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We study the problem of segmenting independently moving objects in a video sequence. Several algorithms exist
for classifying the trajectories of the feature points into independent motions, but the performance depends on the
validity of the underlying camera imaging model. In this paper, we present a scheme for automatically selecting
the best model using the geometric AIC before the segmentation stage. Using real video sequences, we confirm
that the segmentation accuracy indeed improves if the segmentation is based on the selected model. We also show
that the trajectory data can be compressed into low-dimensional vectors using the selected model. This is very
effective in reducing the computation time for a long video sequence.

1. Introduction

Segmenting individual objects from backgrounds
is one of the most important tasks of video process-
ing. For images taken by a stationary camera, many
segmentation algorithms based on background sub-
traction and interframe subtraction have been pro-
posed. For images taken by a moving camera, how-
ever, the segmentation is very difficult because the
objects and the backgrounds are both moving in the
image.

While most segmentation algorithms combine
various heuristics based on miscellaneous cues such
as optical flow, color, and texture, Costeira and
Kanade [1] presented a segmentation algorithm
based only on the image motion of feature points.

Since then, various modifications and extensions
of their method have been proposed [3, 6, 10, 13,
15, 16]. Gear [3] used the reduced row echelon
form and graph matching. Ichimura [6] applied
the discrimination criterion of Otsu [20] and the
QR decomposition for feature selection [7]. In-
oue and Urahama [10] introduced fuzzy clustering.
Incorporating model selection using the geometric
AIC [12] and robust estimation using LMedS [22],
Kanatani [13, 15, 16] derived segmentation algo-
rithms called subspace separation and affine space
separation. Maki and Wiles [18] and Maki and
Hattori [19] used Kanatani’s idea for analyzing the
effect of illumination on moving objects. Wu, et
al. [27] introduced orthogonal subspace decomposi-
tion.

To begin the segmentation, the number of in-
dependent motions needs to be estimated. This
has usually been handled using empirical thresh-

olds. Recently, Kanatani and Matsunaga [17] and
Kanatani [15] proposed the use of model selection
for this.

For tracking moving feature points, most authors
use the Kanade-Lucas-Tomasi algorithm [24]. To
improve the tracking accuracy, Huynh and Heyden
[5] and Sugaya and Kanatani [23] showed that out-
lier trajectories can be removed by robust estima-
tion using LMedS [22] and RANSAC [2]. Ichimura
and Ikoma [8] and Ichimura [9] introduced nonlinear
filtering.

In this paper, we propose a new method for im-
proving the accuracy of Kanatani’s subspace sepa-
ration [13, 15] and affine space separation [16]. Ac-
cording to Kanatani [13, 16], the trajectories of fea-
ture points that belong to a rigid object are, under
an affine camera model, constrained to be in a 4-
dimensional subspace and at the same time in a 3-
dimensional affine space in it. If the object is in a 2-
dimensional rigid motion, the resulting trajectories
are constrained to be in a 3-dimensional subspace
or more strongly in a 2-dimensional affine space in
it. Theoretically, the segmentation accuracy should
be higher if we use stronger constraints. However,
it has been pointed out that this is not necessar-
ily true due to the modeling errors of the camera
imaging geometry [16].

To cope with this, Kanatani [15, 16, 17] proposed
a posteriori reliability evaluation using the geomet-
ric AIC [12] and the geometric MDL [14]. However,
his procedure is based on the assumption that the
segmentation is correctly done. In reality, if the
final result is rejected as unreliable by Kanatani’s
method, one cannot tell whether the assumed model
was wrong or the segmentation was not correctly



done.
In this paper, we introduce model selection for

choosing the best camera model and the associ-
ated space before doing segmentation. Using real
video sequences, we demonstrate that the segmen-
tation accuracy indeed improves if the segmenta-
tion is based on the selected model. We also show
that we can compress the trajectory data into low-
dimensional vectors by projecting them onto the
subspace defined by the selected model. This is
very effective in reducing the computation time for
a long video sequence.

In Sec. 2, we summarize the subspace and affine
space constraints that underlie our method. In
Sec. 3, we discuss how the segmentation procedure
is affected by the camera imaging model and motion
patterns. In Sec. 4 and 5, we describe our proce-
dure for selecting the best camera model a priori
using the geometric AIC. In Sec. 6, we show how
the trajectory data can be compressed into low-
dimensional vectors. Sec. 7 summarizes our pro-
cedure. In Sec. 8, we demonstrate the effectiveness
of our procedure by real video experiments. Sec. 9
is our conclusion.

