
Vol. 49 No. SIG 6(CVIM 20) IPSJ Transactions on Computer Vision and Image Media Mar. 2008

Regular Paper

Fast Projective Reconstruction: Toward Ultimate Efficiency

Hanno Ackermann 1† and Kenichi Kanatani 1†

We accelerate the time-consuming iterations for projective reconstruction, a key component
of self-calibration for computing 3-D shapes from feature point tracking over a video sequence.
We first summarize the algorithms of the primal and dual methods for projective reconstruc-
tion. Then, we replace the eigenvalue computation in each step by the power method. We also
accelerate the power method itself. Furthermore, we introduce the SOR method for acceler-
ating the subspace fitting involved in the iterations. Using simulated and real video images,
we demonstrate that the computation sometimes becomes several thousand times faster.

1. Introduction

Various techniques have been proposed in
the past for self-calibration: 3-D reconstruc-
tion from point correspondences over multiple
images taken by uncalibrated cameras6). This
paper quests for an efficient self-calibration im-
plementation.

From among many different existing ap-
proaches, we choose the most widely adopted
“two-stage method”, which consists of projec-
tive reconstruction for computing a 3-D shape
up to projectivity and Euclidean upgrading
that transforms it to a correct shape. This ap-
proach is supported by rigorous mathematical
analysis based on projective geometry6).

Early studies of projective reconstruction
were based on a particular reference frame, usu-
ally the first image, whose camera model was
assumed to be in a canonical form; the camera
models of the other frames were estimated rela-
tive to it. Today, however, the mainstream ap-
proach is iterative “factorization” consisting of
simultaneous computations to all frames. This
approach is known to be numerically stable.

One of the earliest of such ideas was by
Christy and Horaud1), who assumed affine
cameras and iteratively introduced perspec-
tive effects, using the Tomasi-Kanade factor-
ization23). Then, Sturm and Triggs20) and
Triggs24) introduced a direct approach based
on the fundamental matrices computed between
frames (see also Deguchi2)). Extending the
Tomasi-Kanade factorization23), they used the
singular value decomposition (SVD) to factor-
ize a matrix consisting of data and unknowns
(no unknowns are involved if the camera is
affine).

†1 Okayama University

Later, a new type of iterative method that
does not require fundamental matrices was pre-
sented in many different forms9),13),14),27). One
of the major differences from earlier ones is
that the algebraic interpretation of “factoriza-
tion of a matrix by SVD” is now replaced by
the geometric interpretation⋆1 of “fitting a sub-
space to high-dimensional data ”. In this pa-
per, we adopt the formulations of Mahamud
and Hebert13) and Heyden et al.9).

For the second stage of Euclidean upgrad-
ing, the mainstream nowadays is the use of the
“dual absolute quadric constraint” introduced
by Triggs25), for which many different assump-
tions have been used7),8),16),18),19).

Assuming that the camera aspect ratio is 1
with no image skew and using a modified ver-
sion10) of the method of Seo and Heyden18),
we did many experiments and found that the
iterations of projective reconstruction far ex-
ceed the Euclidean upgrading in computation
time10); the latter is basically an analytical pro-
cedure, and the computation time is very short
even if iterations are added to improve the ro-
bustness10). Hence, efficiency improvement of
self-calibration largely depends on how to speed
up the projective reconstruction. This paper
concentrates on this issue.

Our close examination has revealed that the
reason for projective reconstruction to take long
time is that each iteration requires eigenvalue
computation of a matrix whose size depends on
the number of tracked points or the number of
frames that we observe. As a result, the com-
putation time quickly grows as the number of
points or frames increases.

⋆1 In fact, this is mathematically the essence of the
Tomasi-Kanade factorization23); the term “factor-
ization” is very misleading11),12).

68

Vol. 49 No. SIG 6(CVIM 20) Fast Projective Reconstruction: Toward Ultimate Efficiency 69

The key idea comes from the observation that
the eigenvector computed in each step should
not be very different from the value computed
in the preceding step and hence it need not
be computed from scratch; a large reduction of
computation time is expected if the preceding
value is updated with a small number of op-
erations. To do this, we introduce the “power
method” for eigenvalue computation.

The power method itself is an iterative pro-
cess, so we introduce an extrapolation tech-
nique to accelerate the convergence. We can
also introduce the scheme of successive overre-
laxation (SOR), well known in physics, for fur-
ther speedup. Using simulated and real video
images, we demonstrate that these techniques
significantly accelerate the computation, some-
times several thousand times faster.

2. Projective Reconstruction

Suppose we track N points over M image
frames. Let (xκα, yκα) be the image coordinates
of the αth point in the κth frame. The fun-
damental equation of projective reconstruction
is6)

zκαxκα = ΠκXα, xκα =





xκα/f0

yκα/f0

1



, (1)

where f0 is an appropriate constant⋆1. In
Eqs. (1), Πκ is a 3 × 4 camera matrix (un-
known), and zκα is a constant called the “pro-
jective depth” (unknown). The 4-D vector
Xα (unknown) consists of homogeneous coor-
dinates of the αth point in the scene. Our task
is to determine zκα, Πκ, and Xα from the data
xκα.

To solve this problem, we modify the method
of Mahamud and Hebert13), which we call the
primal method , and the method of Heyden et
al.9), which we call the dual method , in the same
framework, using corresponding symbols and
notations (see Ref. 10) for the details). Here-
after, we denote the inner product of vectors a

and b by (a, b).
2.1 Primal Method (Prototype)

Input:
xκα, κ = 1, ..., M , α = 1, ..., N ,
admissible reprojection error Emin (pixels).

