
Proc. Workshop on Science of Computer Vision, September 2002, Okayama Japan, pp. 46–52. 1

Robust Image Matching under a Large Disparity

Yasushi Kanazawa∗ and Kenichi Kanatani†
∗Department of Knowledge-based Information Engineering

Toyohashi University of Technology, Toyohashi, Aichi 441-8580 Japan
†Department of Information Technology, Okayama University, Okayama 700-8530 Japan

kanazawa@tutkie.tut.ac.jp, kanatani@suri.it.okayama-u.ac.jp

Summary
We present a new method for detecting point matches be-

tween two images that have a large disparity resulting from
camera rotations and zooming changes. Our strategy is to
impose various constraints such as local image correlations,
spatial consistency, and global smoothness as “soft” con-
straints via their “confidence” before imposing the “hard”
epipolar constraint by RANSAC. We also introduce a model
selection procedure to test if the image mapping can be re-
garded as a homography. We demonstrate the effectiveness
of our method by real image examples.

1. Introduction
Establishing point correspondences over multiple

images is the first step of many computer vision appli-
cations. Two approaches exist for this purpose: track-
ing correspondences over successive frames, and direct
matching between separate frames. This paper focuses
on the latter.

The basic principle is local correlation measurement
by template matching. Detecting feature points in the
first and second images separately using a corner de-
tector [3, 12], we measure the correlation between the
neighborhoods of the two points for each candidate pair
and match those that have a high correlation. This
works very well if one image is a translated copy of the
other. However, if the two images are taken from dif-
ferent positions in the scene, the corresponding parts
in the images appear differently with local deforma-
tions that depend on the 3-D shape of that part of the
scene and its orientation relative to the two camera po-
sitions. The template correlation is very much affected
by such local deformations. In particular, the correla-
tion significantly diminishes if the camera is rotated or
zooming takes place during the image capturing pro-
cess.

It follows that local correlations alone are not suffi-
cient for establishing correspondences. We need some
constraints on the two images. If the scene is a planar
surface or in the distance, the two images are related by
an image transformation called homography [4]. This
strong constraint can be combined with voting tech-

niques such as LMedS [11] and RANSAC [2] to match
the images robustly. Analyzing the template residual
[7], the authors have proposed a hierarchical voting
scheme called stratified matching for robustly match-
ing two images even in the presence of a large image
deformations [10].

For a general scene, on the other hand, the only
available constraint is what is known as the epipolar
equation [4], and various types of voting schemes based
on it have been proposed [1, 4, 15]. However, the epipo-
lar equation is a very weak constraint. In fact, a lot
of wrong matches, which humans could easily detect,
satisfy this constraint. As a result, the combination
of local image correlations and the epipolar equation
works only when the disparity is relatively small with
small camera rotations and small zooming changes.

In this paper, we pursue a robust matching tech-
nique that works even in the presence of a large dispar-
ity involving camera rotations and zooming changes.
For this, local correlations and the epipolar constraint
are not sufficient; we need additional constraints.

First, we require that correct matches to be fairly
smooth and consistent, assuming that the scene does
not have an extraordinary 3-D shape. We also assume
that the scene is more or less planar or in the distance
so that the image transformation can be roughly ap-
proximated by a homography.

However, none of these constraints should be im-
posed definitively . Even if two points have low image
correlations, we cannot deny the possibility that they
may match. Similarly, non-smooth or seemingly incon-
sistent matches can be correct. Let us say such violable
constraints are soft while inviolable constraints such as
the epipolar equation are hard .

In order to impose soft constraints, we introduce
confidence values to all potential matches in such a
way that those that satisfy the constraints well have
high confidence, yet none of them is definitively re-
jected. On the other hand, the hard epipolar constraint
is strictly imposed by RANSAC. In other words, we
favor, among those matches that strictly satisfy the



epipolar equation, those that have high confidence of
the soft constraints.

