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SUMMARY

We present an efficient method for displaying curves

and surfaces defined by implicit equations in such a way

that the topology (connection) of the displayed curve is

correct in whatever resolution. This is a consequence of

detecting all the critical points of the curve and recursively

subdividing the display region. Critical points are detected

by evaluating the intervals, mean-value forms, and Kraw-

czyk forms of the functions involved. We apply our method

to visualizing surfaces by drawing their occluding contours.

© 2000 Scripta Technica, Electron Comm Jpn Pt 3, 84(3):

1�11, 2001

Key words: User interface; interval analysis; criti-

cal point; curve; surface; occluding contour.

1. Introduction

Visually displaying curves and surfaces is not only

one of the most basic procedures of computer graphics and

CAD but also an indispensable tool for education of mathe-

matics. This paper deals with curves and surfaces defined

by implicit equations, that is, as the set of zeros of functions.

Most of the curves and surfaces encountered in textbooks

on mathematics are defined by such implicit equations.

Displaying curves and surfaces would be much simpler

if their coordinates are given as explicit functions of

parameters: All we need to do is successively increment

the parameters and draw the resulting trajectories. How-

ever, curves and surfaces defined by implicit equations

are not so easy to display. This paper presents a fast

method for this purpose.

Taniguchi and Sugihara [19] presented a method for

displaying algebraic curves and surfaces defined by implicit

equations given by polynomials in the coordinates, but their

method is very inefficient. It is true that curves and surfaces

used for CAD are mostly algebraic and the theory of algebra

can easily be applied in many useful ways. In this paper,

however, we do not limit ourselves to polynomials. We

consider curves and surfaces defined by implicit equations

that can be written down, or elementary functions to be

precise, including trigonometric functions, inverse trigono-

metric functions, exponential functions, and logarithmic

functions.

Today, many symbolic algebra software tools are

available for displaying surfaces, but most of them display

wireframes with appropriate surface rendering [5], as is
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customary in computer graphics and CAD systems. For

human eyes, however, this is not a natural way of seeing

surfaces. When children draw mountains, they draw their

occluding contours. If told to draw a sphere, one would

unconsciously draw a circle; if told to draw cones and

cylinders, one would draw straight lines and elliptic arcs to

represent their rims and occluding contours. This is because

people are able to imagine the surface shape very precisely

merely by seeing rims and occluding contours. In fact, a lot

of research has examined the role of occluding contours in

relation to the psychology of human perception and ma-

chine interpretation of images [1�3, 8, 12].

However, the visible occluding contours of a wire-

frame are not the true occluding contours; they are merely

the wires in their neighborhoods. Such apparent occluding

contours may approach the true occluding contours as the

mesh size of the wireframe decreases, but the 3D shape of

a dense wireframe would be very difficult to perceive by

the human eye. In this paper, we resolve this difficulty by

directly drawing the true occluding contours, which are

projections of the space curves in three dimensions, called

the contour generators, onto the image plane or the retina

[9]. Hence, displaying surfaces reduces to displaying space

curves.

2. Displaying Curves

2.1. Curve tracing

One of the best known methods for displaying a curve

is to take an initial point and incrementally trace the curve

[6, 19]. The increment can be computed by various

means�reducing the problem to numerical integration of

ordinary differential equations, repeating Newton itera-

tions, and their various combinations and variations. What-

ever method we use, however, the following problems

cannot be avoided:

x No general methods exist for computing the initial

points.

x If the curve has multiple connected components,

isolated points, and small loops, it is difficult to

determine if they have exhaustively been detected.

x If two segments of the same curve lie very close

to each other, we may jump to a wrong segment

in the course of tracing the curve.

x The computation of increments fails at singulari-

ties where the curve branches out or crosses itself.

Taniguchi and Sugihara [19] tried to avoid these difficulties

by using symbolic computation of resolvants and introduc-

ing complicated threshold adjustment procedures. As a

result, the computational burden was so heavy that only

polynomials of degree 6 or less can be dealt with within a

practical time. Also, their method cannot be applied to

nonalgebraic curves.

2.2. Space subdivision

A contrasting strategy to curve tracing is to subdivide

the display region into small cells, compute the function

values at the cell vertices, and generate line segments along

which the function is supposedly zero. A typical example

of uniform space subdivision is the zero-crossing, a well-

known method in image processing, for detecting edges by

searching for pixels at which the Laplacian takes value zero.