Output:

⋆1 This is for scaling xκα/f0 and yκα/f0 into the order
of 1 for numerical stability4). In our experiment, we
set f0 = 600 pixels.

Πκ, κ = 1, ..., M , Xα, α = 1, ..., N .
Computation:
(1) Initialize the projective depths to zκα = 1.
(2) Let pα be the 3M -D vector that verti-

cally aligns z1αx1α, ..., zMαxMα as its com-
ponents. Then, normalize it to a unit vector.

(3) Compute the 3M × 3M matrix

M =

N
∑

α=1

pαp⊤

α . (2)

(4) Compute the unit eigenvectors u1, u2,
u3, and u4 of M for the largest four eigen-
values.

(5) Compute the 3×4 camera matrix Πκ by
Πκ =

(

u∗

1κ u∗

2κ u∗

3κ u∗

4κ

)

, (3)
where u∗

iκ is a 3-D vector whose first, second,
and third components are, respectively, the
(3(κ− 1)+ 1)st, (3(κ− 1)+ 2)nd, and (3(κ−
1) + 3)rd components of ui.

(6) Do the following computations for α = 1,
..., N .
(a) Compute the unit eigenvector ξα for
the largest eigenvalue of the M ×M matrix
Aα = (Aα

κλ) defined by

Aα
κλ =

∑4
k=1(xκα, u∗

kκ)(xλα, u∗

kλ)

‖xκα‖ · ‖xλα‖
. (4)

The sign of ξα = (ξκα) is chosen so that
M
∑

κ=1

ξκα ≥ 0. (5)

(b) From the resulting ξα = (ξκα), deter-
mine the projective depths zκα by

zκα =
ξκα

‖xκα‖
. (6)

(c) Using the computed zκα, recompute
the vectors pα and normalize them to unit
norm.
(d) Compute the 3-D positions Xα = (Xk

α)
by

Xk
α = (pα, uk), k = 1 ∼ 4.

(7)

(7) Compute the reprojection error

E =f0

√

√

√

√

1

MN

M
∑

κ=1

N
∑

α=1

‖xκα−Z[ΠκXα]‖2,

(8)

where Z[·] denotes normalization of a vector
to make the third component 1.

(8) If E < Emin, stop. Else, go back to
Step (3).

70 IPSJ Transactions on Computer Vision and Image Media Mar. 2008

2.2 Dual Method (Prototype)
Input:

xκα, κ = 1, ..., M , α = 1, ..., N ,
admissible reprojection error Emin (pixels).

Output:
Πκ, κ = 1, ..., M , Xα, α = 1, ..., N .

Computation:
(1) Initialize the projective depths to zκα = 1.
(2) Compute the following N -D vectors qi

κ:

q1
κ =

(zκ1xκ1

f0
,
zκ2xκ2

f0
, ...,

zκNxκN

f0

)⊤

,

q2
κ =

(zκ1yκ1

f0
,
zκ2yκ2

f0
...,

zκNyκN

f0

)⊤

,

q3
κ = (zκ1, zκ2, ..., zκN)⊤. (9)

For each κ, multiply qi
κ, i = 1, 2, 3, by a

common constant so that
3

∑

i=1

‖qi
κ‖

2 = 1. (10)

(3) Compute the N ×N matrix

N =
M
∑

κ=1

3
∑

i=1

qi
κqi⊤

κ . (11)

(4) Compute the unit eigenvectors v1, v2,
v3, and v4 of N for the largest four eigen-
values.

(5) Compute the 3-D positions Xα = (Xk
α)

by

Xk
α = (the αth component of vk),

k = 1 ∼ 4. (12)

(6) Do the following computations for κ = 1,
..., M .
(a) Compute the unit eigenvector ξκ for
the largest eigenvalue of the N × N matrix
Bκ = (Bκ

αβ) defined by

Bκ
αβ =

(v∗

α, v∗

β)(xκα, xκβ)

‖xκα‖ · ‖xκβ‖
, (13)

where v∗

α is a 4-D vector consisting of the
αth components of v1, v2, v3, and v4 in that
order. The sign of ξκ is chosen so that

N
∑

α=1

ξκα ≥ 0. (14)

(b) From the resulting ξκ = (ξκα), deter-
mine the projective depths zκα by Eq. (6).
(c) Using the computed zκα, recompute
the vectors qi

κ, i = 1, 2, 3, and normalize
them in the form of Eq. (10).
(d) Compute the 3 × 4 camera matrix Πκ

= (Πκ(ij)) by

Πκ(ij) = (qi
κ, vj). (15)

(7) Compute the reprojection error E in
Eq. (8).

(8) If E < Emin, stop. Else, go back to
Step (3).

2.3 Comparison with Factorization

In the Steps (3) and (4) of the primal and
the dual methods, a 4-D subspace is fitted to
the data, and in the Step (6) the projective
depths zκα are updated10). The algorithm it-
erates these two procedures. In this sense, it
is a kind of EM algorithm. Setting zκα = 1 in
the Step (1) is equivalent to assuming an affine
camera.

If we compute the camera matrix Πκ in the
Step (5) of the primal method and stop there,
or equivalently, if we compute the 3-D positions
Xα in the Step (5) of the dual method and stop
there, the computation is essentially the first
stage⋆1 (“affine reconstruction”) of the Tomasi-
Kanade factorization23). Hence, the above pro-
cedure is a natural extension of the Tomasi-
Kanade factorization.

