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Abstract: Inspired by the circle fitting algorithm “Hyper” of Al-
Sharadqah and Chernov (1), which eliminates the second order “essen-
tial bias” that excludes terms of O(σ2/N2), we extend their analysis and
show that by a small modification the second order bias can be eliminated
completely. By numerical experiments, we show that this results in better
performance when the number N of points is small and the noise is large.
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1. Introduction

Fitting a circle to a noisy point sequence is a fundamental task in many scien-
tific areas including pattern recognition, computer vision, and various domains
of physics, and existing circle fitting algorithms were extensively reviewed by
Al-Sharadqah and Chernov (1). They also provided a thorough error analy-
sis and presented a “hyperaccurate” method, or “Hyper”, and showed that it
numerically outperforms all existing algebraic methods.

This paper extends their contribution and shows that their error analysis
can allow for additional insight. Their Hyper eliminates the second order “es-
sential bias” that excludes terms of O(σ2/N2), but it turns out that by a small
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modification the second order bias can be eliminated completely. Numerical ex-
periments show that this results in better performance when the number N of
points is small and the noise is large.

2. Formulation

The analysis of Al-Sharadqah and Chernov (1) is based on the perturbation
theory of Kanatani (3), so we use the symbols and notations in (3). We write
the circle equation as

A(x2 + y2) + f0(Bx + Cy) + Df2
0 = 0, (2.1)

where f0 is an appropriate scale constant, without which finite precision nu-
merical computation would incur serious accuracy loss. If we introduce a new
variable ξ and a parameter vector u

ξ =


x2 + y2

f0x
f0y
f2
0

 , u =


A
B
C
D

 , (2.2)

Eq. (2.1) can be written as the inner product of the vectors ξ and u:

(ξ, u) = 0. (2.3)

Suppose we observe N points (xα, yα), α = 1, ..., N , and let ξα be the value of
ξ for (xα, yα). Al-Sharadqah and Chernov (1) studied alegraic circle fitting that
minimizes

J =
1
N

N∑
α=1

(ξα,u)2 = (u, Mu), (2.4)

where we define

M ≡ 1
N

N∑
α=1

ξαξ>
α . (2.5)

Since the trivial solution u = 0 minimizes Eq. (2.4), a scale normalization is
necessary for u. However, the solution depends on the normalization we impose.
Al-Sharadqah and Chernov (1) exploited this freedom and “optimized” the nor-
malization so that the solution has the highest accuracy in some sense. They
considered the class of normalizations

(u, Nu) = constant, (2.6)

for some symmetric matrix N . They showed that this class covers all existing
algebraic fits (e.g., K̊asa (4), Pratt (6), and Taubin (5)), for which N is positive
definite or semidefinite. Al-Sharadqah and Chernov (1) extended this class to
allow nondefinite N . If N is positive definite or semidefinite, the right-hand
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side of Eq. (2.6) is positive (or 0, which is of no interest), so no generality is lost
by assuming it to be 1. If N is nondefinite, on the other hand, (u, Nu) can be
negative. Al-Sharadqah and Chernov (1) restricted it to be positive (or 1), but
here we admit a negative value as well.

As is well known, the solution u that minimizes Eq. (2.4) subject to Eq. (2.6)
is obtained by solving the generalized eigenvalue problem

Mu = λNu. (2.7)

Once in this form, the magnitude of u is indeterminate, so we normalize it to
‖u‖ = 1 rather than Eq. (2.6). Our task is to select an appropriate N that gives
rise to the best solution u in some sense by doing error analysis.

3. Error analysis

We summarize the error analysis of Al-Sharadqah and Chernov (1) in terms of
our symbols and notations. Each (xα, yα) is regarded as perturbed from its true
position (x̄α, ȳα) by (∆xα, ∆yα), so ξα is written as

ξα = ξ̄α + ∆1ξα + ∆2ξα, (3.1)

where ξ̄α is the true value of ξα, and ∆1ξα, and ∆2ξα are terms of the first and
the second order in noise, respectively:

∆1ξα =


2(x̄α∆xα + ȳα∆yα)

f0∆xα

f0∆yα

0

 , ∆2ξα =


∆x2

α + ∆y2
α

0
0
0

 . (3.2)

The term ∆2ξα is circle-specific and was not considered in the general theory of
Kanatani (3). In effect, the Hyper of Al-Sharadqah and Chernov (1) eliminates
the bias caused by this term. If ∆xα and ∆yα are independent random Gaussian
variables of mean 0 and standard deviation σ, the covariance matrix of ξα is

V [ξα] = E[∆1ξα∆1ξ
>
α ] = σ2V0[ξα], (3.3)

where E[ · ] denotes expectation and the matrix V0[ξα] is given by

V0[ξα] =


4(x̄2

α + ȳ2
α) 2f0x̄α 2f0ȳα 0

2f0x̄α f2
0 0 0

2f0ȳα 0 f2
0 0

0 0 0 0

 . (3.4)

The Taubin method (5) uses as N

NTB =
1
N

N∑
α=1

V0[ξα], (3.5)
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where V0[ξα] is computed by substituting the observations (xα, yα) for (x̄α, ȳα)
in Eq. (3.4).