Recursive subdivision is used in CAD solid modeling sys-

tems for finding the boundary representation of an object

defined by quad trees and octrees [14, 15]. Although the

above-mentioned difficulties of curve tracing are resolved

by this type of space subdivision, the following problems

arise:

x The topology (connection) below the cell size, or

the resolution, is not always correct: Some cross

points, isolated points, and small loops may be

overlooked.

x It is not easy to connect the generated segments

correctly to obtain a global representation.

x A large amount of computation is required for

subdividing the entire display region.

In this paper, we point out that while the difficulties

of curve tracing are inherent and unavoidable, the difficul-

ties of space subdivision can be overcome. The second issue

above may be important for a CAD modeling system, by

which we want to design an overall structure of the object.

If displaying the curve is the sole purpose, as in textbooks

of mathematics, we do not need a global representation. The

third issue can be resolved if the region is subdivided

coarsely. The biggest obstacle is the first issue. In the

following, we present a technique for displaying curves

with correct topology however coarse the subdivision is.

This is made possible by finding all critical points using

interval analysis techniques.

2.3. Finding all critical points

What determines the topology of a curve is its critical

points and singularities. A critical point of a curve

f�x, y�   0 is a point (x, y) such that

It is called a singularity if it satisfies f�x, y�   0 in addition.

If the curve intersects with itself or branches out, the

intersections and branching points are necessarily singu-

(1)
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larities. If the curve has loops, they have critical points

inside. This implies that in order to test if two segments of

the same curve intersect or lie closely nearby, we do not

need a complicated symbolic procedure like that of

Taniguchi and Sugihara [19] or high enough resolution to

distinguish crossings from close encounters. All we need is

to detect singularities: The curve crosses itself if it has a

singularity and it does not if no singularity exists. Similarly,

finding isolated points and loops reduces to finding critical

points.

Finding all critical points reduces, in turn, to solving

simultaneous nonlinear equations inside the display region.

This problem has been well studied in relation to electronic

circuit analysis. One of the best-known techniques is the

Krawczyk method, which searches the given region by

recursively subdividing it and testing the existence of solu-

tions. The test is conducted by interval analysis techniques

involving the mean-value theorem and the fixed-point theo-

rem for contracting mappings [7, 16, 20, 21]. The Krawczyk

method is intended for circuit equations with hundreds of

thousands of variables. Since a plane curve has only two

variables and a space curve has only three variables, the

computation is very efficient in our application.

Our method begins with finding all critical points by

the Krawczyk method prior to displaying the curve itself.

Then, we subdivide the display region into cells in such a

way that the computed critical points are at the cell vertices.

Since it is guaranteed that no critical points exist inside the

cells, it is also guaranteed that the curve has no cross points

or branching points inside any cell. This fact allows us to

generate a chain of line segments with correct topology. If

smoothness is required, we only need to refine the cell

division as finely as necessary.

3. Interval Analysis

3.1. Interval algebra

Interval analysis evaluates the range of a function for

given intervals of the input variables [13, 16]. Arithmetic

operations for intervals I and Ic are defined by

where ! stands for +, �, u, or /. The actual computation is

done by evaluating the maximum and the minimum of the

four values resulting from application of the operation ! to

the endpoints of the intervals I and Ic. The operation I ! Ic

defines a unique interval if the number system is extended

by adding f and �f to the real numbers. The arithmetic

interval operations can easily be extended to general opera-

tions including unary operations, trigonometric functions,

inverse trigonometric functions, exponential functions, and

logarithmic functions [13].

3.2. Nonzero test

Let Ix and Iy be the intervals over which x and y can

respectively take their values. Let f�Ix, Iy� be the interval

obtained by replacing all operations that define the function

f�x, y� by their corresponding interval operations. If

0 � f�Ix, Iy�, the curve f�x, y�   0 is guaranteed not to pass

through the region Ix u Iy. Otherwise, we recursively subdi-

vide the region and reject the cells through which the curve

cannot pass.