The second stage of the Tomasi-Kanade fac-
torization is Euclidean upgrading using the
“metric constraint” based on a particular affine
camera model such as orthographic, weak per-
spective, or paraperspective11), while for self-
calibration, the “dual absolute quadric con-
straint25)” is used10). They have similar com-
putational structures (basically least squares)
and the same computational complexity.

This observation shows that the difference
between self-calibration and factorization is
whether we do eigenvalue computation in
Step (6)-(a) and iterate Steps (3)–(8) till the
reprojection error converges. Hence, speedup
of self-calibration depends on speedup of eigen-
value computation.

We can also see that the reprojection error
evaluation in Step (7) is not necessary; we can
simply stop when all values do not differ much
(by setting an appropriate threshold) after up-
date. This may further speed up the compu-
tation, since the reprojection error evaluation
takes time proportional to the number of points
and the number of frames. Also, we can avoid
setting too low a reprojection error which may
never be reached. In this paper, however, we

⋆1 In either case, the computation reduces to matrix
factorization by SVD, hence the name “factoriza-
tion”.

Vol. 49 No. SIG 6(CVIM 20) Fast Projective Reconstruction: Toward Ultimate Efficiency 71

retain this evaluation simply for comparing the
convergence performance of the two algorithms
for a common threshold, which is the theme of
this paper.

3. Acceleration by the Power Method

As we pointed out earlier, the eigenvector
computed in each iteration step is nearly the
same as in the preceding step, so the compu-
tation is expected to speed up if the preceding
value is updated with a small number of opera-
tions. To do this, we use the “power method”3).

Let T be an n×n positive semi-definite sym-
metric matrix with eigenvalues λ1 ≥ · · · ≥ λn

(≥ 0), and u1, ..., un the corresponding unit
eigenvectors. Then, T k has eigenvalues λk

1 ≥
· · · ≥ λk

n with the same eigenvectors. Hence,
if arbitrary linearly independent vectors v1, ...,
vm are multiplied by T k, they are magnified in
the directions of those eigenvectors that have
large eigenvalues.

It follows that for large k, the m-D subspace
spanned by T kv1, ..., T kvm converges to the
subspace spanned by the eigenvectors u1, ...,
um. For m = 1, in particular, the direction of
T kv for an arbitrary v converges to that of u1

as k →∞. These facts have been used to speed
up the Tomasi-Kanade factorization computa-
tion5),15),28).

In this paper, we use the power method for
the eigenvalue computation in the Step (6)-(a)
of the primal and the dual methods and for the
4-D subspace fitting in the Step (4). The ac-
tual procedure goes as follows (N [·] denotes
normalization of a vector to unit norm).

3.1 Primal Method (Power)

Input:
xκα, κ = 1, ..., M , α = 1, ..., N ,
admissible reprojection error Emin (pixels),
constants d and e for stopping the power
method.

Output:
Πκ, κ = 1, ..., M , Xα, α = 1, ..., N .

Computation:
(1) Initialize the projective depths to zκα = 1.
(2) Compute the following M -D vector ξ0

α.

ξ0
α = N

[









‖x1α‖z1α

‖x2α‖z2α

...
‖xMα‖zMα









]

. (16)

(3) Let pα be the 3M -D vector that verti-

cally aligns z1αx1α, ..., zMαxMα as its com-
ponents. Then, normalize it to a unit vector.

(4) Compute the 3M ×N matrix
P =

(

p1 p2 · · · pN

)

. (17)
(5) Compute the SVD of P as follows:

P = Udiag(σ1, σ2, · · ·)V
⊤. (18)

(6) Let u1, u2, u3, and u4 be the first four
columns of the matrix U .

(7) Compute the 3× 4 camera matrix Πκ in
Eq. (3).

(8) Do the following computations for α = 1,
..., N .
(a) Compute the M × M matrix Aα =
(Aα

κλ) defined by Eq. (4).
(b) Compute ξα by

ξα = N [Aαξ0
α]. (19)

(c) Let ξ0
α ← ξα and go back to Step (b).

Repeat this until ‖ξα − ξ0
α‖ < 10−d.

(d) From the resulting ξα = (ξκα), deter-
mine the projective depths zκα by Eq. (6).
(e) Using the computed zκα, recompute
the vectors pα and normalize them to unit
norm.
(f) Compute the 3-D positions Xα = (Xk

α)
by Eq. (7).

(9) Compute the reprojection error E in
Eq. (8).

(10) If E < Emin, stop. Else, recompute the
matrix P in Eq. (17).

(11) Compute the following N -D vectors ṽk

and 3M -D vectors ũk, k = 1 ∼ 4.

ṽk = P⊤uk, ũk = P ṽk. (20)

(12) Let û1, û2, û3, and û4 be the orthonor-
mal system obtained by the Schmidt orthog-
onalization of ũ1, ũ2, ũ3, and ũ4.

(13) If max4
k=1

√

1−
∑4

l=1(ûk, ul)2 < 10−e,
let uk ← ũk, k = 1 ∼ 4, and go back to
Step (7). Else, let uk ← ũk, k = 1 ∼ 4, and
go back to Step (11).

3.2 Dual Method (Power)

Input:
xκα, κ = 1, ..., M , α = 1, ..., N ,
admissible reprojection error Emin (pixels),
constants d and e for stopping the power
method.

