at an interval
s(7). Since the number of cross ratios per unit length
is 1/s(7), we obtain an upper bound on the number of

available cross ratios in the from

1 [T dr
Nmax = - - 2
T 2

Of course this is an overestimation, since such an ideal
state does not occur in practice.

The solid line in Fig. 7 plots the value Nyax that
can be obtained when the standard deviation ¢ of noise
is €max % of the average interval width. The dashed line
in Fig. 7 plots the number of actually generated cross
ratios; we took the average of ten independent trials.
We can see that only about 50% of the theoretical up-
per bound can be generated in practice.

Figure 2(c) shows an instance of such a sequence
with buffer zones for [, = 1/4 and €nax = 1%. As we
see from Fig. 3, the existence of buffer zones dramati-
cally reduces the matching error.

10. Optimal Grid Pattern

Generating two sequences {z;} and {y;} independently,
we can define a grid pattern with vertices {(z;,y;)}
Figure 8 shows one example for {min = 1/3 and €max
= 1%. It is painted like a checkerboard with dark and
light blue colors for the convenience of chromakey ap-
plications.
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Fig. 8 An optimal grid pattern (checkerboard type).

In order to compute the cross ratios in both direc-
tions, we need to observe at least a 3 x 3 block, from
which the cross ratios are computed in four ways. Let
7. and 7, be the averages of the four values for the x
and y directions, respectively. The absolute position of
that block in the pattern is determined by finding in-
tegers 4 and j such that |7, — 7,(;)| and |1y, — 7,(;)| are
minimized, where {7,(;} and {7,(;)} are the cross ratio
sequences associated with {z;} and {y;}, respectively.

This process does not consider the error behavior
of the cross ratio. Since the standard deviation of the
cross ratio can be evaluated by Egs. (9), a statistically
optimal method is the maximum likelihood estimation:
we minimize the squared Mahalanobis distance

Boy|Te = Tos)?
Sa(i) (Tz(i) )2

where {l,(;)} and {l,(;)} are the interval sequences de-
fined from {z;} and {y;}, and {v,(;)} and {7} are
the similarly defined adjacency ratio sequences.

For a checkerboard pattern, a 3 x 3 block has two
possibilities for its coloring. This information can be
used to reduce the search space for minimizing Eq. (33).
Another possibility for coloring the pattern is to alter-
nate colors for neighboring rows and columns (Fig. 9).
Let us call it a framework pattern. It has four possi-
bilities for coloring a 3 x 3 block, reducing the search
space to a half that for the checkerboard pattern.

lf,(j)|7'y - Ty(j)|2

Svyi) (Ty(j))2

J(i,5) = , (33)

11. Simulation

We added Gaussian random noise of mean 0 and stan-
dard deviation €% of the average interval width to the
coordinates of each grid point of the pattern shown in
Figs. 8 and 9. The positions of all 3 x 3 blocks are com-
puted from the observed cross ratios, and this process
was repeated 100 times using different noise each time.
Figure 10 plots the average error ratio for e. Here, we
compared the following four methods:

1. The simple method: |7, — 7,(;| and |1, — 7| are

0 e .

0 0.2 0.4 0.6 0.8 1
€ [%]

Fig. 10  The error ratio of matching. 1. The simple method.
2. Maximum likelihood estimation without using coloring infor-
mation. 3. Maximum likelihood estimation using checkerboard
coloring information. 4. Maximum likelihood estimation using
framework coloring information.

minimized.

2. Maximum likelihood estimation: Eq. (33) is mini-
mized.

3. Maximum likelihood estimation combined with
checkerboard coloring information.

4. Maximum likelihood estimation combined with
framework coloring information.

We can see that maximum likelihood estimation
slightly reduces the matching error as compared with
the simple method. In contrast, the coloring informa-
tion dramatically improves the accuracy and that the
framework pattern is more effective than the checker-
board pattern.