However, if we simply replace the input variables by

intervals and execute interval operations, the resulting in-

tervals are usually too wide to restrict the function values

with sufficient accuracy. A well-known method for improv-

ing the accuracy is the use of derivatives. Let Im denote the

midpoint of interval I. We define the mean-value form of

function f�x, y� as follows [13]:

Here, real numbers are regarded as intervals of width 0, to

which interval operations are applied. It can be shown that

if 0 � Mf, the function f�x, y� is guaranteed not to take 0 in

Ix u Iy [13, 16, 20].

3.3. Finding all solutions

Consider simultaneous nonlinear equations

over Ix u Iy. No solutions exist if evaluation of the intervals

of f�x, y� and g�x, y� and their mean-value forms implies

f�x, y� z 0 or g�x, y� z 0 in Ix u Iy. Otherwise, define the

Krawczyk forms Kx and Ky as follows:

Here, I denotes the 2 u 2 unit matrix, and D denotes the

following interval gradient matrix with interval elements:

In Eq. (5), L is the inverse of the matrix consisting of the

midpoints of the intervals that constitute the interval gradi-

ent matrix D:

(2)

(3)

(4)

(5)

(6)

(7)

3



If K � Ix   Ø or Ky � Iy   Ø, Eqs. (4) are guaranteed to have

no solutions in Ix u Iy [16, 20]. If Kx � Ix and Ky � Iy, it can

be shown that Eqs. (4) have a unique solution in Iy u Iy

provided

Moreover, Newton iterations always converge to that solu-

tion [16, 20]. Here, the Newton norm ||I ||f of an interval

matrix I whose �ij� element is interval Iij is defined by

where maxabs(I) denotes the endpoint of the interval I with

a larger absolute value. If no conditions described above

can apply, we subdivide the region and do the same test

recursively.

4. Displaying Plane Curves

We display the curve f�x, y�   0 as follows. First, we

compute all critical points in the display region by solving

Eqs. (1) by means of the interval analysis described in the

preceding section. Then, we recursively subdivide the dis-

play region into four rectangular cells of half size until the

cell size is below the resolution specified by the user. Then,

those cells that contain critical points inside are further

subdivided in such a way that the critical points are at the

cell vertices. In each step of this subdivision, we evaluate

the interval of the function f�x, y� and its mean-value form

and remove those cells through which the curve cannot

pass. As a result, the subdivision is always restricted to the

neighborhoods of the curve, saving the computation time

considerably.

Once we have found cells through which the curve

can pass, we exhaustively search for the points that satisfy

f�x, y�   0 on the cell boundaries. This reduces to solving

an equation of a single variable, so we can find all the

solutions by evaluating the interval, mean-value form, and

Krawczyk form of the function on each side. This process

is a one-dimensional version of the procedure described in

the preceding section. The mean-value form and the Kraw-

czyk form of a function f�x� of a single variable are defined

as follows:

If 0 � f�I� or 0 � Mf or Kf � I   Ø, it is guaranteed that

no solutions exist in I [16, 20]. If Kf � I, it can be

shown that there exists a unique solution in I provided

|I � f c�I� / f c�I�m| � 1. Also, Newton iterations always con-

verge to that solution [16, 20].

In practice, however, it is more convenient to apply

regula falsi: We compare the signs of the function at the

endpoints of the interval in question and recursively subdi-

vide it for exhausting the solutions. Our system adopts this

strategy.

Next, we generate line segments that approximate the

curve in each cell by connecting the points we have ob-

tained on its cell boundary. Since it is guaranteed that no

critical points exist inside the cell, a point that is neither an

(8)

(9)

(10)

(11)

Fig. 1. Display of curve x3 � y3 � 3xy   0 and the

associated subdivision of the region. The resolution is 

(a) 1, (b) 1/8, (c) 1/64 the size of the display region.
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isolated point nor a singularity is connected to another

point and no segments intersect inside the cell. If multi-

ple candidates exist for this connection, we choose the

one for which the function value f�x, y� is the closest to

zero along the candidate segments. Finally, we display

the resulting segments.

To facilitate the execution of the above procedure, we

classify the critical points into singularities and nonsingular

critical points in advance. The singularities are further

classified into isolated points and connected singularities.

This is done by defining a small circle encircling the singu-

larity in question, its radius being equal to the limit resolu-

tion (the finest resolution that users can specify).