Output:
Πκ, κ = 1, ..., M , Xα, α = 1, ..., N .

Computation:
(1) Initialize the projective depths to zκα = 1.

72 IPSJ Transactions on Computer Vision and Image Media Mar. 2008

Fig. 1 Simulated image sequence of 265 points through 256 frames (6 frames decimated).

(2) Compute the following N -D vector ξ0
α.

ξ0
κ = N

[









‖xκ1‖zκ1

‖xκ2‖zκ2

...
‖xκM‖zκN









]

. (21)

(3) Compute the N -D vectors qi
κ in Eqs. (9),

and normalize them so that Eq. (10) holds.
(4) Compute the N × 3M matrix

Q =
(

q1
1 q2

1 q3
1 q1

2 · · · q3
M

)

. (22)
(5) Compute the SVD of Q as follows⋆1.

Q = Vdiag(σ1, σ2, ...)U
⊤ (23)

(6) Let v1, v2, v3, and v4 be the first four
columns of the matrix V.

(7) Compute the 3-D positions Xα = (Xk
α)

by Eq. (12).
(8) Do the following computations for κ = 1,

..., M .
(a) Compute the N × N matrix Bκ =
(Bκ

αβ) defined by Eq. (13).
(b) Compute ξκ by

ξκ = N [Bκξ0
κ]. (24)

(c) Let ξ0
κ ← ξκ and go back to Step (b).

Repeat this until ‖ξκ − ξ0
κ‖ < 10−d.

(d) From the resulting ξκ = (ξκα), deter-
mine the projective depths zκα by Eq. (6).
(e) Using the computed zκα, recompute
the vectors qi

κ and normalize them in the
form of Eq. (10).
(f) Compute the 3 × 4 camera matrix Πκ

= (Πκ(ij)) by Eq. (15).
(9) Compute the reprojection error E in

Eq. (8).
(10) If E < Emin, stop. Else, recompute the

matrix Q in Eq. (22).
(11) Compute the following 3M -D vectors ũk

and N -D vectors ṽk, k = 1 ∼ 4.

ũk = Q⊤vk, ṽk = Qũk. (25)

(12) Let v̂1, v̂2, v̂3, and v̂4 be the orthonor-

⋆1 The singular values σ1, σ2, ... and the matrices U

and V are the same as those in Eq. (18).

mal system obtained by the Schmidt orthog-
onalization of ṽ1, ṽ2, ṽ3, and ṽ4.

(13) If max4
k=1

√

1−
∑4

l=1(v̂k, vl)2 < 10−e,
let vk ← ṽk, k = 1 ∼ 4 and go back to
Step (7). Else, let vk ← ṽk, k = 1 ∼ 4, and
go back to Step (11).
3.3 Effects of the Power Method
We note that if the matrices P and Q (=

P⊤) are defined by Eqs. (17) and (22), Eqs. (2)
and (11) are rewritten as M = PP⊤ and
N = QQ⊤. So, the eigenvalue computation
of M and N in the Step (3) of the proto-
type can be replaced by the SVD of P and Q

(Step (5)). This can generally reduce the com-
putation time. In Step (11), we decompose the
multiplication by M and N into the multipli-
cations by P⊤ followed by P and the multipli-
cation by Q⊤ followed by Q, respectively; this
can again reduce the number of arithmetic op-
erations in general.

3.4 Experiment 1
Figure 1 shows a simulated image sequence

of 256 points ⋆2 projected onto 256 camera
frames of 600 × 600 pixels with focal length
600 pixels. Here, only six decimated frames are
shown.

From this sequence, we computed projective
reconstruction. The constants for stopping the
power method were set to e = 1 and d = 5. The
iterations were stopped when the reprojection
error E became below 0.1 pixels. The compu-
tation time (sec) and the number of iterations
are listed in Table 1. We used Pentium 4 3.4
GHz for the CPU with 2 GB main memory and
Linux for the OS.

We can see that the power method reduces
the computation time to 5% (primal) and 31%
(dual) as compared to the prototype. However,
the number of iterations slightly increases, be-
cause the power method is terminated before
complete convergence. Yet, the overall com-
putation time is drastically curtailed, because

⋆2 The box is for visual ease only and not used for the
computation.

Vol. 49 No. SIG 6(CVIM 20) Fast Projective Reconstruction: Toward Ultimate Efficiency 73

Table 1 The computation time (sec) and the number
of iterations for the sequence in Fig. 1 until
the reprojection error is 0.1 pixels.

primal dual
time iter. time iter.

prototype 85277 579 835 10
power 4036 602 257 28

 0

 0.5

 1

 200 400 600
 0

 0.5

 1

 10 20 30
(a) (b)

Fig. 2 Reprojection error vs. the number of iterations.
The solid lines are for the prototype; the dashed
lines are for the power method. (a) Primal
method. (b) Dual method.

eigenvalue computation in each step is replaced
by matrix vector multiplications.

To see this more closely, we plot the repro-
jection error E for the number of iterations in
Fig. 2(a) (primal) and Fig. 2(b) (dual). The
solid lines are for the prototype; the dashed
lines are for the power method. We see that
the reprojection error monotonically decreases
for both the primal and the dual methods. We
also see that the power method slows down the
convergence, for the dual method in particular.
Nevertheless, the overall computation time sig-
nificantly reduces.