We first describe the soft constraints that we require
and the assignment of their confidence. Then, we de-
scribe the voting procedure that combines the soft con-
straints and the hard epipolar equation. We also de-
scribe a model selection procedure to test if the image
mapping can be regarded as a homography. Finally,
we show real image examples to demonstrate that our
method is very effective even when conventional meth-
ods fail.

2. Template Matching
We measure the local correlations between the

neighborhoods of point p in the first image and point
q in the second by the residual (sum of squares)

J(p, q) =
∑

(i,j)∈N
|Tp(i, j)− Tq(i, j)|2, (1)

where Tp(i, j) and Tq(i, j) are the intensity values of
the templates defined by cutting out an w × w pixel
region N centered on p and q, respectively1.

The basic procedure for point matching is as follows.
We extract N points p1, ..., pN in the first image and M
points q1, ..., qM in the second, using a feature detector
such as the Harris operator [3] and SUSAN [12]. Then,
we compute the residuals {J(pα, qβ)}, α = 1, ..., N , β
= 1, ..., M , for all NM combinations of the extracted
points. We search the N × M table of {J(pα, qβ)}
for the minimum value J(pα∗ , qβ∗) and establish the
match between points pα∗ and qβ∗ . Then, we remove
from the table the column and row that contain the
value J(pα∗ , qβ∗) and do the same procedure to the
resulting (N − 1)× (N − 1) table. Repeating this, we
end up with L = min(N, M) matches. We call this
procedure uniqueness enforcement with respect to the
residual J .

However, this procedure cannot be done directly,
since the selected pairs may not be all correct while
some of the discarded pairs may be correct. In order
to take all potential matches into consideration, we
introduce confidence values to all pairs.

3. Confidence of Local Correlations
We define the confidence of local correlations for the

pair (p, q) via the Gibbs distribution in the form

P = e−sJ(p,q), (2)

so that a high confidence is given for a smaller resid-
ual J(p, q). Physicists usually put s = 1/kT and call
T temperature, where k is the Boltzmann constant. If

1We let w = 9 in our experiments.

s = 0 (or T = ∞), we uniformly have P = 1 irre-
spective of the residual J(p, q). As s increases (or T
decreases), the confidence of those with large residuals
quickly decreases, and ultimately the confidence con-
centrates only on the smallest residual.

Here, we determine the value of s as follows. Among
all the NM pairs {(pα, qβ)}, at most L (= min(N, M))
of them can be correct. We require that the average
of the L smallest residuals equal the overall weighted
average with respect to the confidence (2). If the
NM potential matches (pα, qβ) are sorted according to
their residuals J(pα, qβ) in ascending order and the λth
residual is abbreviated as Jλ, this condition is written
in the form

1
Z

NM∑

λ=1

Jλe−sJλ = J̄ , (3)

where

Z =
NM∑

λ=1

e−sJλ , J̄ =
1
L

L∑

λ=1

Jλ. (4)

The solution of eq. (3) is easily computed by Newton
iterations to search for the zero of Φ(s) = 0, starting
from s = 0, where we define

Φ(s) =
NM∑

λ=1

(Jλ − J̄)e−sJλ . (5)

Let P
(0)
λ be the thus defined confidence of local corre-

lations for the λth pair.

4. Confidence of Spatial Consistency
Next, we introduce the confidence of spatial con-

sistency, assuming that the scene does not have an
extraordinary 3-D shape so that correct matches are
fairly consistent.

For this, we choose tentative candidates for correct
matches by enforcing uniqueness with respect to P

(0)
λ

to those pairs that satisfy2

P
(0)
λ > e−k2/2. (6)

We enumerate the resulting matches by the index µ
= 1, ..., n0 in an arbitrary order. Let ~rµ be the 2-
dimensional vector that connects the two points of the
µth match, starting from the one in the first image and
ending at the other in the second. We call it the “flow
vector” of the µth match.

