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Summary
We present a new method for automatically matching fea-
ture points over two images: after extracting feature points
using a feature detector, we progressively estimate the rota-
tion, scale change, and the projective distortion between the
two images by random voting and variable template match-
ing. We demonstrate that out method allows robust image
mosaicing even when conventional methods fail.

1. Introduction
Establishing point correspondences over multiple

images is the first step of many video processing appli-
cations. Two approaches exist for this purpose: track-
ing correspondences over successive image frames, and
direct matching between separate image frames. This
paper focuses on the latter.

The basic principle is local correlation measurement
by template matching. In [6], we proposed a method
for automatically thresholding the matching residual:
we dynamically choose an optimal threshold by ana-
lyzing the histogram of the residuals of the potential
matches.

Although this method significantly reduces the num-
ber of outliers, some outliers still remain. To remove
them, we need to apply a robust estimation scheme
based on a geometric constraint such as the homogra-
phy relationship and the epipolar equation [1, 4, 11].
However, standard techniques such as LMedS [9] and
RANSAC [2] do not work unless the initial matches are
sufficiently accurate.

The reason why correct matches are difficult to ob-
tain by the standard template matching is that image
distortions such as rotation and scale change exist over
the two images. In this paper, we introduce random
voting for hierarchically estimating such image distor-
tions followed by variable template matching compati-
ble with the estimated distortions, which we call strati-
fied matching . Using real images, we demonstrate that
out method allows robust image mosaicing even when
conventional methods fail.

2. Variable Template Matching
We apply a feature detector to two images and de-

tect points P1, ..., PN in the first image I1 and points

Q1, ..., QM in the second image I2 and measure the
similarity between two points by the residual (sum of
squares)

J(Pα, Qβ) =
∑

(i,j)∈Nα

|I1(i, j)− I2(DQβ

Pα
(i, j))|2, (1)

where Nα is a rectangular grid centered on the point
Pα in first image I1, and DQβ

Pα
designates a coordinate

transformation1 that maps Pα to Qβ .

The basic transformationDQβ

Pα
is the translation that

displaces Pα to Qβ . However, the residual J(Pα, Qβ)
is not 0 in general even if Pα exactly corresponds to
Qβ . This is not only due to random fluctuations of the
image intensity and illumination changes between the
two images but also due to the relative image distor-
tions such as scale change and rotation.

Such image distortions can be absorbed by adjust-
ing the transformation DQβ

Pα
accordingly, but we do

not know the distortions a priori. Motivated by im-
age mosaicing applications [8, 10, 12], we assume that
the entire scene undergoes a homography (we later al-
low some parts to deform differently) and estimate an
image transformation that fits all feature points rather
than point-wise adjustment.

First, we use the standard template to estimate
an approximate image translation. Next, we esti-
mate scale changes and rotations by similarity template
matching . The image transformation is further re-
fined by affine template matching . Finally, we establish
the correspondence by homography template matching .
In each stage, we progressively expand the template
and remove outliers using the least median of squares
(LMedS) method [9]. We call this strategy stratified
matching to distinguish it from what is known as “hi-
erarchical matching”, which upgrades the matching by
gradually increasing the resolution from coarse to fine
using the standard template.

1The coordinates (i, j) are extended to real numbers, for
which the image intensity is defined by an appropriate inter-
polation of the values at surrounding pixels.



3. Stratified Matching

3.1 Initial matching

We detect a fixed number2 N of feature points {Pα}
and {Qβ} in the first and second images separately
using the Harris operator [3] and compute the residuals
J(Pα, Qβ) for all possible pairs. We let DQβ

Pα
be the

translation that displaces Pα to Qβ with a 9 × 9 grid
Nα. We then apply the thresholding described in [6]
and enforce uniqueness as follows.