2. Trajectory of Feature Points

We track N rigidly moving feature points over M
frames and let (xκα, yκα) be the image coordinates
of the αth point in the κth frame. We stack all
the image coordinates vertically and represent the
entire trajectory by the following trajectory vector :

pα = (x1α y1α x2α y2α · · · xMα yMα)>. (1)

Regarding the XY Z camera coordinate system
as the world coordinate system, we fix a 3-D ob-
ject coordinate system to the moving object. Let
tκ and {iκ, jκ, kκ} be, respectively, its origin and
3-D orthonormal basis in the κth frame. If we let
(aα, bα, cα) be the 3-D object coordinates of the αth
point, its 3-D position in the κth frame is

rκα = tκ + aαiκ + bαjκ + cαkκ (2)

with respect to the world coordinate system.
If an affine camera model (e.g., orthographic,

weak perspective, or paraperspective projection) is
assumed, the 2-D position of rα in the image is
given by

(
xκα

yκα

)
= Aκrκα + bκ, (3)

where Aκ and bκ are, respectively, a 2 × 3 matrix
and a 2-dimensional vector determined by the posi-
tion and orientation of the camera and its internal

parameters in the κth frame. From eq. (2), we can
write eq. (3) as
(

xκα

yκα

)
= m̃0κ + aαm̃1κ + bαm̃2κ + cαm̃3κ, (4)

where m̃0κ, m̃1κ, m̃2κ, and m̃3κ are 2-dimensional
vectors determined by the position and orientation
of the camera and its internal parameters in the
κth frame. From eq. (4), the trajectory vector pα

of eq. (1) can be written in the form

pα = m0 + aαm1 + bαm2 + cαm3, (5)

where m0, m1, m2 and m3, are the 2M -
dimensional vectors obtained by stacking
m̃0κ, m̃1κ, m̃2κ, and m̃3κ vertically over the
M frames, respectively.

3. Constraints on Image Motion

Eq. (5) implies that the trajectory vectors of the
feature points that belong to the same object are
constrained to be in the 4-dimensional subspace
spanned by {m0,m1, m2, m3} in R2M . It fol-
lows that multiple moving objects can be segmented
into individual motions by separating the trajec-
tory vectors {pα} into distinct 4-dimensional sub-
spaces. This is the principle of the subspace separa-
tion [13, 15].

However, we can also see that the coefficient
of m0 in eq. (5) is identically 1 for all α. This
means that the trajectory vectors are also in the 3-
dimensional affine space within that 4-dimensional
subspace. It follows that multiple moving objects
can be segmented into individual motions by sepa-
rating the trajectory vectors {pα} into distinct 3-
dimensional affine spaces. This is the principle of
the affine space separation [16].

Theoretically, the segmentation accuracy should
be higher if a stronger constraint is used. However,
eq. (5) was derived from an affine camera model,
while the imaging geometry of real cameras is per-
spective projection. It can be shown [16] that the
modeling errors for approximating the perspective
projection by an affine camera are larger for the
affine space constraint than for the subspace con-
straint. In general, the stronger the constraint, the
more vulnerable to modeling errors. Conversely, the
solution is more robust to modeling errors, if not
very accurate, when weaker constraints are used.

According to Kanatani [16], the choice between
the subspace separation and the affine space sep-
aration depends on the balance between the cam-
era modeling errors and the image noise. The sub-
space separation performs well when the perspec-
tive effects are strong and the noise is small, while
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the affine space separation performs better for large
noise with weak perspective effects. However, we do
not know a priori which is the case for a given video
sequence.

If the object motion is planar, i.e., if the object
merely translates, rotates, and changes the scale
within the 2-dimensional image, one of the three
vectors m1, m2, and m3 can be set 0. Hence,
pα is constrained to be in a 3-dimensional sub-
space. Since the coefficient of m0 is identically 1,
pα is also in a 2-dimensional affine space within
that 3-dimensional subspace. It follows that we
can segment multiple planar motions into individual
objects by separating the trajectory vectors {pα}
into distinct 3-dimensional subspaces or distinct 2-
dimensional affine spaces. However, we do not know
a priori if the object motion is planar or which con-
straint should be used for a given video sequence.

