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Abstract

We present a new method for automatically detect-
ing circular objects in images: we detect an osculating
circle to an elliptic arc using a Hough transform, iter-
atively deforming it into an ellipse, removing outlier
pixels, and searching for a separate edge. The vot-
ing space for the Hough transform is restricted to one
and two dimensions for efficiency, and special weight-
ing schemes are introduced to enhance the accuracy.
We demonstrate the effectiveness of our method us-
ing real images. Finally, we apply our method to the
calibration of a turntable for 3-D object shape recon-
struction.

1 Introduction

Since a circle in the scene is projected into an el-
lipse in the image, circular objects in the scene can
be detected by finding ellipses in the image. Recently,
many algorithms have been proposed for fitting an el-
lipse to edge pixels with high precision [4, 5, 13, 14].
Using the equation of the fitted ellipse, the 3-D po-
sition and orientation of the circular object can be
computed analytically [8, 19].

However, finding correct edge pixels to fit an el-
lipse is still a very difficult problem. One approach
is to segment digital curves into linear and curved
parts, fitting lines to the linear parts and ellipses to
the curved parts [6, 16]. The segmentation is based
on the digital curvature, the residual of fitting, and
miscellaneous heuristics, but the accuracy of the fit
depends very much on segmentation. This may not
be a great problem for visual applications but is cru-
cial for precise measurement in robotics applications,
with which we are concerned.

Most research in the past has been focused on di-
rectly searching for an ellipse using the Hough trans-
form. Since an ellipse is specified by five parameters,
we can find it by voting in a quantized 5-dimensional
Hough space the parameters of the ellipses that could
pass through each edge pixel and picking out the value
that wins the maximum number of votes. However,
directly computing this would require a long compu-
tation time and a memory space proportional to the
fifth power of the quantization levels. Various tech-
niques have been proposed for reducing the computa-
tion time and memory space. For example, the com-
putation is divided into a cascade: voting is done in a

2-dimensional Hough space with the remaining three
parameters fixed, and this is repeated for all quantized
values of the three parameters. In this process, one
can introduce various constraints for pruning unnec-
essary search, hierarchically change the resolution of
the image and the Hough space, and do random sam-
pling instead of exhaustive search, a variant of this
being the genetic algorithm. Instead of using edge
pixels alone, one can also use complex primitives and
extra information such as point pairs, triplets, edge
segments, and their orientations.

Although many extensions and variations have been
proposed in the past [1, 3, 10, 11, 12, 15, 17, 18, 21,
22, 23, 24], the Hough transform alone is not efficient
enough, while the use of digital curves alone does not
warrant sufficient accuracy. In this paper, we inte-
grate these two: we detect a circle osculating to an
edge segment by the Hough transform, find edge pix-
els tangent to it, refit an ellipse to the detected pixels,
and repeat this process. We call these iterations el-
lipse growing .

A closely related method to ours was proposed by
Asayama and Shiono [1], who detected via the 5-
dimensional Hough transform the two circles osculat-
ing to an ellipse from both sides, from which they
computed the parameters of the ellipse. Their method
works only when the entire ellipse is visible without
occlusion, and a long computation time and a large
memory space are required for the Hough transform.
In contrast, our method is able to fit an ellipse to a
partially occluded image of a circular object very effi-
ciently with high precision.

The Hough transform we propose for detecting an
osculating circle is made efficient by using, instead
of the standard 3-dimensional Hough space, a 2-
dimensional array for the center and a 1-dimensional
array for the radius. We also introduce special weight
functions for enhancing the vote peaks. We then iter-
atively deform the osculating circle into an ellipse. We
also remove outlier edge pixels by LMedS, and search
for another edge segment to combine. Fig. 1 shows
the flow chart of the procedure.

Our system is not intended to have universal merits,
whose pursuit is rather unrealistic. We have in mind
robotics environments where

1. only a small number of circular objects exist in
the field of view, and

2. the circular objects we are looking at have a
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Figure 1 Flow chart of the procedure.

clearly visible size in the image.
We do not consider such complicated scenes as aggre-
gates of circular and elliptic particles or cells. Our
method is strengthened by specifically exploiting this
situation.