Restricting the domain of the function f�x, y� to this circle

and defining a function f�T� of the angular variable T, we

solve f�T�   0 by evaluating its interval, mean-value form,

and Krawczyk form over [0, 2S]. We judge the point to be

an isolated point if no solutions exist and a connected

singularity otherwise.

Figure 1 shows the curve

over [�2.5, 3.2] u [�2.5, 3.2] and the associated subdivision

of the region. This curve has one crossing and one loop. In

Fig. 1(a), the curve is drawn in the coarsest resolution: The

size of the display region itself is used as the resolution.

Since there exist a singularity and a critical point inside, the

region is automatically subdivided in such a way that these

points are at the vertices of the subdivided cells.

Figures 1(b) and 1(c) show the curve with the resolu-

tion being 1/8 and 1/64 the size of the display region,

respectively. We can see that the cell subdivision is always

restricted to the neighborhood of the curve. Figure 2 plots

the computation time (in seconds) versus N, where the

resolution is 1/N the size of the display region. It is seen that

the computation time is approximately O�N�. Note that it

would be O�N2� if the cells that the curve cannot pass

through were not discarded by interval analysis.

Figure 3 shows the curve

over [�2.5, 3.2] u [�2.5, 3.2] and the associated subdivision

of the region. This curve has one singularity (isolated point)

and one critical point between the isolated point and the

curve. See Ref. 10 for more complicated curves displayed

similarly.

If we display the curve f�x, y� � c   0 for a given

function f�x, y� and vary the value of the constant c, we

obtain the contour curves of the surface z   f�x, y�. Since the

critical points of f�x, y� � c   0 do not depend on the value

c, they need to be computed only once in advance. Figure

4 shows the contour curves of the surface

over [�2.5, 3.2] u [�2.5, 3.2]. We can see that the contour

curves that pass through the singularity are displayed with

correct topology.

5. Displaying Space Curves

Consider the space curve defined by the two equa-

tions

A critical point of this curve is a point such that

If the point satisfies F   G   0 in addition, it is called a

singularity, at which the surface defined by F�x, y, z�   0

and the surface defined by G�x, y, z�   0 are tangent to each

other. Here, we are assuming that the two surfaces are

smooth and their intersection does not pass through singu-

larities, if any, of either surface.

As in the case of plane curves, we compute all the

critical points inside the specified region before displaying

the curve. This reduces to solving four equations of three

variables, and the computation is similar to the case of two

variables. First, we conduct the nonzero test to each equa-

tion separately, evaluating its interval, mean-value form,

and Krawczyk forms. The Krawczyk forms for four equa-

tions of three variables are defined by straightforwardly

extending the Krawczyk forms given in Eqs. (5) for two

variables: The interval gradient matrix D given in Eq. (6) is

extended to a 4 u 3 matrix; the matrix L in Eq. (7) is replaced

Fig. 2. Computation time (in seconds) of the curve in

Fig. 1. The resolution is 1/N the size of the display region.

(12)

(13)

(14)

(15)

(16)
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by the (Moore�Penrose) generalized inverse of the matrix

consisting of the midpoints of the interval elements of D

[11]. Similarly, the Newton norm and the condition for the

existence of the solution are straightforwardly generalized

for four equations of three variables: The update equation

for Newton iterations is now a set of four linear equations

in three variables, so we compute the least-squares solution

[11].

Having computed all the critical points, we recur-

sively subdivide the region into eight rectangular cells of

half size until the cell size is below the resolution specified

by the user. Then, those cells that contain critical points

inside are further subdivided in such a way that the critical

points are at the cell vertices. In each step of this subdivi-

sion, we evaluate the intervals of the functions F�x, y, z� and

G�x, y, z� and their mean-value forms and remove those

cells through which the curve cannot pass, thereby restrict-

ing the subdivision to the neighborhoods of the curve.

For each of the cells through which the curve can

pass, we search for the points that satisfy F�x, y, z�   0 and

G�x, y, z�   0 on the cell surface. This reduces to solving

two equations of two variables, so we can find all the

solutions by evaluating the intervals, mean-value forms,

and Krawczyk forms on each face.

Then, we generate line segments that approximate the

curve in each cell by connecting the computed points on its

surface in such a way that a nonsingular point is connected

to another point and no segments intersect inside the cell.