Our strategy is to view those matches which are con-
sistent with the resulting “optical flow” {~rµ} as more
likely to be correct. Specifically, we compute the confi-
dence weighted mean ~rm and the confidence weighted

2we let k = 3 in our experiment.
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covariance matrix V of the optical flow by

~rm =
1
Z

n0∑
µ=1

P (0)
µ ~rµ, Z =

n0∑
µ=1

P (0)
µ ,

V =
1
Z

n0∑

λ=1

P (0)
µ (~rµ − ~rm)(~rµ − ~rm)>. (7)

Now, we go back to the original NM potential
matches. We define their confidence of spatial con-
sistency via the Gaussian distribution in the form

P
(1)
λ = e−(~rλ−~rm,V −1(~rλ−~rm)), (8)

where (~a,~b) designates the inner product of vectors ~a

and ~b. Thus, a flow vector ~rλ has a low confidence if it
largely deviates from the optical flow {~rµ}.
5. Confidence of Global Smoothness

We then introduce the confidence of global smooth-
ness, assuming that the scene is more or less planar or
in the distance so that the image transformation can
be roughly approximated by a homography.

As in the case of spatial consistency, we first choose
tentative candidates for correct matches. This time,
we enforce uniqueness with respect to P

(0)
λ P

(1)
λ to those

pairs that satisfy

P
(0)
λ P

(1)
λ > e−2k2/2. (9)

We enumerate the resulting matches by the index µ =
1, ..., n1 in an arbitrary order.

Let (xµ, yµ) and (x′µ, y′µ) be the two points of the µth
pair. We represent these two points by 3-D vectors

xµ =




xµ/f0

yµ/f0

1


 , x′µ =




x′µ/f0

y′µ/f0

1


 , (10)

where f0 is an appropriate scale factor, e.g., the image
size. In this vector representation, a homography is
written as an image mapping in the form

x′ = Z[Hx], (11)

where Z[ · ] means normalization to make the third
component 1.

We optimally fit a homography to the n1 candidate
matches. Let the true values (in the absence of noise) of
{xµ} and {x′µ} be, respectively, {x̄µ} and {x̄′µ} (their
third components are identically 1). Taking account of
their confidence, we compute the homography matrix
H by minimizing

J =
n1∑

µ=1

P (0)
µ P (1)

µ (‖xµ − x̄µ‖2 + ‖x′µ − x̄′µ‖2), (12)

subject to the constraint x̄′µ = Z[Hx̄µ], µ = 1, ...,
n1, with respect to {x̄µ}, {x̄′µ}, and H. The solu-
tion is easily obtained by modifying the optimization
technique called renormalization3 [8]

Now, we go back to the original NM potential
matches. The discrepancy of each potential match
from the estimated homography is measured by

DH
λ = ‖x′λ − Z[Hxλ]‖2, (13)

where xλ and x′λ represent the two points of the λth
pair, λ = 1, ..., NM . We define the confidence of global
smoothness via the Gibbs distribution in the same way
as the confidence of local correlations. Namely, we let

P
(2)
λ = e−tDH

λ . (14)

The constant t is determined by solving

1
Z

NM∑

λ=1

DH
λ e−tDH

λ = D̄H , (15)

where

Z =
NM∑

λ=1

e−tDH
λ , D̄H =

1
L

L∑

λ=1

DH
λ . (16)

The solution is easily obtained by doing Newton iter-
ations to eq. (5) after Jλ is replaced by DH

λ .

6. Voting the Epipolar Constraint
Finally, we strictly enforce the epipolar constraint .

In vector representation, we have for a matching pair
{x, x′} the following epipolar equation [4]:

(x,Fx′) = 0. (17)

Here, F is a singular matrix with rank 2, called the
fundamental matrix [4]. It is defined only up to an
arbitrary scale factor.

