
Proc. Statistical Methods in Video Processing Workshop, Copenhagen, Denmark, 1–2 June 2002, pp. 19–24. 1

Automatic Thresholding for Correspondence Detection

Kenichi Kanatani∗ and Yasushi Kanazawa†
∗Department of Information Technology, Okayama University, Okayama 700-8530 Japan

†Department of Knowledge-based Information Engineering
Toyohashi University of Technology, Toyohashi, Aichi 441-8580 Japan
kanatani@suri.it.okayama-u.ac.jp, kanazawa@tutkie.tut.ac.jp

Summary
We study the problem of thresholding the residual of tem-
plate matching for selecting correct matches between fea-
ture points detected in two images. In order to determine
the threshold dynamically, we introduce a statistical model
of the residual and compute an optimal threshold according
to that model. The model parameters are estimated from
the histogram of the residuals of candidate matches. We
demonstrate the effectiveness of our scheme using real im-
ages.

1. Introduction
Establishing point correspondences over multiple

images is the first step of many video processing appli-
cations. Two approaches exist for this purpose: track-
ing correspondences over successive frames, and direct
matching between separate frames. This paper focuses
on the latter.

The basic principle is local correlation measurement
by template matching. Detecting feature points in the
first and second images separately using a corner de-
tector [3, 8], we measure the correlation between the
neighborhoods of the two points for each candidate pair
and match those that have a high correlation.

To do so, we need to set an appropriate threshold
for distinguishing correct matches from incorrect ones.
This problem has not been considered fully in the past,
chiefly because template matching alone is insufficient
for establishing point correspondences; an outlier re-
moval technique, such as LMedS [7] and RANSAC [2],
needs to be applied afterwards. The thresholding task
is usually passed on to the outlier removal stage [1, 9].

However, most outlier removal techniques do not
work if the outlier ratio is as high as 50%. Hence, set-
ting a good threshold at the template matching stage
for removing incorrect matches is essential for the sub-
sequent outlier removal procedure to be effective. If the
threshold is too high, however, a lot of correct matches
are lost. This reduces the number of final matches,
making subsequent computations less reliable. Hence,
we need a good balance between removing incorrect
matches and retaining correct ones.

For this purpose, we introduce a statistical model
of the template matching residual and compute an op-

timal threshold according to that model. The model
parameters are estimated from the histogram of the
residuals of candidate matches. We demonstrate the
effectiveness of our method using real images.

2. Template matching
After feature points are detected from the two im-

ages using a corner detector, the similarity between
point P in the first image and point Q in the second is
measured by the following residual (sum of squares)

J(P,Q) =
∑

(i,j)∈N
|TP (i, j)− TQ(i, j)|2, (1)

where TP (i, j) and TQ(i, j) are the intensity values of
the templates obtained by cutting out an n × n pixel
region N centered on P and Q, respectively. The fol-
lowing argument can be extended to color images and
other measures such as the normalized correlation.

Basically, each point P in the first image is matched
to the point Q in the second for which J(P, Q) is the
smallest, but overlaps and conflicts must be resolved.
So, we apply the following uniqueness enforcing pro-
cedure. We first choose the pair (P,Q) that has the
smallest residual J(P, Q). Then, we remove from the
candidate pairs those that involve P and Q. From the
remaining pairs, we choose the pair (P ′, Q′) that has
the smallest residual J(P ′, Q′). We repeat this proce-
dure until all pairs are exhausted.

3. Thresholding the residual
If the above uniqueness enforcing procedure is ap-

plied to all the pairs, we may end up with matching
points for which no counterparts exist. So, we need
to remove beforehand those pairs for which the resid-
ual is very large. For this, the threshold is usually
set empirically [1, 9]. For example, Zhang et al. [9] ac-
cepted those pairs for which the normalized correlation
is larger than 0.8.

However, the threshold cannot be fixed, because the
residual J(P, Q) is determined not only by the image
intensity fluctuations but also by the relative distortion
of the two images. For example, but if rotation and



scale change exist between the two images, the residual
J(P, Q) is not zero even when no image noise exists. It
follows that the threshold should depend on the degree
of the rotation and scale change, which is unknown and
different from image to image.

Our strategy is that we introduce a statistical model
of the residual and compute an optimal threshold ac-
cording to that model. The model parameters are es-
timated from the histogram of the residual.

4. Statistical model of the residual
If the match (P, Q) is correct, the image intensity

difference
∆Tij = TP (i, j)− TQ(i, j) (2)

in eq. (1) is due to the relative distortion in the neigh-
borhoods of P and Q, as well as random fluctuations
of image intensity. We model these by a Gaussian dis-
tribution of mean 0 and standard deviation σ0. Then,
J/σ2

0 for a correct match is subject to a χ2 distribution
with n2 degrees of freedom if the intensity difference is
independent of the pixel (n is the template size).