3.5 Comparing the Two Methods
As we can see from Table 1, the dual method

is more efficient than the primal for the se-
quence in Fig. 1. However, the efficiency de-
pends on the number N of points and the num-
ber M of frames. So, we need closer examina-
tion.

The primal method repeats eigenvalue com-
putation for each point, while the dual method
repeats eigenvalue computation for each frame.
So, the computation time is nearly linear in N
(primal) and in M (dual).

The complexity of eigenvalue computation is
very difficult to evaluate, depending on the al-
gorithm used. If we roughly estimate it to be
O(n3) for an n × n matrix, the complexity is
O(NM3) (primal) and O(MN3) (dual). Since
the power method consists of vector-matrix
multiplication, it is about O(NM2) (primal)

 1

 2

 3

 0 100 200 300 400 500

×10
7

M

 1

 2

 0 100 200 300 400 500

×10 6

N
(a) (b)

Fig. 3 Growth of the execution time (sec) for the
prototype (solid lines) and the power method
(dashed lines). (a) The primal method (N =
256). The horizontal axis is for the number M
of frames. (b) The dual method (M = 256).
The horizontal axis is for the number N of fea-
ture points.

and O(MN2) (dual) if terminated after a small
number of iterations.

In order to confirm this, we changed the num-
ber N of points and the number M of frames
of the example in Fig. 1 (we added/removed
points and intermediate frames) and observed
the dependence of the computation time on M
and N . Figure 3(a) shows the computation
time of the primal method for different M (N
= 256); Fig. 3(b) is for the dual method for dif-
ferent N (M = 256). The solid lines are for
the prototype; the dashed lines for the power
method.

We also tested various combinations of N and
M . Fitting a polynomial in N and M to the
computation time (we fitted a line to its loga-
rithm by least square), we obtained

Tp ≈ 1.407N0.94M1.7,

Td ≈ 0.163M0.95N1.7, (26)

for the primal and the dual methods, respec-
tively (in ms). We can confirm that the com-
putation time is approximately proportional to
N (primal) and to M (dual), as expected. It is
also proportional to M1.7 (primal) and to N1.7

(dual), which is very close to our prediction of
M2 (primal) and N2 (dual).

We conclude that i) the primal method is fa-
vorable for a large number of points, ii) the
dual method is favorable for a large number
of frames, and iii) for comparable numbers of
points and frames, the dual method is far more
efficient.

4. Further Acceleration

4.1 Power Method Acceleration
The power method itself is an iterative pro-

cess. As is well known in numerical analy-

74 IPSJ Transactions on Computer Vision and Image Media Mar. 2008

sis17), the convergence of an iterative process
can be accelerated if the convergence rate is
known. The technique is known by such names
as “Eitken’s δ2” and the “Richardson extrap-
olation”. A typical example is the “Romberg
integration”, which accelerates numerical inte-
gration in the course of increasing the sampling
points. However, these are for scalar computa-
tions, while the power method is a vector com-
putation. Hence, the known techniques cannot
be directly applied to the power method. So,
we devised the following method.

Consider the unit eigenvector w1 of a positive
semidefinite symmetric matrix T for the largest
eigenvalue λ1. If we start from ξ0 and write ξk

= N [T kξ0], we have, when ξ0 is close to w1 or
k is large,

ξk ≈ w1 + Cγkw2, γ =
λ2

λ1
, (27)

where w2 is the eigenvector for the second
largest eigenvalue λ2, and C is some constant.
Eliminating w2 from this and the same relation
for k + 1, we obtain

w1 ≈
ξ

k+1 − γξ
k

1− γ
. (28)

If γ is known, this allows us to predict w1 from
ξk+1 and ξk. If γ is unknown, we can estimate
it from Eq. (27) by

γ ≈
‖ξk+1 − ξk‖

‖ξk − ξk−1‖
. (29)

Using this formula, we estimate γ from ξk−1,
ξk, and ξk+1 and replace ξk+1 by N [(ξk+1 −
γξk)/(1 − γ)], accelerating the iterations every
other step (from ξ0 and ξ1 to ξ2, from ξ2 and
ξ3 to ξ4, ...). This can be applied to the power
method computation of the projective depth
vectors ξα and ξκ.

The above idea can be extended to higher or-
der correction, using a longer history of itera-
tions21), but this turned out not to be effective
according to our experiments. We can use, in-
stead, the steepest descent and the conjugate
gradient methods21), but again they turned out
not to be so effective. So, we consider only the
above described acceleration technique.

4.2 Acceleration by SOR
The successive overrelaxation (SOR) is a

technique for convergence acceleration well
known in physics: for a sequence ξ1, ξ2, ..., we
accelerate ξk in the form

ξk ← ξk−1 + ω(ξk − ξk−1), (30)

where ω (> 1) is called the acceleration con-

stant . It has empirically been known that this
scheme works well in many iterative problems,
but an appropriate value of ω is very difficult to
find except for special types of linear computa-
tion; it is usually set by experience. We apply
this scheme to accelerate the projective depth
vector ξ (= ξα or ξκ) each time the fitted sub-
space is updated: Using the value ξ′ in the pre-
vious iteration, we replace ξ byN [ξ′+ω(ξ−ξ

′)].

5. Experiment 2

Table 2 lists the computation time and the
number of iterations for the sequence in Fig. 1,
using 1) the power method, 2) the accelerated
power method, 3) SOR without accelerating the
power method, and 4) SOR with the acceler-
ated power method.