We search the N × N table of J(Pα, Qβ) for the
minimum value J(Pα∗ , Qβ∗) and establish the match
(Pα∗ , Qβ∗). Then, we remove from the table the col-
umn and row that contain the value J(Pα∗ , Qβ∗) and
apply the same procedure to the resulting (N − 1) ×
(N − 1) table. Repeating this, we end up with at most
N matches {(Pα, Qβ)}, which we use as initial candi-
dates.

3.2 Translation matching by one-point voting

1. Randomly sample one from among the candidate
pairs {(Pα, Qβ)}, and compute the translation T
it defines.

2. Compute for each candidate pair (Pα, Qβ) the dis-
crepancy D(Pα, Qβ ; T ) from the estimated trans-
lation T (cf. Appendix), and record the median S
of D(Pα, Qβ ; T ) over all the pairs {(Pα, Qβ)}.

3. Repeat this sampling a sufficient number of times3,
and find the translation Tm that gives the smallest
median Sm.

4. Regard those pairs {(Pα, Qβ)} that satisfy
D(Pα, Qβ ; Tm) < 7Sm as inliers (cf. Appendix),
and optimally fit a translation T̂ to them.

5. Cancel the existing candidate pairs, and select
from all the points {Pα} and {Qβ} those pairs
{(Pα, Qβ)} that satisfy D(Pα, Qβ ; T̂ ) < 7Sm.

6. Compute the residuals J(Pα, Qβ) for all the com-
binations of the endpoints {Pα} and {Qβ} of the
selected pairs, using the same translation template
as the initial one, and apply the thresholding and
uniqueness enforcing procedure [6].

The resulting pairs {(Pα, Qβ)} are regarded as new
candidates.

3.3 Similarity matching by two-point voting

1. Randomly sample two from among the candidate
pairs {(Pα, Qβ)}, and compute the similarity S
they define.

2. Compute for each candidate pair (Pα, Qβ) the dis-
crepancy D(Pα, Qβ ;S) from the estimated similar-
ity S (cf. Appendix), and record the median S of
D(Pα, Qβ ;S) over all the pairs {(Pα, Qβ)}.

2In our experiment, we detected 100 points in each image.
3Actually, we exhaustively sampled all the candidate pairs.

3. Repeat this sampling a sufficient number of times4,
and find the similarity Sm that gives the smallest
median Sm.

4. Regard those pairs {(Pα, Qβ)} that satisfy
D(Pα, Qβ ;Sm) < 7Sm as inliers (cf. Appendix),
and optimally fit a similarity Ŝ to them [5].

5. Cancel the existing candidate pairs, and select
from all the points {Pα} and {Qβ} those pairs
{(Pα, Qβ)} that satisfy D(Pα, Qβ ; Ŝ) < 7Sm.

6. Compute the residuals J(Pα, Qβ) for all the com-
binations of the endpoints {Pα} and {Qβ} of the
selected pairs, using a 17 × 17 template. We let
DQβ

Pα
be the translation that displaces Pα to Qβ

followed by the rotation and the scale change com-
patible with the estimated similarity Ŝ.

7. Apply the thresholding and uniqueness enforcing
procedure [6].

The resulting pairs {(Pα, Qβ)} are regarded as new
candidates.

3.4 Affine matching by three-point voting
1. Randomly sample three from among the candidate

pairs {(Pα, Qβ)}, and compute the affine transfor-
mation A they define.

2. Compute for each candidate pair (Pα, Qβ) the dis-
crepancy D(Pα, Qβ ;A) from the estimated affine
transformation A (cf. Appendix), and record the
median S of D(Pα, Qβ ;A) over all the pairs
{(Pα, Qβ)}.

3. Repeat this sampling a sufficient number of times
and find the affine transformation Am that gives
the smallest median Sm.

4. Regard those pairs {(Pα, Qβ)} that satisfy
D(Pα, Qβ ;Am) < 7Sm as inliers (cf. Appendix),
and optimally fit an affine transformation Â to
them [5].