First, we choose tentative candidates for correct
matches by enforcing uniqueness with respect to
P

(0)
λ P

(1)
λ P

(2)
λ to those pairs that satisfy

P
(0)
λ P

(1)
λ P

(2)
λ > e−3k2/2. (18)

We enumerate the resulting matches by the index µ =
1, ..., n2 in an arbitrary order. From these candidate
matches, we robustly fit the epipolar equation (17) us-
ing RANSAC [2, 4]. Letting Sm = 0 and F m = O as
initial values, we do the following computation:

1. Randomly choose eight among the n2 pairs.
3The C++ program is publicly available at
http://www.suri.it.okayama-u.ac.jp/
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(a) (b) (c)

(d) (e) (f) (g) (h)

Figure 1: (a), (b) Input images and detected feature points. (c) 3-D reconstruction computed from the final matches (top
view). (d) Initial matches based on local correlations. (e) Matches with spatial consistency incorporated. (f) Matches with
global smoothness added. (g) Final matches with the epipolar constraint imposed. (h) Matches obtained from (d) by direct
RANSAC.

2. From them, compute the fundamental matrix F .
Since the scale of F is indeterminate, the nine
elements of F are easily obtained from the eight
pairs by solving linear equations.

3. For each of the n2 pairs, compute

DF
µ =

(xµ, Fx′µ)2

‖P kF>xµ‖2 + ‖P kFx′µ‖2
, (19)

where P k = diag(1, 1, 0) (the diagonal matrix with
diagonal elements 1, 1, and 0 in that order).

4. Let S the sum of the confidence P
(0)
µ P

(1)
µ P

(2)
µ of

those pairs that satisfy

DF
µ ≤ 2d2

f2
0

, (20)

where d (pixel) is a user definable threshold4.

5. If S > Sm, update Sm ← S and F m ← F .

We repeat this computation a sufficient number of
times to find the matrix F m that gives the largest total
confidence Sm.

Now, we go back to the original NM potential
matches. The degree of fit to the epipolar equation
is measured by DF

λ in eq. (19) if xµ and x′µ are re-
placed, respectively, by xλ and x′λ that represent the
λth pair, λ = 1, ..., NM . We choose from among the
NM pairs those that satisfy eq. (20). The resulting
pairs are thresholded by the criterion (18). Finally,
we enforce uniqueness with respect to P

(0)
λ P

(1)
λ P

(2)
λ to

obtain the final matches.
4We let d = 3 in our experiment.

7. Model Selection
If the scene is a planar surface or in the distance, the

image mapping between the two images is a homogra-
phy, which allows us to determine the image mapping
pixelwise. This information can be used to generate a
panoramic image [10], whereas we cannot reconstruct
the 3-D structure of the scene without additional in-
formation. So, it is crucial to see if the image mapping
is a homography.

A naive idea is to fit the homography relation and
the epipolar constraint to the obtained matches and
decide that the mapping is a homography if the resid-
ual for the homography is smaller than for the epipolar
constraint. This does not work, however, because the
homography is a stronger constraint than the epipolar
equation, which is always satisfied. As a result, the
residual for the homography is never smaller than for
the epipolar constraint.

Thus, we need to balance the strength of the con-
straint with the increase in the residual. This can be
done by model selection using, among other measures,
the geometric AIC [6] (see [13, 14] for other criteria).
Let n be the number of the finally obtained matches.
We fit the homography relation and the epipolar con-
straint to the n matches in an optimal manner and
compute their respective residuals JH and JF (see [5]
for the details of the computation). Their geometric
AICs are respectively given by

G-AICH = JH + 2(2n + 8)ε2,
G-AICF = JF + 2(3n + 7)ε2, (21)

where ε is a constant that specifies the degree of image
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(a) (b) (c)

(d) (e) (f) (g) (h)

Figure 2: (a), (b) Input images and detected feature points. (c) Panoramic image generated from the final matches. (d)
Initial matches based on local correlations. (e) Matches with spatial consistency incorporated. (f) Matches with global
smoothness added. (g) Final matches with the epipolar constraint imposed. (h) Matches obtained from (d) by direct
RANSAC.

noise. It is estimated from the residual of the general
epipolar constraint as follows [5]:

ε̂2 =
JF

n− 7
. (22)

The image relationship is regarded as a homography if
G-AICH < G-AICF .