If multiple candidates exist, we choose the one for which

the function values F�x, y, z� and G�x, y, z� are the closest

to zero along the candidate segments. Finally, we project

the resulting segments onto the two-dimensional plane

(retina) associated with a given viewpoint and display this

projection.

As in two dimensions, we classify the critical points

into singularities and nonsingular critical points in advance.

The singularities are further classified into isolated points

and connected singularities. This is done by defining a

sphere enclosing the singularity in question, its radius being

equal to the limit resolution. Restricting the domains of the

functions F�x, y, z� and G�x, y, z� onto this sphere and de-

fining functions F�T, I� and G�T, I� of the spherical vari-

able (T, I), we solve F(T, I) = 0 and G(T, I) = 0 by

evaluating their intervals, mean-value forms, and Kraw-

czyk forms over [0, S] u [0, 2S]. We judge the point to be

an isolated point if no solutions exist and a connected

singularity otherwise.

As in the case of plane curves, no isolated points or

crossings exist inside the cells since singularities are ex-

haustively computed and located at the cell vertices by

construction. The only difference is that, in theory, small

loops could be undetected: They are usually detected be-

cause two critical points exist in the neighborhood of a

small loop, but they could be overlooked, depending on the

Fig. 3. Display of curve x3 � x2 � y2   0 and the

associated subdivision of the region. The resolution is 

(a) 1, (b) 1/8, (c) 1/64 the size of the display region.

Fig. 4. Contours curves of the surface z   x3 � 3x2 � 3y2.
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positions of the critical points and the cell size. This could

be overcome by incorporating ad hoc treatments, but to

avoid complication, we do not go into the details. At any

rate, this problem is resolved by choosing a reasonably

small cell size.

The two ellipsoids defined by

intersect along two closed curves when E z 1. When E = 1,

there arise two singularities, at which the two intersection

curves intersect. Figures 5(a), 5(b), and 5(c) show the

singular intersection in the region [�1.2, 1.3] u [�1.2, 1.3]

u [�1.2, 1.3], the resolution being 1/2, 1/8, and 1/32 the size

of the region, respectively. In Fig. 5(c), the occluding con-

tours of the two ellipsoids are also displayed to help visual

interpretation (we will describe the procedure later). We can

see that the singularities are correctly displayed irrespective

of the resolution.

Figures 6(a), 6(b), and 6(c) show the corresponding

curves for E = 1 + 10�6. Although the intersection curves

may appear to be crossing, their magnification would reveal

that they do not because the line segments defining them do

not intersect. We can also see that the topology is correct

irrespective of the resolution. Figure 7 plots the computa-

tion time (in seconds) versus N for computing Fig. 5, where

the resolution is 1/N the size of the region. It is seen that the

computation time is approximately O�N�; it would be

O�N2� if the cells that the curve cannot pass through were

not discarded by interval analysis.

(17)

Fig. 5. Intersection of two ellipsoids (with a

singularity). The resolution is (a) 1/2, (b) 1/8, 

(c) 1/32 the size of the display region.

Fig 6. Intersection of two ellipsoids (without a

singularity). The resolution is (a) 1/2, (b) 1/8, 

(c) 1/32 the size of the display region.
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6. Displaying Surfaces

As pointed out in the Introduction, a surface can be

most naturally displayed by its occluding contours and

rims.

6.1. Graph representation

Consider the surface

Its rims can be easily generated by dividing the circumfer-

ence of the display region into intervals of width being

equal to the resolution, computing the height z at each

dividing point, and defining the line segments by connect-

ing the resulting points in three dimensions. The occluding

contours of this surface are a projection of the contour

generator in three dimensions onto the two-dimensional

retina. Let V: (v1, v2, v3) be the viewpoint. A point P: (x, y,

z) is on the contour generator if and only if the tangent plane

to this surface at P passes through V. This condition is

written as follows [9]:

We first generate the line segments that approximate the

plane curve defined by this equation in the xy plane by the

method described in Section 4. We then define the corre-

sponding line segments in three dimensions by computing

the height z at their endpoints. Finally, we project the line

segments onto the retina associated with the viewpoint V.