5. Cancel the existing candidate pairs, and select
from all the points {Pα} and {Qβ} those pairs
{(Pα, Qβ)} that satisfy D(Pα, Qβ ; Â) < 7Sm.

6. Compute the residuals J(Pα, Qβ) for all the com-
binations of the endpoints {Pα} and {Qβ} of the
selected pairs, using a 25 × 25 template. We let
DQβ

Pα
be the translation that displaces Pα to Qβ

followed by an affine transformation centered on
Qβ compatible with the estimated affine transfor-
mation Â.

7. Apply the thresholding and uniqueness enforcing
procedure [6].

The resulting pairs {(Pα, Qβ)} are regarded as new
candidates.

4We repeated the sampling until the minimum median was
not updated 100 times consecutively. This criterion was applied
to the subsequent procedures, too.
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Figure 1: (a), (b) Input images and extracted feature points. (c) Image mosaicing by our method. (d) Initial matches
(69.0% correct). (e) Translation matching. (f) Similarity matching (g) Affine matching. (h) Homography matching. (i)
Direct estimation by LMedS.

3.5 Homography matching by four-point voting
1. Randomly sample four from among the candidate

pairs {(Pα, Qβ)}, and compute the homography H
they define.

2. Compute for each candidate pair (Pα, Qβ) the dis-
crepancy D(Pα, Qβ ;H) from the estimated ho-
mography H (cf. Appendix), and record the
median S of D(Pα, Qβ ;H) over all the pairs
{(Pα, Qβ)}.

3. Repeat this sampling a sufficient number of times
and find the homography Hm that gives the small-
est median Sm.

4. Regard those pairs {(Pα, Qβ)} that satisfy
D(Pα, Qβ ;Hm) < 7Sm as inliers (cf. Appendix),
and optimally fit a homography Ĥ to them by
renormalization5 [7].

5. Cancel the existing candidate pairs, and select
from all the points {Pα} and {Qβ} those pairs
{(Pα, Qβ)} that satisfy D(Pα, Qβ ; Ĥ) < d2, where
d is a user-definable admissible discrepancy.

6. Compute the residuals J(Pα, Qβ) for all the com-
binations of the endpoints {Pα} and {Qβ} of the
selected pairs using a 33 × 33 template. We let
DQβ

Pα
be the translation that displaces Pα to Qβ

followed by a homography centered on Qβ com-
patible with the estimated homography Ĥ.

7. Apply the thresholding and uniqueness enforcing
procedure [6].

The resulting pairs {(Pα, Qβ)} are our final matches.
3.6 Summary of the procedure

In the above process, we progressively estimate the
image transformation by LMedS (see Appendix for the

5The program is publicly available from
http://www.ail.cs.gunma-u.ac.jp/Labo/e-programs.html.

details), cancel the existing candidate pairs, and match
the points all over again using a new template compat-
ible with the estimated transformation, increasing the
template size to 9, 17, 25, and 33. In doing so, we also
computed the residuals of the pairs that are not com-
patible with the estimated transformation. This arti-
ficial introduction of incorrect matches is for applying
our automatic thresholding scheme6 [6]. After setting
the threshold, these incorrect matches are removed.

Unlike the standard LMedS [9, 11], where we choose
correct matches from an initial set, we generate cor-
rect matches by redoing template matching each time
a new deformation is estimated, using a new template
and changing the threshold. As a result, those pairs
initially rejected can be accepted in the later stage.

If we know that the two images should undergo a
particular transformation to a specified degree, the best
choice may be RANSAC [2]. Here, however, the inter-
mediate transformations are all approximate, and we
do know know to what extent they should be satisfied.
LMedS best suits such a case. On the other hand, we
know that the true transformation is a homography.
So, in the last stage we introduced a user-definable ad-
missible discrepancy p. In our experiment, we set d =
3 (pixels).