In the following, we describe each step separately
and confirm the effectiveness of our method using real
images. Finally, we apply our method to the calibra-
tion of a turntable for 3-D object shape reconstruction.

2 Procedure

2.1 Edge detection
From among many edge detection techniques avail-

able, we adopt the following method for obtaining long
edge segments without branches. First, we cut out
from the zero-crossing edges of one-pixel width those
parts with high Sobel values. Starting from an ar-
bitrary pixel of the resulting edges, we trace the 8-
connected neighbors in both directions until we arrive
at an end-point or a branch point. This defines a con-
nected edge segment without branches. The judgment
for an end-point or a branch point is done by check-
ing the number of edge pixels adjacent to it in its
8-connected neighborhood. This process is repeated
until all the edge pixels are exhausted. Among the
resulting edge segments, we discard short ones (less
than 60 pixels in our experiment) and register the re-
maining ones in an edge segment list.

2.2 Voting for the center
In the resulting list of edge segments, we choose one

which is nearly circular and fit a circle to it as an ap-
proximation to an ellipse. To do this, we first estimate
the center of the circle that fits to the segment.

For an exactly circular arc, its center is easily es-
timated by voting along all lines normal to the arc
[7]. However, the lines normal to an ellipse envelop
a star-like curve with four cusp vertices known as the
evolute of the ellipse (Fig. 2). An osculating circle
whose center is on the evolute is generally of second
degree contact to the curve, but if the center is at one
of the four singularities of the evolute, the degree of
contact is three [2]. Hence, if we vote along all lines

Figure 2 The evolute of an ellipse and its
singularities.

normal to an elliptic arc, we obtain ridges along the
evolute and peaks at its singularities. However, the
peaks are less conspicuous than for a circular arc. So,
we directly vote on the evolute as follows.

For each pixel P on the edge segment, we compute
the center C and the radius r of the circle that passes
through P and two points on the segment k pixels
away from it on both sides (we exclude the k end
points of the segment). Then, we vote around C with
Gaussian diffusion of standard deviation γr in all di-
rections (Fig. 3(a)). We also weight each vote by 1/

√
r

to give preference to edge segments of higher curva-
ture if the length is the same and to edge segments
of larger radii if the central angle is the same. In our
experiment, we set k = 30 and γ = 1/10. Since it is
difficult to derive theoretically optimal values for the
parameters and weights, we set them heuristically.

We do this for all the edge segments in the list1,
detect peaks of the votes, and take as candidates the
four pixels that win the largest numbers of votes (a
real image example is given in Fig. 5; the details are
described in Sec. 3).

2.3 Voting for the radius
For each center C thus detected, we next estimate

the corresponding radius by voting the distance R
from C to each edge point; we adopt the value that
wins the maximum number of votes. This may be
obvious for a circular arc [7], but for an elliptic arc
the number of false peaks increases. So, we adopt the
following strategy.

First, instead of casting one vote to the distance
R of each edge pixel P from the detected center C,
we cast a positive/negative real value e−R2/2s2

cosφ,
where φ is the angle between the line CP and the
normal direction to P (Fig. 3(b)), which is computed
from the output of the Sobel operator.

Second, we vote not merely for an integer obtained
by rounding R but also the two integers on both sides
by ±1 with the weight e−1/2 (i.e., the Gaussian weight
of standard deviation 1).

The value2 e−R2/2s2
effectively limits the voting to

be approximately within distance s from C (in our
experiment, we empirically set s to be 1/4 of the im-
age size). Due to cos φ, those edge segments that

1In our experiment, we voted every three pixels for efficiency.
We also introduced various approximations such as limiting the
voting region to a parallelogram with one edge orthogonal to
the edge segment and the other parallel to one of the coordinate
axes.

2We used a polynomial approximation of e−x2
for efficiency.
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Figure 3 (a) Voting around the center of the circle passing through P and the two points away
from it by k pixels on both sides. (b) A pixel away from the estimated center C by distance R votes
the value R with weight e−R2/2s2

cosφ. (c) Fitting an ellipse to the longest edge segment inside the
region within distance δ from the estimated ellipse.

make large angles from the circumference direction are
given small weights. In particular, the weight is 0 if
the segment is oriented along the radius direction, and
edge segments with opposite gray-level gradients have
weights of opposite signs, so the contributions from
closed loops that do not include P inside are mutually
canceled, enhancing only the contributions from the
edge segment to which the circle osculates (see Fig. 6
for this effect; the details are described in Sec. 3).