Al-Sharadqah and Chernov (1) expanded the matrix M in Eq. (2.5) in the
form

M = M̄ + ∆1M + ∆2M + · · · , (3.6)

where M̄ is the noise-free term, and · · · denotes terms of order three and higher
in noise. The first and second order terms ∆1M and ∆2M are

∆1M =
1
N

N∑
α=1

(
ξ̄α∆1ξ

>
α + ∆1ξαξ̄

>
α

)
, (3.7)

∆2M =
1
N

N∑
α=1

(
ξ̄α∆2ξ

>
α + ∆1ξα∆1ξ

>
α + ∆2ξαξ̄

>
α

)
. (3.8)

Accodingly, the solution u is expanded in the form

u = ū + ∆1u + ∆2u + · · · . (3.9)

Following the perturbation analysis of Kanatani (3), we obtan

∆1u = −M̄
−∆1Mū, (3.10)

∆2u
⊥ =

(ū, T ū)
(ū, Nū)

M̄
−

Nū − M̄
−

T ū, (3.11)

where we define
T = ∆2M − ∆1MM̄

−∆1M . (3.12)

Here, M̄
− is the pseudoinverse of M̄ , and ∆2u

⊥ is the component of ∆2u
orthogonal to ū. Note that since the norm of u is fixed, we are only interested
in the perturbation orthogonal to ū. The first order error ∆1u in Eq. (3.10) is
orthogonal to ū as is.

Equations (3.10) and (3.11) are mathematically identical to those reported
by Al-Sharadqah and Chernov (1), but their expressions have a different appear-
ance. From the above expressions, however, emerges an important observation,
which would be difficult to obtain if we started from a different expression.

4. Covariance and Bias

As Al-Sharadqah and Chernov (1) pointed out, Eq. (3.10) does not contain N ,
neither does V [u] = E[∆1u∆1u

>]. Hence, the covarinace of all algebraic fits is
the same to the leading order, and we are unable to reduce it by adjusting N .
This leads us to concentrate on the bias. Since ∆1u in Eq. (3.10) has expectation
0, the leading bias term is E[∆2u]. From Eq. (3.11), we have

E[∆2u
⊥] = M̄

−
( (ū, E[T ]ū)

(ū, Nū)
Nū − E[T ]ū

)
. (4.1)
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From the analysis of Kanatani (3), the expectation E[T ] is evaluated to be

E[T ] = σ2
(
NTB + 4S[ξ̄ce

>
1 ] − 1

N2

N∑
α=1

(
tr[M̄−

V0[ξα]]ξ̄αξ̄
>
α

+(ξ̄α,M̄
−

ξ̄α)V0[ξα] + 2S[V0[ξα]M̄−
ξ̄αξ̄

>
α ]

))
, (4.2)

where we define

ξ̄c =
1
N

N∑
α=1

ξ̄α, e1 = (1, 0, 0, 0)>, (4.3)

and S[ · ] denotes symmetrization (S[A] = (A + A>)/2). If we define N to be

N = NTB + 4S[ξ̄ce
>
1 ] − 1

N2

N∑
α=1

(
tr[M̄−

V0[ξα]]ξαξ>
α

+(ξα,M̄
−

ξα)V0[ξα] + 2S[V0[ξα]M̄−
ξαξ>

α ]
)
, (4.4)

we have E[T ] = σ2N . Hence, Eq. (4.1) becomes

E[∆2u
⊥] = σ2M̄

−
( (ū, Nū)

(ū, Nū)
N − N

)
ū = 0. (4.5)

Since Eq. (4.4) contains the true values ξ̄α and M̄ , we evaluate them by re-
placing the true values (x̄α, ȳα) in their definitions by the observations (xα, yα).
This does not affect the result, because expectations of odd-order error terms
vanish and hence the error in Eq. (4.5) is at most O(σ4). Thus, the second order
bias is exactly 0.

In terms of our notation, the Hyper of Al-Sharadqah and Chernov (1) is equiv-
alent to letting N = NTB +4S[ξ̄ce

>
1 ]. They argued that when N is large and σ

is small, we can ignore terms of O(σ2/N2), which they said are “non-essential”.
They dropped these terms and showed that choosing N = NTB +4S[ξ̄ce

>
1 ] can

eliminate the “essential bias”. Our numerical experiments, however, demon-
strate that terms of O(σ2/N2) are essential when N is small.