If the match (P,Q) is incorrect, the difference ∆Tij

is due to the inhomogeneity of the intensity within the
image of that scene. We assume that ∆Tij is subject to
a Gaussian distribution of mean 0 and standard devi-
ation σ1. Then, J/σ2

1 for an incorrect match is subject
to a χ2 distribution with n2 degrees of freedom if the
intensity difference is independent of the pixel.

Let f0(J) be the probability density of the residual J
for correct matches, and f1(J) that for incorrect ones.
According to the above model, we have

f0(J) =
1
σ2

0

φn2(
J

σ2
0

), f1(J) =
1
σ2

1

φn2(
J

σ2
1

), (3)

where φd(x) denotes the probability density of the χ2

distribution with d degrees of freedom.

5. Effective template size
The assumption that the image intensity difference

is independent of the pixel is not realistic. However,
exactly modeling the interpixel correlation is difficult,
so we introduce the following approximation.

If there are N points in the first image and M points
in the second, the number of correct matches is at most
min(N,M), which is much smaller than the number
NM of all the pairs. If most of the matches are in-
correct, the probability density of the residual J for all
the matches is approximately f1(J), which has an ex-
pectation of n2σ2

1 and a variance of 2n2σ4
1 . It follows

that if we compute the mean µJ and the variance σ2
J

of J from the histogram of J , we should have

µJ ≈ n2σ2
1 , σ2

J ≈ 2n2σ4
1 , (4)

provided each pixel value is independent . Eliminating
σ1 from these, we obtain n2 ≈ 2µ2

J/σ2
J . However, n2

inlier ratio detection ratio
1

0 J Jc

Figure 1: Determining the threshold that balances the
inlier ratio and the detection ratio.

should be much smaller than this due to correlations.
So, we define the effective template size by

n =
√

2µJ

σJ
. (5)

In other words, we regard each pixel value as if inde-
pendent within the template of this size, which need
not be an integer.

6. Model parameter estimation

Let p and q (= 1 − p) be the ratios of the correct
and incorrect matches, respectively. The probability
density of the residual J for all the matches is

f(J) = pf0(J) + qf1(J)

=
Jn2/2−1

2n2/2Γ(n2/2)

(pe−J/2σ2
0

σn2

0

+
qe−J/2σ2

1

σn2

1

)
. (6)

We determine the model parameters σ0 and σ1 by max-
imum likelihood estimation. Let J1 ≤ J2 ≤ · · · ≤ JNM

be all the NM residual values sorted in ascending or-
der. From eq. (6), their likelihood is

NM∏

i=1

f(Ji) =
∏NM

i=1 J
n2/2−1
i

2n2NM/2Γ(n2/2)NM

×
NM∏

i=1

(pe−Ji/2σ2
0

σn2

0

+
qe−Ji/2σ2

1

σn2

1

)
. (7)

Differentiating the logarithm of this with respect to σ2
0

and σ2
1 and letting the results be zero, we obtain

σ2
0 =

∑NM
i=1 AiJi

n2
∑NM

i=1 Ai

, σ2
1 =

∑NM
i=1 BiJi

n2
∑NM

i=1 Bi

, (8)

where we define

Ai =
1

1 +
q

p

(σ0

σ1

)n2

e

Ji

2
(

1
σ2

0

− 1
σ2

1

)
,

Bi =
1

1 +
p

q

(σ1

σ0

)n2

e

Ji

2
(

1
σ2

1

− 1
σ2

0

)
. (9)
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Figure 2: (a), (b) Input images and detected feature points. (c) The residual histogram of all the matches. (d) The
model parameters, the detection ratio (%), and the inlier ratio (%). (e) The residual histogram of correct matches and the
estimated density. (f) The residual histogram of incorrect matches and the estimated density. (g) Matches resulting from the
proposed thresholding. (h) Matches without thresholding. (i) Matches resulting from the Otsu thresholding. (j) Matches
resulting from the method of Zhang, et al. The vertical solid lines in (c), (e), and (f) indicate the threshold determined
from the computed detection ratio α. The vertical dotted lines indicate thresholds obtained by the Otsu criterion.