After this voting, we choose the value that wins the
maximum number of votes. We do this for each of the
four candidates for the center and pick out the one
that wins the largest number of votes for the radius.

2.4 Ellipse growing
Regarding the detected osculating circle as the ini-

tial ellipse, we make it grow into an ellipse that fits to
the segment better. For the current ellipse, we define
a ring region around it by expanding and contracting
the ellipse by δ pixels along its major and minor axes
(Fig. 3(c)). From among the registered edge segments,
we choose the one that has the largest number of con-
secutive pixels inside this region and fit an ellipse to
it. For this, we used a technique called renormaliza-
tion3, which is known to attain the highest possible
accuracy in the first order [9]. Around the fitted el-
lipse, we recompute a ring region, to which we apply
the same procedure and repeat this until no new pixels
are added.

The ring region is defined as follows. Quadratic
curves (including ellipses) have equations of the form

Ax2 + 2Bxy + Cy2 + 2f(Dx + Ey) + f2F = 0, (1)

where f is an arbitrarily fixed constant (e.g., the image
size). The condition that this equation describes an
ellipse is

AC −B2 > 0. (2)

If we define the vector x and the matrix Q

x =




x/f
y/f
1


 , Q =




A B D
B C E
D E F


 , (3)

3The program is publicly available from
http://www.ail.cs.gunma-u.ac.jp/Labo/programs-e.html.

eq. (1) is rewritten in the form

(x, Qx) = 0, (4)

where (a, b) denotes the inner product of vectors a

and b. The matrices {Q(+), Q(−)} of the expanded
and contracted ellipses are computed as follows:
1. Compute the matrix S, the vector c, and the scalar c

as follows:

S =

(
A B
B C

)
, c =

(
D
E

)
,

c = (c,S−1c)− F. (5)

2. Compute the eigenvalues {λ1, λ2} of S and the corre-
sponding unit eigenvectors {u1, u2}.

3. Compute λ
(±)
1 and λ

(±)
2 as follows:

λ
(±)
1 =

c

(
√

c/λ1 ± fδ)2
, λ

(±)
2 =

c

(
√

c/λ2 ± fδ)2
.

(6)

4. Compute the matrices S(+) and S(−) by

S(±) = U
(

λ
(±)
1

λ
(±)
2

)
U>, (7)

where U is the 2× 2 matrix consisting of vectors u1

and u2 as its columns in that order.

5. Compute the matrices {Q(+), Q(−)} as follows:

Q(±)=

(
S(±) S(±)S−1c

(S(±)S−1c)> F +(c,S−1(S(±)−S)S−1c)

)
.

(8)

Then, the ring region around the ellipse of eq. (4) is
define by

(x, Q(+)x)(x, Q(−)x) < 0. (9)

The renormalization fits a general quadratic curve
of the form of eq. (1), so it sometimes fits a hyperbola
or a parabola when the segment is very short due to
occlusion. In our experiment, we initially set δ = 4
(pixels) and incremented it one by one as long as the
condition (2) was not satisfied. If δ reached 10, we
returned the initial circle and went on to the next
process (see Fig. 7 for a real image example; the details
are described in Sec. 3).
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2.5 Outlier removal
The edge pixels to which the ellipse is thus fitted

need not be part of an ellipse. So, we remove “out-
liers4 ” by LMedS [20].

Let {xα}, α = 1, ..., N , be the vector representa-
tions (see eq. (3)) of the pixels to fit an ellipse. Initial-
izing the matrix Qm = O and the scalar Sm = ∞, we
repeat the following computation until it converges:
1. Randomly choose five points from {xα}.
2. Compute an ellipse Q that passes through them.