We set e = 1 and d = 1 for stopping the ac-
celerated power method and ω = 1.9 for SOR.
The iterations were stopped when the reprojec-
tion error E became less than 0.1 pixels. In
Table 2, the “efficiency index” means the ratio
of the longest computation time to the shortest.

Figure 4 plots the reprojection error E for
the number of iterations for the (a) primal and
the (b) dual methods. The solid lines are for
the power method; the dashed lines are for
the accelerated power method; the dotted lines
are for combining the power method and SOR;
the chained lines are for combining the accel-
erated power method and SOR. For the primal
method, only the solid and dotted lines are dis-
played; the dashed and the chained lines overlap
the solid and the dotted line, respectively.

Figure 5(a) plots the computation time of
the primal method for different M (N = 256);
Fig. 5(b) is for the dual method for different N
(M = 256). The solid lines are for the power
method; the dashed lines are for the acceler-

Table 2 The computation time (sec) and the number
of iterations for the sequence in Fig. 1 un-
til the reprojection error becomes below 0.1
pixels (pm = power method, acc.pm = accel-
erated power method).

primal dual
time iter. time iter.

pm 4036 602 257 28
acc.pm 4083 599 48 11

pm+SOR 2146 315 139 7
acc.pm+SOR 2112 312 76 14

Efficiency index = 1777

Vol. 49 No. SIG 6(CVIM 20) Fast Projective Reconstruction: Toward Ultimate Efficiency 75

ated power method; the dotted lines are for
the power method and SOR; the chained lines
are for the accelerated power method and SOR.
These plots reflect the iteration behavior shown
in Fig. 4.

From these, we observe that accelerating the
power method does not exhibit much effect
on the primal method, while the dual method
significantly improves. Closely examining the
value of γ in Eqs. (27), we found that the power
method converges very quickly (γ is small) for
the primal method but slowly (γ is large) for
the dual. This explains why the acceleration is
more effective for the dual method.

On the other hand, SOR is effective for
both. However, it is less effective than power
method acceleration, and their simultaneous

 0

 0.5

 1

 200 400 600 0

 0.5

 1

 10 20 30

(a) (b)

Fig. 4 Reprojection error vs. the number of itera-
tions for (a) the primal and (b) the dual meth-
ods. The solid lines are for the power method;
the dashed lines are for the accelerated power
method; the dotted lines are for the power
method and SOR; the chained lines are for the
accelerated power method and SOR. In (a),
only the solid and dotted lines are displayed;
the dashed and the chained lines overlap the
solid and the dotted line, respectively.

 5

 10

 15

 0 100 200 300 400 500

×10

M

 5

 10

 0 100 200 300 400 500

×10 5

N
(a) (b)

Fig. 5 Growth of the execution time (sec). The solid
lines are for the power method; the dashed lines
are for the accelerated power method; the dot-
ted lines are for the power method and SOR;
the chained lines are for the accelerated power
method and SOR. (a) The primal method (N
= 256). The horizontal axis is for the number
M of frames. (b) The dual method (M = 256).
The horizontal axis is for the number N of fea-
ture points.

use reduces the effect of the accelerated power
method.

Overall, the dual method with power method
acceleration performs the best and is about
1800 times faster than the prototype primal
method.

6. Experiment 3

Figure 6(a) shows six frames decimated from
a simulated 11 frame sequence (600×600 pixels
with focal length 600 pixels). Fig. 6(b) shows
six frames decimated from a 200 frame video se-
quence (640×480 pixels), tracking 16 points as
marked there. They were specified by hand in
the first frame and tracked through the rest of
the frames by the Kanade-Lucus-Tomasi (KLT)
algorithm22); we manually intervened whenever
the tracking failed.

Table 3 lists the computation time (sec) and
the number of iterations for the sequence in
Fig. 3(a) until the reprojection error becomes
below 0.1 pixels for different methods.

For this sequence, the number of points is
large (N = 231), but the number of frames
is small (M = 11), so the prototype primal
method is more efficient than the prototype
dual method in spite of the fact that the num-
ber of iterations is smaller for the latter. This is
because one step of the prototype dual method
requires a large amount of computation, which
is reduced by the use of the power method. As
a result, the dual method becomes faster than
the primal if the power method is used.

We also see from Table 3 that the power
method acceleration has no effect on the pri-
mal method. This is because the power method
iterations converge very quickly for the primal
method, as we observed in Experiment 2. How-
ever, SOR has some effect.

For the dual method, on the other hand, the
convergence of the power method is very slow,
so the power method acceleration is very effec-
tive, making the computation 14 times faster.
However, SOR has an adverse effect, and com-
bining it with the accelerated power method is
still inferior to the accelerated power method
only.

Table 4 lists the computation time (sec) and
the number of iterations for the sequence in
Fig. 6(b) until the reprojection error becomes
below 2.01 pixels for different methods; due to
the tracking accuracy limitation of the KLT, it
did not reduce in further iterations.

For this sequence, the number of frames is

76 IPSJ Transactions on Computer Vision and Image Media Mar. 2008

(a)

(b)

Fig. 6 (a) Simulated image sequence of 256 points through 256 frames (6
frames decimated). (b) Real video sequence (6 frames decimated),
tracking 16 points through 200 frames.