4. Real Image Examples
We extracted 100 feature points from the images in

Figs. 1(a), (b) using Harris operator [3], as marked
there. Fig. 1(d) is the “optical flow” (line seg-
ments connecting the matching positions) of the ini-
tial matches obtained by the procedure described in
Sec. 3.1. Figs. 1(e)–(h) show the upgraded matches

6As is described in [6], the ratio of the percentage p of the
correct matches to its maximum value pmax needs to be specified.
We gradually increase it to p/pmax = 0.6, 0.7, 0.8, and 0.9.
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Figure 2: (a), (b) Input images and extracted feature points. (c) Image mosaicing by our method. (d) Initial matches
(28.3% correct). (e) Translation matching. (f) Similarity matching (g) Affine matching. (h) Homography matching. (i)
Direct estimation by LMedS.

obtained by the translation matching, the similarity
matching, the affine matching, and the final homogra-
phy matching, respectively. We can see that the accu-
racy progressively increases in each stage. Fig. 1(c) is
the resulting mosaiced image.

For comparison, we did the standard LMedS proce-
dure [9], directly computing the minimum-median ho-
mography by random 4-point voting followed by out-
lier removal; Fig. 1(i) shows the resulting matches. In
this example, the distortion between the two images
is relatively small, so the template matching proce-
dure described in [6] alone produces sufficiently correct
matches (69.0% correct). As a result, the direct LMedS
can also gives a satisfactory result. However, our pro-
cedure produces denser matches. This is because we
do not “choose” correct matches but “generate” cor-
rect matches by adjusting the template.

Fig. 2 is another example similarly arranged. In this
case, the deformation between the images in Figs. 2(a),
(b) is large. In addition, periodic patterns exist in
the scene. As a result, the inlier ratio is very low
(28.3% correct), so the direct LMedS fails, as shown
in Fig. 2(i). However, our method produces correct
matches, as shown in Fig. 2(h). The reason is as fol-
lows.

Although only 28.3% of the matches in Fig. 2(d) are
compatible with a homography, most of them are com-
patible with an approximate translation or an approx-
imate similarity with a large error estimate predicted
by LMedS (see Appendix). Hence, we can gradually
narrow down correct matches by applying a compat-
ible template of a larger size, thereby increasing the
number of correct matches and removing outliers.

As is well known, two images undergo a homogra-
phy when the camera is rotated without translating,

the scene is a planar surface, or the scene is sufficiently
far away. This is the case for the images in Figs. 1 and
2. In Fig. 3 in contrast, the two images are taken from
different positions, and an intruding object (a car) ap-
pears in one image. Also, non-planar parts (poles and
bushes) exist in the scene, so we cannot map one im-
age to another entirely by a single homography. In this
case, the initial matches in Fig. 3(c) are 44.8% correct.
Yet, in the end correct matches are generated only in
the planar part of the scene, as shown in Fig. 3(d). This
is because our method is based on voting and hence mi-
nor portions may undergo different transformations.

Fig. 4(e) is the superposition of the mapped images,
and Fig. 4(f) displays the absolute value of their differ-
ence. The overlapping parts indicate non-planar parts
of the scene. This is the well known principle for detect-
ing intruding objects, such as pedestrians and vehicles,
on a planar surface, such as the floor and the ground.

Fig. 4 shows another example similarly arranged.
In this case, the initial matches in Fig. 4(c) are almost
all incorrect (16.3% correct). Yet, our procedure can
successfully recombine them into correct matches by
gradual updating.

5. Conclusion
We have presented a new method for automatically

matching feature points over two images. After ex-
tracting feature points using a feature detector, we pro-
gressively estimate the rotation, scale change, and the
projective distortion between the two images by ran-
dom voting and variable template matching.