12. Real Image Experiment

Figure 11 shows a real image of a part of the pattern in
Fig. 9 viewed from an angle. First, we thresholded the
gray levels to create a binary image. Then, we traced
the boundaries of the quadrilateral regions, segmented
each resulting digital loops into four linear segments,
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Fig. 11 A real image of a part of an optimal grid pattern.

and fitted lines to each by least squares. Using the
original gray levels of the pixels near the fitted lines,
we fitted new lines by least squares and determined
the vertex positions by computing their intersections.
Using a 3 x 3 block in the resulting grid pattern, we
computed the cross ratios in both directions and deter-
mined the position of the block in Fig. 9. The correct
position was obtained for all the four methods described
in the preceding section.

Finally, we computed the 3-D position and the fo-
cal length of the camera by the method described in
[6],[7]. The focal length is estimated to be 1718 pixels,
and its reliability is evaluated to be £36.6 pixels (stan-
dard deviation). The reliability of the computed posi-
tion and orientation of the camera turned out +3.4cm
and £0.25°, respectively.

13. Bootstrap

The above experiment is just for one instance of noise
occurrence. In order to evaluate the reliability of this
solution, we need to compare it with the values that
would be obtained if the noise occurred differently. We
can generate such potential noise by bootstrap [1].

The first step is to estimate the noise magnitude.
To do this, we used the fact that the grid lines should
ideally be concurrent (i.e., meeting at a single intersec-
tion) in each orientation. Applying the theory of statis-
tical optimization of Kanatani [4], we optimally fitted
a concurrent pattern to the observed vertices in such
a way that the sum of the squares J of the deviations
of the observed vertices from their corresponding grid
points of the fitted concurrent pattern is minimized (we
omit the details of the procedure).

According to the theory of statistical estimation
(e.g. [4]), an unbiased estimator of the variance o2 of
the image noise is obtained in the form

o J

_ 4
7 T 3212 (34)

where J is the residual (i-e., the minimum value of .J for
the optimally fitted concurrent pattern). The number
32 in the denominator is the number of data (the z and
y coordinates of the 16 vertices), while the number 12
is the degree of freedom of the concurrent pattern.
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The reason that a concurrent grid pattern has 12
degrees of freedom is as follows. Each line has two de-
grees of freedom, so the eight lines have sixteen degrees
of freedom. However, the four lines in each orientation
must have a common intersection, i.e., the third and
fourth lines should pass through the intersection made
by the first and the second lines, reducing two degrees
of freedom in each orientation. Hence, the remaining
degree of freedom is 16 — 2 — 2 = 12. The validity of
Eq. (34) was confirmed by numerical simulation.

According to Eq. (34), the standard deviation of
the image noise in Fig. 11 was estimated to be 0.14
pixels. We generated random Gaussian noise of stan-
dard deviation 0.14 pixels and added it to each of the
coordinates of the grid points of the optimally fitted
concurrent pattern. We repeated the matching 10,000
times, using different noise each time. If the coloring in-
formation is not used, the ratio of correct matching was
96.31%; if the coloring information is used, it turned out
100.00%.

14. Virtual Studio Application

Figure 12(a) is a real image of a toy, behind which
we placed our optimal grid pattern. After segmenting
the toy image from the background by using a chro-
makey technique, we computed the 3-D position and
focal length of the camera by observing an unoccluded
portion of the grid pattern. The focal length is esti-
mated to be 576 pixels. The standard deviations of
the focal length, the translation, and the rotation are
evaluated to be +£38.3 pixels, +5.73cm, and +0.812°,
respectively.

Figure 12(b) is the top view of the estimated cam-
era position and its uncertainty ellipsoid (three times
the standard deviation in each orientation). Figure
12(c) is a composition of the toy image and a graphics
scene generated by VRML.

15. Concluding Remarks

With a view to virtual studio applications, we have de-
signed an optimal grid pattern such that an observed
image of a small portion of it can be matched to its
corresponding position in the pattern easily. The grid
shape is so determined that the cross ratio of adjacent
intervals is different everywhere. By statistical analy-
sis of image noise, we have generated the cross ratios
and grid intervals by an optimal Markov process that
maximizes the accuracy of matching. We have tested
our camera calibration system using the resulting grid
pattern in a realistic setting and show that the per-
formance is greatly improved by applying techniques
derived from the designed properties of the pattern.
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(a)

(b)

Fig. 12 (a) Original image. (b) Estimated camera position and its reliability. (c) A

virtual scene generated from (a).
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