Table 3 The computation time (sec) and the number
of iterations for the sequence in Fig. 6(a) un-
til the reprojection error becomes below 0.1
pixels (pm = power method, acc.pm = accel-
erated power method).

primal dual
time iter. time iter.

prototype 3.84 89 7.15 3
pm 2.24 90 1.25 3

acc.pm 2.37 90 0.51 3
pm+SOR 1.12 47 10.76 21

acc.pm+SOR 1.27 47 5.73 31

Efficiency index = 14

Table 4 The computation time (sec) and the number
of iterations for the sequence in Fig. 6(b) un-
til the reprojection error is 2.01 pixels (pm =
power method, acc.pm = accelerated power
method).

primal dual
time iter. time iter.

prototype 2153.3 300 0.26 5
pm 82.8 315 0.87 8

acc.pm 81.3 314 0.26 5
pm+SOR 43.4 165 1.85 15

acc.pm+SOR 42.6 165 1.48 31

Efficiency index = 8282

large (M = 200), so the primal method takes a
vast amount of time if the prototype is used.
The power method curtailed it to about 4%
(26 times faster). Since the power method con-
verges very quickly for the primal method, its
acceleration has little effect, while SOR can fur-
ther speed up the computation.

Nevertheless, all these cannot compare with
the dual method, because the number of points
is very small (N = 16). Already, the prototype
converges so quickly that the use of the power
method has an adverse effect. However, acceler-
ation of the power method recovers the original

efficiency, and the computation is about 8000
times faster than the prototype primal method.

For the dual method, SOR has an adverse
effect, and its combination with power method
acceleration gains only a little.

7. Conclusions

We presented various techniques for accel-
erating the projective reconstruction computa-
tion for self-calibration. Using simulated and
real video images, we observed the following:

(1) The use of the power method increases
the number of iterations, but the total compu-
tation time dramatically decreases, because the
complexity of each step reduces. This is espe-
cially conspicuous for the primal method.

(2) Acceleration of the power method has
little effect on the primal method, because
the second largest eigenvalue is very small and
hence the convergence is quick even without ac-
celeration. In contrast, it has a significant ef-
fect on the dual method, for which the second
largest eigenvalue is large.

(3) SOR is effective for both the primal
and the dual methods, but the effect is rela-
tively small for the dual method.

(4) The primal method is favorable for a
very large number of points over a small number
of frames; the dual method is preferable for a
small number of points over a very large number
of frames.

In real applications, we can obtain as many
consecutive frames as we wish, using a video
camera, but the number of available points is
usually limited, because feature point tracking
over a long sequence is a difficult task. In such
situations, the best choice is the dual method
combined with power method acceleration.

The self-calibration algorithm that we have

Vol.49 No.SIG6(CVIM20) Fast Projective Reconstruction: Toward Ultimate Efficiency 77

studied in this paper is based on the alge-
braic structure of the problem. It has often
been pointed out that the reconstruction accu-
racy quickly deteriorates as the noise in the in-
put data becomes larger6),16) and that we need
optimization search known as bundle adjust-

ment26).
The focus of this paper is efficiency, so in

this paper we have not gone into the accuracy
issue, which crucially depends on the quality
of the tracking data. In the presence of large
noise, however, bundle adjustment is a prac-
tical choice. To start bundle adjustment, we
need a good initial value, which the algorithm
described in this paper can provide.

According to our experiences, however, we
have observed that fairly good reconstruction
can be obtained even without bundle adjust-
ment if the environment is controlled with hu-
man interventions and if the aim is display
rather than precise measurement.

Acknowledgments The authors thank Aki-
nobu Mori of Canon, Inc. for collaborating on
this project while he was with us. They also
thank Isao Miyagawa of NTT for helpful com-
ments. This work is partly supported by Mit-
subishi Precision Co., Ltd.

References

1) Christy, C. and Horaud, R.: Euclidean shape
and motion from multiple perspective views
by affine iterations, IEEE Trans. Patt. Anal.

Mach. Intell., Vol.18, No.11, pp.1098–1104
(1996).

2) Deguchi, K.: Factorization method for struc-
ture from perspective multi-view images, IE-

ICE Trans. Inf & Syst., Vol.E81-D, No.11,
pp.1281–1289 (1998).

3) Golub, T.H. and Van Loan, C.F.: Matrix

Computations, 3rd Ed., Johns-Hopkins Univer-
sity Press, Baltimore, MD, U.S.A. (1996).

4) Hartley, R.I.: In defense of the eight-point al-
gorithm, IEEE Trans. Patt. Anal. Mach. In-

tell., Vol.19, No.6, pp.580–593 (1997).
5) Hartley, R. and Schaffalitzky, R.: Power-

Factorization: 3D reconstruction with missing
or uncertain data, Proc. Australia-Japan Ad-

vanced Workshop on Computer Vision, Ade-
laide, Australia, pp.1–9 (2003).

6) Hartley, R. and Zisserman, A.: Multiple View

Geometry in Computer Vision, Cambridge
University Press, Cambridge, U.K. (2000).

7) Heyden, A. and Åström, K.: Euclidean recon-
struction from image sequences with varying
and unknown focal length and principal point,

Proc. IEEE Conf. Comput. Vis. Patt. Recog.,
Puerto Rico, pp.438–443 (1997).

8) Heyden, A. and Åström, K.: Flexible calibra-
tion: Minimal cases for auto-calibration, Proc.

7th Int. Conf. Comput. Vis., Kerkyra, Greece,
Vol.1, pp.350–355 (1999).

9) Heyden, A., Berthilsson, R. and Sparr, G.: An
iterative factorization method for projective
structure and motion from image sequences,
Image Vis. Comput., Vol.17, No.13, pp.981–991
(1999).