The values of σ0 and σ1 are obtained by iterations:
guessing the initial values to be, for example,

σ0 =

√∑bpNMc
i=1 Ji

n2bpNMc , σ1 =
σJ√
2µJ

, (10)

and substituting them into the right-hand sides of
eqs. (8), we obtain their updated values. This pro-
cess is repeated until σ0 and σ1 converge. The first of
eqs. (10) is the value of σ0 we would have if the bpNMc
matches with the smallest residuals were all correct.
The second of eqs. (10) is obtained by eliminating n2

from eqs. (4).
The ratios p and q (= 1 − p) are given empirically.

Since the number of correct matches between N points
and M points is at most min(N, M), we let pmax =
min(N,M)/NM and set, for example, p = 0.6pmax if
no knowledge is available about the correctness of the
matches. This estimate of p need not be precise, as we
will show later.

7. Detection ratio vs. inlier ratio
Suppose we set a threshold Jc for the residual J and

accept those matches with J ≤ Jc as correct. Let α be
the ratio of the accepted correct matches among all the

correct ones; we call it the detection ratio. A correct
match with residual J is accepted with the probability

α = P0[J < Jc] = P0[
J

σ2
0

<
Jc

σ2
0

], (11)

where P0[ · ] denotes the probability for correct
matches. Let χ2

n2(α) be the αth percentile of the χ2

distribution with n2 degrees of freedom. Since J/σ2
0 for

a correct match is subject to a χ2 distribution with n2

degrees of freedom, eq. (11) implies that Jc/σ2
0 equals

χ2
n2(α). Hence, the threshold Jc is given by

Jc = σ2
0χ2

n2(α). (12)

Some incorrect matches are necessarily accepted by this
thresholding. An incorrect match with residual J is
accepted with the probability

γ = P1[J ≤ Jc] = P1[
J

σ2
1

≤ (
σ0

σ1
)2χ2

n2(α)], (13)

where P1[ · ] denotes the probability for incorrect
matches. Let Φn2(X) (=

∫ X

0
φn2(x)dx) be the accumu-

lated probability function of the χ2 distribution with
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Figure 3: (a), (b) Input images and detected feature points. (c) The residual histogram of all the matches. (d) The
model parameters, the detection ratio (%), and the inlier ratio (%). (e) The residual histogram of correct matches and the
estimated density. (f) The residual histogram of incorrect matches and the estimated density. (g) Matches resulting from the
proposed thresholding. (h) Matches without thresholding. (i) Matches resulting from the Otsu thresholding. (j) Matches
resulting from the method of Zhang, et al. The vertical solid lines in (c), (e), and (f) indicate the threshold determined
from the computed detection ratio α. The vertical dotted lines indicate thresholds obtained by the Otsu criterion.

n2 degrees of freedom. Since J/σ2
1 for an incorrect

match is subject to a χ2 distribution with n2 degrees
of freedom, eq. (13) implies

γ = Φn2((
σ0

σ1
)2χ2

n2(α)). (14)

Among the NM possible matches, the numbers of cor-
rect and incorrect matches are pNM and qNM , re-
spectively. After the thresholding, we obtain αpNM
correct matches and γqMN incorrect ones on average.
Hence, the inlier ratio, i.e., the ratio of correct matches
among the accepted matches, is approximately

β =
αpNM

αpNM + γqMN
=

αp

αp + γq
. (15)

8. Threshold selection
The threshold Jc is determined by the detection ra-

tio α in the form of eq. (12), but how should we set
α? It should be large if we want to collect many cor-
rect matches, but the number of incorrect matches also
increases, lowering the inlier ratio β as a result.

Here, we determine the threshold Jc so that the de-
tection ratio α equals the inlier ratio β. This balances

the ratio 1 − α of rejecting correct matches and the
ratio 1−β of accepting incorrect ones (Fig. 1). Letting
β = α in eq. (14), we obtain

α = 1− q

p
Φn2((

σ0

σ1
)2χ2

n2(α)), (16)

from which α is obtained by Newton iterations.

9. Real image examples
Figs. 2(a) and (b) show two real images of a dis-

tant scene. We detected 100 feature points from each
image using the Harris operator [3], as marked there.
Fig. 2(c) is the histogram of the residuals of all can-
didate matches we obatained using a 9 × 9 template.
Letting p/pmax = 0.6, we estimated the effective tem-
plate size n, the model parameters σ0 and σ1, and the
optimal detection ratio α (= the inlier ratio β) as listed
in Fig. 2(d). We see that n is much smaller than the
actual size 9 due to correlations. The density f(J) of
the residual J estimated by eq. (6) is superimposed
onto the histogram in Fig. 2(c). The estimated density
agrees with the histogram very well.