Many image mosaicing techniques have been pre-
sented in the past [10, 12], but mostly the image trans-
formations are estimated by directly comparing the
gray/color levels of consecutive frames of an image se-
quence. Such techniques cannot be applied to separate
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Figure 3: (a), (b) Input images and detected feature points. (c) Initial matches (44.8% correct). (d) Final matches. (e)
Image mosaicing. (f) Difference image.

images involving a large amount of camera rotation,
zooming, and perspective distortion, such as the im-
ages in Fig. 3. Our method works even in the presence
of a large percentage of outliers. As a byproduct, in-
truding objects can be automatically detected.
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Appendix: LMedS for Geometric Fitting
Geometric fitting [5] is to fit a d-dimensional mani-

fold M defined by a constraint equation F (x; u) = 0
parameterized by a p-dimensional vector u to N data
points {xα} ∈ Rn. Each data point xα is assumed to
be disturbed from its true position x̄α by independent
Gaussian noise of mean 0 and standard deviation σ in
each coordinate. The true positions {x̄α} are assumed
to be in the manifold M.

The constraint that a point (x, y) in one image
should be mapped to a point (x′, y′) in another by a
translation T , a similarity S, an affine transformation
A, or a homography H defines a 2-dimensional mani-
fold M with 2, 4, 6, or 8 parameters, respectively, in
the 4-dimensional joint space of (x, y, x′, y′). Each xα

is a 4-dimensional vector consisting of the coordinates
of the corresponding points.

The LMedS [9] for fitting the manifold M to {xα}
is to minimize

S = medN
α=1D(xα;M), (2)
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Figure 4: (a), (b) Input images and extracted feature points. (c) Initial matches. (d) Final matches (16.3% correct). (e)
Image mosaicing. (f) Difference image.

where D(x;M) designates the square of the distance
of point x from the manifold M—the actual forms of
D(x;M) for a translation T , a similarity S, an affine
transformation A, and a homography H together with
their optimal fitting procedures are found in [8].

Minimization of eq. (2) is done by repeating random
sampling of the minimum number dp/re of points that
can define the manifoldM a sufficient number of times,
evaluating the median S each time, and choosing the
manifold M̂ that gives the minimum median Sm [9].

If the noise is small, D(xα;M)/σ2 is subject to a
χ2 distribution with r degrees of freedom [5], where r
= n − d is the codimension of M, i.e., the number of
independent equations of the constraint F (x; u) = 0.
If we put

µ = medN
α=1

D(xα;M)
σ2

, (3)

the ratio D(xα;M)/σ2 is larger than µ for half the
data points and smaller than µ for the remaining half.
Hence, µ equals in expectation the 50th percentile χ2

r,50

of the χ2 distribution with r degrees of freedom. It
follows that the variance σ2 can be estimated by

σ̂2 =
S

χ2
r,50

(4)

Here, the median S is defined by eq. (2) using the
true manifold M. In actual computation, it is ap-
proximated by the manifold M̂ fitted to dp/re sample
points, so the median S is approximated by

Sm = medN
α=1D(xα;M̂). (5)

Since we repeat sampling so as to minimize this, the
sample median Sm is in general smaller than the true
median S. So, we apply the correction

σ̂2 =
(
1 +

10
rN − p

) Sm

χ2
r,50

. (6)

The term rN − p in the denominator is introduced to
account the fact that (i) if N = p/r, the fitted man-
ifold M̂ exactly passes through the data points with
0 median, so the variance σ2 cannot be estimated and
(ii) eq. (4) gives a good approximation for large N .
The number 10 in the numerator is determined so as
to make eq. (4) agree with the formula in [9] when r =
1:

σ̂ =
√(

1+
10

N−p

)√
Sm

χ2
1,50

≈1.4826
(
1+

5
N−p

)√
Sm.

(7)
Using thus estimated variance σ̂2, we can remove out-
liers with confidence level α% by rejecting those data
xα that satisfy

D(xα; Ŝ)
σ̂2

≥ χ2
r,α, (8)

where χ2
r,α is the αth percentile of the χ2 distribution

with r degrees of freedom.
For example, we have r = 2 and p = 8 for fitting a

homography, so with α = 99, we have

D(xα;M̂) ≥ 6.44
(
1 +

5
N − 4

)
Sm. (9)
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