10) Kanatani, K.: Latest progress of 3-D recon-
struction from multiple camera images, In Xing
P. Guo (Ed.): Robotics Research Trends, pp.
33–75, Nova Science Publishers, Hauppauge,
NY, U.S.A. (2008).

11) Kanatani, K. and Sugaya, Y.: Factorization
without factorization: Complete recipe, Mem.

Fac. Eng. Okayama Univ., Vol.38, Nos.1&2,
pp.61–72 (2004).

12) Kanatani, K., Sugaya, Y. and Ackermann,
H.: Uncalibrated factorization using a variable
symmetric affine camera, IEICE Trans. Inf. &

Sys., Vol.E90-D, No.5, pp.851–858 (2007).
13) Mahamud, S. and Hebert, M.: Iterative pro-

jective reconstruction from multiple views,
Proc. IEEE Conf. Comput. Vis. Patt. Recog.,
Hilton Head Island, SC, U.S.A., Vol.2, pp.430–
437 (2000).

14) Mahamud, S., Hebert, M., Omori, Y. and
Ponce, J.: Provably-convergent iterative meth-
ods for projective structure from motion, Proc.

IEEE Conf. Comput. Vis. Patt. Recog., Kauai,
HI, U.S.A., Vol.1, pp.1018–1025 (2001).

15) Morita, T. and Kanade, K.: A sequential fac-
torization method for recovering shape and mo-
tion from image streams, IEEE Trans. Patt.

Anal. Mach. Intell., Vol.19, No.8, pp.858–867
(1997).

16) Pollefeys, M., Koch, R. and Van Gool, L.: Self-
calibration and metric reconstruction in spite
of varying and unknown internal camera pa-
rameters, Int. J. Comput. Vis., Vol.32, No.1,
pp.7–25 (1999).

17) Ralston, R.: A First Course in Numerical

Analysis, McGraw-Hill, New York, NY, U.S.A.
(1965).

18) Seo, Y. and Heyden, A.: Auto-calibration by
linear iteration using the DAC equation, Im-

age Vis. Comput., Vol.22, No.11, pp.919–926
(2004).

19) Seo, Y. and Hong, K.-S.: A linear metric re-
construction by complex eigen-decomposition,
IEICE Trans. Inf. & Syst., Vol.E84-D, No.12,
pp.1626–1632 (2001).

20) Sturm, P. and Triggs, B.: A factorization
based algorithm for multi-image projective

78 IPSJ Transactions on Computer Vision and Image Media Mar. 2008

structure and motion, Proc. 4th Euro. Conf.

Comput. Vis., Vol.2, pp. 709–720, Cambridge,
U.K. (1996).

21) Taira H. and Kanatani, K.: Comparison of
eigenvalue computation speed for time-varying
large-size symmetric matrices, IEICE Tech.

Rep., Vol.107, No.384, PRMU-135, pp. 1–6 (in
Japanese).

22) Tomasi, C. and Kanade, T.: Detection and

Tracking of Point Features, CMU Tech. Rep.
CMU-CS-91-132 (1991).
http://vision.stanford.edu/˜birch/klt/

23) Tomasi, C. and Kanade, T.: Shape and motion
from image streams under orthography—A fac-
torization method, Int. J. Comput. Vis., Vol.9,
No.2, pp.137–154 (1992).

24) Triggs, B.: Factorization methods for projec-
tive structure and motion, Proc. IEEE Conf.

Comput. Vis. Patt. Recog., San Francisco, CA,
U.S.A., pp.845–851 (1996).

25) Triggs, B.: Autocalibration and the absolute
quadric, Proc. IEEE Conf. Compt. Vis. Patt.

Recog., San Juan, Puerto Rico, pp.609–614
(1997).

26) Triggs, B., McLauchlan, P.F., Hartley, R.I.
and Fitzgibbon, A.: Bundle adjustment—A
modern synthesis, in Triggs, B., Zisserman, A.
and Szeliski R. (Eds.), Vision Algorithms: The-

ory and Practice, Springer, Berlin (2000).
27) Ueshiba, T. and Tomita, F.: A factorization

method for perspective and Euclidean recon-
struction from multiple perspective views via
iterative depth estimation, Proc. 5th Euro.

Conf. Comput. Vis., Freiburg, Germany, Vol.1,

pp.296–310 (1998).
28) Vidal, R. and Hartley, R.: Motion segmen-

tation with missing data using PowerFactor-
ization and GPCA, Proc. IEEE Comput. Vis.

Patt. Recog., Washington, D.C., Vol.2, pp.310–
316 (2004).

(Received May 10, 2007)
(Accepted December 5, 2007)

(Editor in Charge: Ken Masuda)

Hanno Ackermann stud-
ied Computer Engineering at
the University of Mannheim,
Mannheim, Germany. Cur-
rently, he is working for his
Ph.D. at the Department of
Computer Science, Okayama

Universisity, Okayama, Japan. His research in-
terests include image processing, computer vi-
sion and pattern recognition.

Kenichi Kanatani received his
B.E., M.S., and Ph.D. in applied
mathematics from the Univer-
sity of Tokyo in 1972, 1974 and
1979, respectively. After serving
as Professor of computer science
at Gunma University, Gunma,

Japan, he is currently Professor of computer sci-
ence at Okayama University, Okayama, Japan.
He is an IEEE Fellow.