# This is done by solving simultaneous linear equations
in A, B, ..., F in the form of eq. (1) up to a constant
factor.

3. Go back to Step 1 if eq. (3) is not satisfied.

4. Compute the following median:

S = medN
α=1

(xα,Qxα)2

‖P kQxα‖2 . (10)

# We define P k = diag(1, 1, 0) (the diagonal matrix with
1, 1, and 0 as the diagonal elements in that or-
der). The quotient on the right-hand side equals the
squared distance of the αth pixel to the fitted ellipse
to a first approximation [9]:

5. If S < Sm, update Qm ← Q and Sm ← S.

In our experiment, we stopped the iterations if S ≥
Sm for 10 consecutive times. Then, we selected inliers
by the criterion

(xα, Qxα)2

‖P kQxα‖2 < 10Sm, (11)

which can be obtained by estimating the data stan-
dard deviation σ according to the formula σ̂ ≈
1.4826

√
Sm given in [20] and setting the threshold to

(2.13σ̂)2. Finally, an ellipse Q is refitted to the de-
tected inliers by renormalization, and the longest seg-
ment e that covers all the inliers is cut out.

2.6 Search for another segment
In order to cope with ellipses consisting of multiple

segments, we do the following search.
First, we check if the detected segment e covers more

than half of the entire ellipse. This is done by checking
if the end parts of e are in converging orientations
(Fig. 4). If so, we stop and return the ellipse Q we
have obtained. Otherwise, we expand Q by 1 + γ.
This is done by replacing eqs. (6) by

λ
(+)
1 =

λ1

(1 + γ)2
, λ

(+)
2 =

λ2

(1 + γ)2
. (12)

(We let γ = 1.2). We randomly choose a segment e′

that is within the expanded ellipse and is not too short
(we ignored those of less than 20 pixels). Randomly
choosing four pixels from e and one pixel from e′, we
fit an ellipse by LMedS as described earlier. This time,
we evaluate, instead of eq. (10), the sum of the medi-
ans computed for e and e′ separately. We repeat this

4In the statistical literature, outliers are the data generated
by unmodeled random fluctuations [20]. Here, they are contigu-
ous pixels on non-elliptic edge segments. In other words, “out-
lier removal” actually means “segmentation” of elliptic parts.

Figure 4 Judging if the edge segment cov-
ers more than half of the ellipse.

until the sum of the medians converges (we stopped
if no update occurred 100 consecutive times). We re-
turn the initial Q if the resulting sum of medians is
larger than four times the initial median for e. Oth-
erwise, we detect inliers by applying eq. (11) to e and
e′ separately and fit an ellipse to the detected inliers
by renormalization.

We can find more segments by repeating this proce-
dure. However, the chance to pick out wrong segments
will increase. Also, finding two segments is usually suf-
ficient for robustly fitting an ellipse. So, we stop the
search after one separate segment is found. Since it
is difficult to derive theoretically the best strategy for
searching and voting, we introduced the above proce-
dure empirically.

3 Real Image Examples

Fig. 5(a) shows the detected osculating circle and
the final ellipse superimposed onto the original image.
Fig. 5(b) is the initial edge image, onto which the votes
for possible centers of osculating circles are superim-
posed in gray levels. For comparison, Fig. 5(c) shows
the result obtained by the standard Hough transform:
we vote along the normal line to each edge pixel with
Gaussian diffusion of one-pixel standard deviation on
both sides [7]. As we can see, our scheme concentrates
more votes along the evolute of the ellipse, in partic-
ular at its singularities.

Fig. 6(a) plots the absolute value (recall that we
vote positive and negative values in our scheme) of the
number of votes (ordinate) for the radius R (abscissa)
from the detected center detected. For comparison,
Fig. 6(b) shows the plot obtained by the standard
Hough transform: the distance from the estimated
center to each edge pixel is voted with Gaussian diffu-
sion of one-pixel standard deviation [7]. We adjusted
the scale so that the total number of votes is equal for
both. As we can see, our scheme reduces the contri-
butions from clustered edges to almost zero because
of the cancellation of the signs, enhancing only the
contributions from isolated arcs.

Fig. 7(a) shows an edge image of a partially oc-
cluded ellipse. For this image, a hyperbola was fitted
in the ring region along the initial circle even for δ =
10. So, we fitted an ellipse by LMedS and went on to
search for another segment. Fig. 8(b) shows (1) the
initial circle, (2) the hyperbola resulting from the el-
lipse growing, (3) the ellipse fitted by LMedS, and (4)
the ellipse fitted after detecting another segment.