Figures 8(a) and 8(b) compare the wireframe repre-

sentation (the intersections of the surface with equidistant

planes having constant x and y coordinates) and the occlud-

ing contour representation of the surface

The resolution is 1/8 the size of the display region. In Fig.

8(b), we can observe singularities of the occluding con-

tours called lips [8, 9, 12]; they are displayed with correct

topology. This type of singularity is very difficult to

visualize by the standard computer graphics techniques

based on wireframes and their surface rendering using

shading and texture.

6.2. Implicit representation

Consider the surface

Let V: �v1, v2, v3� be the viewpoint. A point P: �x, y, z� is on

the contour generator if and only if the tangent plane to this

surface at P passes through V. This condition is written as

follows [9]:

The contour generator is the space curve defined by these

two equations. The occluding contour can be displayed by

generating the line segments that approximate the contour

generator by the method described in Section 5 and project-

ing them onto the retina associated with the viewpoint V.

Figures 9(a) and 9(b) compare the wireframe repre-

sentation (the intersections of the surface with equidistant

planes having constant x, y, and z coordinates) and the

occluding contour representation of the surface

In Fig. 9(b), we can observe singularities of the occluding

contours called cusps [8, 9, 12]; they are displayed with

correct topology.

6.3. Hidden line removal

Figures 8 and 9 depict transparent surfaces, but it is

easy to make them look opaque: All we need to do is remove

invisible contours hidden by the surface. A point P on

surface F�x, y, z�   0 is visible if and only if the equation F

= 0 has a solution on the line segment that connects P and

the viewpoint V. Thus, testing the visibility reduces to

solving an equation of a single variable. The solutions can

be obtained by evaluating the interval, mean-value form,

and Krawczyk form of F. For each line segment that con-

stitutes the contour generator, we test the visibility of its

Fig. 7. Computation time (in seconds) of the curve in

Fig. 5. The resolution is 1/N the size of the display region.

(18)

(19)

(20)

(21)

(22)

(23)
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endpoints and remove it if the two endpoints are both

invisible. If only one endpoint is visible, we divide the

segment and apply the same test recursively.

Figures 10(a) and 10(b) compare the occluding con-

tour representations of the surface

with and without hidden occluding contours. As we can see,

humans can easily and correctly understand the 3D shape

of the surface by merely seeing its occluding contours, and

hidden line removal greatly facilitates this understanding.

7. Concluding Remarks

We have presented an efficient method for displaying

curves and surfaces defined by implicit equations in such a

way that the topology (connection) is correct in whatever

resolution. We pointed out the problems arising from the

traditional curve tracing schemes and proposed an efficient

method that combines recursive subdivision of the display

Fig. 8. Display of surface z   x2 � x2y � y3. 

(a) Wireframes. (b) Rims and occluding contours.

Fig. 9. Display of surface 23x4 � x2y2 � 37x2y

� 2xy2 �15x2 � 2xy � 16y2 � 16z � x � 16y   0. 

(a) Wireframes. (b) Occluding contours.

Fig. 10. Occluding contours of surface z   xy � y4. 

(a) All contours. (b) Hidden line removal.

(24)
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region with interval analysis techniques. The topology of

the curve is preserved because we compute all critical

points that determine the topology of the curve by evaluat-

ing the intervals, mean-value forms, and Krawczyk forms.

We have experimentally confirmed that our method indeed

preserves the topology in all resolutions.

Unlike the method of Taniguchi and Sugihara [19],

our method does not require complicated procedures for

symbolic algebra, such as computation of resolvants, for

detecting crossings, branchings, and loops of algebraic

curves. In fact, our method does not even require the curves

to be algebraic. We applied our method to displaying sur-

faces by drawing rims and occluding contours. This repre-

sentation is more natural for human visual perception than

wireframes with surface rendering.

Our system defines interval objects and their methods

in C++ language. As a result, operations of intervals are

performed as if they are for real numbers once the variables

and constants are declared to be of type �interval.� Our

system automates differentiation of functions by using

symbolic manipulations. The resulting procedures are con-

verted into interval programs. Our system was implemented

on a PC/AT convertible machine with Pentium Pro

200MHz as the CPU, Linux 2.0 (Slackware 3.5) as the OS,

and GCC 2.7.2.3 as the compiler.
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