5. Numerical Experiments

We considered a circle of radius 100 (pixels) centered at the origin and tested
the two cases:

Eighth circle: 16 equidistant points over an eighth of the circumference.
Semicircle: 61 equidistant points over a half of the circumference.

We added independent Gaussian noise of mean 0 and standard deviation σ
(pixel) to the coordinates of the points and fitted a circle. The error is measured
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Table 1
RMS error for 16 points over an eight circle.

σ = 1 σ = 2 σ = 3 σ = 4 σ = 5
LS 0.04482 0.11907 0.18311 0.22568 0.25326

Taubin 0.03553 0.08765 0.14648 0.24569 0.30531
Hyper 0.03553 0.08762 0.14628 0.24523 0.30415

Eq. (4.4) 0.03459 0.08099 0.13481 0.23573 0.29342
geometric 0.03559 − − − −

Table 2
RMS error for 61 points over a semicircle.

σ = 1 σ = 2 σ = 3 σ = 4 σ = 5
LS 0.001540 0.002953 0.004914 0.006534 0.008883

Taubin 0.001533 0.002893 0.004621 0.005887 0.007507
Hyper 0.001533 0.002893 0.004621 0.005886 0.007506

Eq. (4.4) 0.001533 0.002893 0.004621 0.005886 0.007505
geometric 0.001530 0.002908 0.004594 0.005870 0.007502

by the RMS error

E =

√√√√ 1
1000

1000∑
a=1

‖∆u⊥
(a)‖2, (5.1)

where ∆u⊥
(a) is the component of the ath value u(a) orthogonal to the true

value ū. Standard linear algebra routines for solving the generalized eigenvalue
problem (2.7) assume that N is positive definite. As can be seen from Eq. (3.4),
however, the matrix NTB in Eq. (3.5) is positive semidefinite having a row and
a column of zeros. The matrix N in Eq. (4.4) is not positive definite, either.
Still, Eq. (2.7) can be solved by combining the singular value decomposition
(SVD) and singular value thresholding, as Al-Sharadqah and Chernov (1) did.
However, a simpler method exists: Eq. (2.7) can be written as

Nu = (1/λ)Mu. (5.2)

The matrix M in Eq. (2.5) is positive definite for noisy data; the smallest
eigenvalue is 0 only when there is no noise. Thus, we can solve Eq. (5.2) instead
of Eq. (2.7), using a standard linear algebra routine. Since the perturbation
analysis of Kanatani (3) is based on the assumption that λ ≈ 0, we compute the
unit generalized eigenvector for λ with the smallest absolute value (or for 1/λ
with the largest absolute value), while Al-Sharadqah and Chernov (1) computed
the smallest positive generalized eigenvalue of Eq. (2.7), assuming that (u,Nu)
> 0.

The results are listed in Tables 1 and 2, where we compared five methods:
LS (the standard least squares obtained by letting N = I), the Taubin method
(Eq. (3.5)), the Hyper (1), our proposal of using Eq. (4.4), and the geometric fit
(or ML) for which we used the FNS of Chojnacki et al. (2). As we see from Table
1, our proposal always outperforms the Hyper (1) because of the small number

imsart-ejs ver. 2009/08/13 file: ejscircle.tex date: April 26, 2010



P. Rangarajan and K. Kanatani/Improved algebraic methods for circle fitting 7

of points. We were unable to compute the geomtric fit for σ ≥ 2: the FNS failed
to converge. Thus, the geometric fit is not always practical as pointed out by
Al-Sharadqah and Chernov (1). In the semicicle case, no practical difference
was observed among Taubin, Hyper (1), and Eq. (4.4) with such “good” data
(many points over a sufficiently long arc). In this case, the geometric fit exhibits
slightly higher accuracy. In conclusion, when the number of points is small and
the noise is large, in which case geometric fitting may fail to converge, Eq. (4.4)
provides better results than the standard LS, Taubin, or Hyper (1).

6. Conclusion

We have modified the circle fitting algorithm “Hyper” of Al-Sharadqah and
Chernov (1) and eliminated the bias of the solution up to the second order
in noise, while the Hyper eliminates only the “essential bias” excluding terms
of O(σ2/N2). Numerical experiments show that our solution outperforms the
Hyper when the number N of points is small and the noise is large, in which
situation a stable circle fitting algorithm is most desired in practical applications.
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[4] Kåsa, I. (1976). A curve fitting procedure and its error analysis. IEEE
Trans. Inst. Means. 25 8–14.

[5] Taubin, G. (1991). Estimation of planar curves, surfaces, and non-planar
space curves defined by implicit equations with applications to edge and
rage image segmentation, IEEE Trans. Patt. Anal. Mach. Intell. 13 1115–
1138.

[6] Pratt, V. (1987). Direct least-squares fitting of algebraic surfaces, Conm-
puter Graphics 21 145–152.

imsart-ejs ver. 2009/08/13 file: ejscircle.tex date: April 26, 2010