Fig. 8 shows various examples, showing the edge
images (upper rows) and the initial circles and the
final ellipses superimposed onto the original images
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(a) (b) (c)

Figure 5 Estimation of the center of the osculating circle. (a) The detected osculating circle and
the fitted ellipse. (b) Voting for the candidates of the center. (c) Standard Hough transform.

0 100 200 300 400R 0 100 200 300 400R

(a) (b)

Figure 6 The number of votes (ordinates)
for the radius R of the initial circle (ab-
scissa). (a) Proposed method. (b) Standard
Hough transform.

(lower rows). In all cases, one or two iterations of the
ellipse growing produced almost satisfactory shapes,
and the iterations terminated after four or five runs.
As we see, we can obtain good fits even when the
initial segments are very short due to occlusion.

We used Pentium III for the CPU and Linux for the
OS. For 500×333-pixel images, the average computa-
tion time was 18 seconds, most of which was spent on
the preprocess of edges. As a result, computation time
is nearly proportional to the number of edge segments.
However, there is much room to increase efficiency by
refining the program code.

As a final example, we show an application to the
calibration of a turntable. One of the widely used
methods for 3-D shape reconstruction is to place an
object on a rotating turntable and take its images.
Since this is equivalent to rotating the camera around
the object and taking its images, the object shape can
be reconstructed by the standard triangulation. To do
this, we need to calibrate the position of the turntable
relative to the camera. For a circular turntable, this is
easily done using its camera image alone if we measure
its radius [8, 19].

Fig. 9 (a) is an edge image of a circular turntable,
and Fig 9(b) shows the initially detected circle and the
finally fitted ellipse superimposed onto the original im-
age (768×512 pixels). The focal length was calibrated
to be 700 pixels, and the radius of the turntable was
measured to be 6.45cm. The angle between the cam-
era optical axis and the turntable axis was computed
to be 59.4◦, and the distance between the lens center
to the turntable center was computed to be 27.3cm.
The accuracy of this computation depends on the ac-
curacy of the camera parameters and the image used

(a) (b)

Figure 7 (a) The edge image used. (b) (1)
The initial circle, (2) the hyperbola resulting
from the ellipse growing, (3) the ellipse fit-
ted by LMedS, and (4) the ellipse fitted after
detecting another segment.

(evaluation of the camera imaging system is out of the
scope of this paper).

4 Concluding Remarks

With the motivation of obtaining accurate 3-D mea-
surement of circular objects, we presented a new
method of automatically detecting ellipses in images:
we detect an osculating circle using a Hough trans-
form, iteratively improve the fit, remove outlier pixels
by LMedS, and search for separate arcs. We limited
the Hough space to be one and two dimensions for ef-
ficiency and introduced special weighting schemes for
enhancing accuracy. Using real images, we demon-
strated that our method can detect partially occluded
circular objects within a reasonable time. We also
showed an example of turntable calibration for 3-D
object shape reconstruction.

Acknowledgments. The authors thank Mitsuo Okabe of Fu-
jitsu Cadtech, Ltd., Japan, for real image experiments. This
work was supported in part by the Ministry of Education, Cul-
ture, Sports, Science and Technology, Japan, under a Grant in
Aid for Scientific Research C(2) (No. 13680432), the Support
Center for Advanced Telecommunications Technology Research,
and Kayamori Foundation of Informational Science Advance-
ment.

References

[1] Y. Asayama and M. Shiono, A slanted ellipse detection
by a circle detecting Hough transform using a par of arcs,
Proc. IAPR Workshop on Machine Vision Applications,
November 1998, Makuhari, Chiba, Japan, pp. 494–497.

[2] J. W. Bruce and P. J. Giblin, Curves and Singularities,
Cambridge University Press, Cambridge, U.K., 1984.

[3] Y. C. Cheng and S. C. Lee, A new method for quadratic
curve detection using K-RANSAC with acceleration tech-
niques, Patt. Recog., 28-5 (1995), 663–682.