Figs. 2(e) and (f) superimpose the densities f0(J)
and f1(J) of correct and incorrect matches estimated
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Figure 4: (a), (b) Input images and detected feature points. (c) The residual histogram of all the matches. (d) The
model parameters, the detection ratio (%), and the inlier ratio (%). (e) The residual histogram of correct matches and the
estimated density. (f) The residual histogram of incorrect matches and the estimated density. (g) Matches resulting from the
proposed thresholding. (h) Matches without thresholding. (i) Matches resulting from the Otsu thresholding. (j) Matches
resulting from the method of Zhang, et al. The vertical solid lines in (c), (e), and (f) indicate the threshold determined
from the computed detection ratio α. The vertical dotted lines indicate thresholds obtained by the Otsu criterion.

by eqs. (3) onto the histograms of correct and incorrect
matches, separately. Here, we checked the correctness
of the matches as follows.

Since two images of a distant scene are related by a
homography , we optimally computed the homography
H by renormalization1 [4] from a large number of corre-
sponding points selected by hand. For each candidate
match (P,Q), we mapped the point P to the second
image by the computed homography H and judged the
match as correct if the point Q is within three pixels
from its ideal position HP . The result agrees very well
with our prediction.

The vertical solid lines in Figs. 2(c), (e), and (f) indi-
cate the computed threshold Jc. A well known scheme
for automatic thresholding is the Otsu discrimination
criterion [6]. The vertical dotted lines in Figs. 2(c),
(e), and (f) indicate the corresponding threshold.

Fig. 2(g) shows the final matches obtained by apply-
ing the computed threshold Jc followed by the unique-
ness enforcing procedure; they are displayed as “opti-
cal flow” (line segments connecting the matching po-
sitions). For comparison, Fig. 2(h) shows the result

1The program is publicly available from
http://www.ail.cs.gunma-u.ac.jp/Labo/e-programs.html.

JcO J

incorrect matches

correct matches

Figure 5: The residual distribution of correct matches is
included in the residual distribution of incorrect matches to
a large extent.

without thresholding; Fig. 2(i) is the result using the
Otsu criterion; Fig. 2(j) is the result thresholded by
the normalized correlation 0.8 according to Zhang et
al. [9]. The actual detection ratio α and the inlier ratio
β for these results are listed in Fig. 2(d).

We can see that without thresholding we can collect
many correct matches but we also pick out many in-
correct ones. As a result, the inlier ratio significantly
drops. Our thresholding scheme balances the conflict-
ing goals of collecting as many correct matches as pos-
sible and rejecting as many outliers as possible, using
the knowledge of the residual distribution of the im-
ages in question. The Otsu criterion shows little effect
for this, and the method of Zhang, et al. [9] gives an
intermediate result between the Otsu criterion and our
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Figure 6: Matches resulting from different estimates of the ratio p of correct matches for the images in Figs. 2, 3, and 4
(from above).

method.
Figs. 3 and 4 show other examples with correspond-

ing results. From these, we can confirm the effective-
ness of our method.

10. Validation of our model

From the above experiments, we can see that the
residual distribution of correct matches is included in
the residual distribution of incorrect matches to a large
extent with a long tail (Fig. 5). So, if we want to
pick out a large number of correct matches, we must
set a high threshold, which inevitably accepts many
incorrect matches. Our analysis is for determining an
optimal threshold by analyzing the distribution shapes.

For this purpose, we need to approximate the dis-
tributions by simple functions. Here, we fitted the χ2

distribution density by adjusting the effective template
size n and the parameters σ0 and σ1 and obtained a sat-
isfactory fit. As long as the fit is good, the underlying
statistical hypotheses (independent Gaussian distribu-
tions, etc.) are not essential .

We set the ratio p/pmax to be 0.6, but this estimate
need not be precise. Fig. 6 shows the final results for
p/pmax = 0.4, 0.6, 0.8, 1.0 for the images in Figs. 2,
3, and 4. The results are not so different, so we may
set p/pmax to be, for example, around 0.6 if no prior
information is given.

11. Conclusion

We have studied the problem of thresholding the
residual of template matching for selecting correct
matches between feature points detected in two sep-
arate images. We dynamically determined the thresh-
old by introducing a statistical model of the residual
and computed an optimal threshold according to that
model. The model parameters were estimated from
the histogram of the residual of candidate matches. We

demonstrated the effectiveness of our scheme using real
images.

Of course, template matching alone is not sufficient
for practical applications. We must also incorporate
outlier techniques such as LMedS [7] and RANSAC
[2], exploiting geometric constraints such as the ho-
mography relationship and the epipolar equation. Our
scheme is very effective as a preprocess for such outlier
removal techniques (see, e.g., [5] for an image mosaic-
ing application).
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