8. Real Image Examples

Figs. 1(a) and (b) show two images of an outdoor
scene. We detected 300 feature points from each im-
age using the Harris operator [3], as marked there.
Fig. 1(d) shows the “optical flow” of the initial can-
didate matches based on local correlations. As we can
see, this scene has many periodic patterns, so the tem-
plate matching based only on local correlations pro-
duce many mismatches.

Fig. 1(e) is the matches after spatial consistency is
imposed, and Fig. 1(f) is the matchers after global
smoothness is added. We see that the accuracy
increases as we impose more constraints. Doing
RANSAC to the matches in Fig. 1(f), we obtained the
final matches in Fig. 1(g).

For comparison, the optical flow obtained by di-
rectly doing RANSAC to the initial matches in
Fig. 1(d) is shown in Fig. 1(h). As we can see, many
wrong matches are included.

Thus, our procedure is very effective in narrowing
down the correct matches by gradually incorporating
various soft constraints through their confidence. As a
result, we can obtain correct matches accurately and
robustly even when the disparity is large.

Comparing the geometric AICs computed from the
final matches, we can conclude that in this case the
image mapping cannot be regarded as a homography.
Fig. 1(c) shows the 3-D shape reconstructed from the
computed fundamental matrix F (top view). We used
the method described in [9].

Fig. 2 shows another example similarly arranged.
There is a slight camera rotation between Figs. 2(a)
and (b), and the scene has many similar textures, so
considerable mismatches occurred by template match-
ing based on local correlations alone. However, our
method successfully generated many correct matches
as compared with direct RANSAC. This time, the im-
age transformation can be regarded as a homography.
Fig. 2(c) shows the panoramic image generated by the
computed homography.

We also examined the effects of camera rotations
and zooming changes using the images in Figs. 3 and
4. These images consist in large part of almost iden-
tical periodic patterns with very similar textures, so
matching by local correlation alone is extremely dif-
ficult. Yet, our method successfully generated suffi-
ciently many correct matches.

Figs. 3(a) and (b) are the original image pair, and
Figs. 3(c) and (d) are obtained by rotating the image
in Figs. 3(b) by 5 and 10 degrees, respectively. The
matches in the top row are obtained from the pair (a)
and (b); the matches in the middle row are obtained
from the pair (a) and (c); the matches in the bottom
row are obtained from the pair (a) and (d). In each
row, (e)∼(i) are the result corresponding to (d)∼(h) in
Figs. 1 and 2.

Figs. 4(a) and (b) are another image pair, and
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 3: Effects of image rotations: (a) Left image. (b) Right image. (c) Rotation of (b) by 5◦. (d) Rotation of (b) by
10◦. The results from the pair (a) and (b) (top row), the pair (a) and (c) (middle row), and the pair (a) and (d) (bottom
row): (e) Initial matches based on local correlations. (f) Matches with spatial consistency incorporated. (g) Matches with
global smoothness added. (h) Final matches with the epipolar constraint imposed. (i) Matches obtained from (e) by direct
RANSAC.

Figs. 4(c) and (d) are obtained by zooming out the im-
age in Figs. 4(b) by 80% and 65%, respectively. The
rest is arranged in the same way as in Figs. 3.

From these, we can see that our method is robust to
image rotations and zooming changes. For the above
examples, the total computation time of our method
(including loading image files, feature point extraction,
and outputting debug information) was 23 sec on av-
erage, while direct RANSAC took 14 sec on average.
We used Pentium III 700MHz for the CPU with 768MB
main memory and Linux for the OS. Thus, we can gain
accuracy and robustness at a relatively small compu-
tational cost.

9. Conclusions

We have presented a new method for detecting point
matches between two images that have a large dispar-
ity involving camera rotations and zooming changes.
Our strategy is to impose various constraints such as
local image correlations, spatial consistency, and global

smoothness as “soft” constraints in the form of their
“confidence” before imposing the “hard” epipolar con-
straint by RANSAC. We have also introduced a model
selection procedure to test if the image mapping can be
regarded as a homography. We have demonstrated the
effectiveness of our method by real image examples.
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