359



Figure 8 Examples of ellipse fitting: the
edge images (upper rows); the initial circles
and the fitted ellipses superimposed onto
the original images (lower rows).

(a) (b)

Figure 9 Calibration of a turntable. (a)
The edge image used. (b) The initial circle
and the fitted ellipse superimposed onto the
original image.

[4] W. Chojnacki, M. J. Brooks and A. van den Hengel, Ratio-
nalising the renormalisation method of Kanatani, J. Math.
Imaging Vision, 14-1 (2001), 21–38.

[5] W. Chojnacki, M. J. Brooks, A. van den Hengel and
D. Gawley, On the fitting of surfaces to data with co-
variances, IEEE Trans. Patt. Anal. Mach. Intell., 22-11
(2000), 1294–1303.

[6] D. B. Cooper and N. Yalabik, On the computational cost
of approximating and recognizing noise-perturbed straight
lines and quadratic arcs in the plane, IEEE Trans. Comp.,
25-10 (1976), 1020–1032.

[7] D. Ioannou, W. Huda and A. F. Laine, Circle recognition
through a 2D Hough Transform and radius histogramming,
Image Vision Comput., 17-1 (1999), 15–26.

[8] K. Kanatani, Geometric Computation for Machine Vi-
sion, Oxford University Press, Oxford, 1993.

[9] K. Kanatani, Statistical Optimization for Geometric Com-
putation: Theory and Practice, Elsevier, Amsterdam,
1996.

[10] N. Guil and E. L. Zapata, Lower order circle and ellipse
Hough transform, Patt. Recog., 30-10 (1997), 1729–1744.

[11] C.-T. Ho and L.-H. Chen, A fast ellipse/circle detector
using geometric symmetry, Patt. Recog., 28-1 (1995), 117–
124.

[12] C. L. Huang, Elliptical feature extraction via an improved
Hough transform, Patt. Recog. Lett., 10-2 (1989), 93–100.

[13] Y. Leedan and P. Meer, Heteroscedastic regression in com-
puter vision: Problems with bilinear constraint, Int. J.
Comput. Vision, 37-2 (2000), 127–150.

[14] B. Matei and P. Meer, Reduction of bias in maximum like-
lihood ellipse fitting, Proc. 15th Int. Conf. Patt. Recog.,
September 2000, Barcelona, Spain, Vol.3, pp. 801–806.

[15] D. Pao, H. F. Li and R. Jayakumar, A decomposable pa-
rameter space for the detection of ellipses, Patt. Recog.,
14-12 (1993), 951–958.

[16] P. L. Rosin and G. A. W. West, Nonparametric segmen-
tation of curves into various representations, IEEE Trans.
Patt. Anal. Mach. Intell., 17-12 (1995), 1140–1153.

[17] G. Roth and M. D. Levine, Extracting geometric primi-
tives, CVGIP: Image Understand., 58-1 (1993), 1–22.

[18] G. Roth and M. D. Levine, Geometric primitive extraction
using a genetic algorithm, IEEE Trans. Patt. Anal. Mach.
Intell., 16-9 (1994), 901–905.

[19] C. A. Rothwell, A. Zisserman, C. I. Marinos, D. A. Forsyth
and J. L. Mundy, Relative motion and pose from arbitrary
plane curves, Image Vision Comput., 10-4 (1992), 250–
262.

[20] P. J. Rousseeuw and A. M. Leroy, Robust Regression and
Outlier Detection, Wiley, New York, 1987.

[21] S. Tsuji and F. Matsumoto, Detection of ellipses by a mod-
ified Hough transform, IEEE Trans. Comp., 27-8 (1978),
777–781.

[22] W.-Y. Wu and M.-J. J. Wang, Elliptical object detec-
tion by using its geometric properties, Patt. Recog., 26-10
(1993), 1449–1500.

[23] H. K. Yuen, J. Illingworth and J. Kittler, Detecting par-
tially occluded ellipses using the Hough transform, Image
Vision Comput., 7-1 (1989), 31–37.

[24] J. H. Yoo and I. K. Seth, An ellipse detection method from
the polar and pole definition of conics, Patt. Recog., 26-2
(1993), 307–315.

360