4. A Priori Camera Models

For simplicity, let us hereafter call the constraint
that specifies the camera imaging model and the
type of motion the camera model . As we have ob-
served, we can expect high accuracy if we know
which camera model is suitable and accordingly use
the corresponding algorithm. We may test all the
models and the associated segmentation methods
and evaluate the reliability of the results a posteri-
ori, as Kanatani suggested [15, 16, 17]. However,
this works only if the segmentation is done cor-
rectly; if the final result is rejected as unreliable, one
cannot tell whether the assumed model was wrong
or the segmentation was not correctly done.

To overcome this difficulty, we introduce camera
models that should be valid irrespective of the seg-
mentation results. If, for example, one object is
moving relative to a stationary background while
the camera is moving, two independent motions are
observed in the image: the object motion and the
background motion. Since the trajectory vectors
for each motion is in a 4-dimensional subspace or
a 3-dimensional affine space in it, the entire tra-
jectory vectors {pα} should be in an 8-dimensional
subspace L8 or a 7-dimensional affine space A7 in
it1.

If the object motion and the background mo-
tion are both planar, the trajectory vectors for each
motion are in a 3-dimensional subspaces or a 2-
dimensional affine spaces in it, so the entire tra-
jectory vectors {pα} should be in a 6-dimensional

1The minimal subspace that includes an n1-dimensional
subspace and an n2-dimensional subspace has dimension
n1 + n2, while the minimal affine space that includes an
m1-dimensional affine space and an m2-dimensional affine
space has dimension m1 + m2 + 1.

subspace L6 or a 5-dimensional affine space A5 in
it.

It follows that in the pre-segmentation stage we
have L8, A7, L6, and A5 as candidate models ir-
respective of the segmentation results. They are
related by the following inclusion relationships (the
left-hand side of ← is a subspace of the right-hand
side):

L6

↙ ↖
L8 A5

↖ ↙
A7

(6)

If the number of independent motions is m, the
above L8, A7, L6, and A5 are replaced by L4m,
A4m−1, L3m, and A3m−1, respectively.

5. Model Selection

A naive idea for model selection is to fit the can-
didate models to the observed data and choose the
one for which the residual , i.e., the sum of the
square distances of the data points to the fitted
model, is the smallest. This does not work, how-
ever, because the model that has the largest degree
of freedom, i.e., the largest number of parameters
that can specify the model, always has the small-
est residual. It follows that we must balance the
increase in the residual against the decrease in the
degree of freedom. For this purpose, we use the ge-
ometric AIC [11, 12] (see [25, 26] for other criteria).

Let n = 2M . For the N trajectory vectors {pα}
in an n-dimensional space, define the n×n moment
matrix by

M =
N∑

α=1

pαp>α . (7)

Let λ1 ≥ λ2 ≥ · · · ≥ λn be its eigenvalues. If we
optimally fit a d-dimensional subspace to {pα}, the
resulting residual JLd is given by

JLd =
n∑

i=d+1

λi. (8)

The geometric AIC has the following form [11, 12]:

G-AICLd = JLd + 2d(N + n− d)ε2. (9)

Here, ε, which we call the noise level , is the stan-
dard deviation of the noise in the coordinates of the
feature points.

For fitting a d-dimensional affine space to {pα},
the geometric AIC is computed as follows. Define
the n× n moment matrix matrix by

M ′ =
N∑

α=1

(pα − pC)(pα − pC)>, (10)
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where pC is the centroid of {pα}. Let λ′1 ≥ λ′2 ≥
· · · ≥ λ′n be the eigenvalues of the matrix M ′. The
residual JAd of fitting a d-dimensional affine space
to {pα} is given by

JAd =
n∑

i=d+1

λ′i. (11)

The geometric AIC has the following form [11, 12]:

G-AICAd = JAd + 2
(
dN + (d + 1)(n− d)

)
ε2. (12)

We compare the geometric AIC for each candi-
date model and choose the one that has the smallest
geometric AIC.

6. Trajectory Data Compression

The segmentation procedure involves various vec-
tor and matrix computations. The trajectories over
M frames are represented by 2M -dimensional vec-
tors. If, for example, we track 100 feature points
over 100 frames, we have 100 200-dimensional vec-
tors as input data. The computation costs increases
as the number of frames increases.

However, all the trajectory vectors are con-
strained to be in a subspace of dimension d, which is
determined by the number of independent motions,
irrespective of the number M of frames. Usually, d
is a very small number.

In the presence of noise, the trajectory vectors
may not exactly be in that subspace, but the seg-
mentation computation is done there. This obser-
vation suggests that we can represent the trajec-
tories by d-dimensional vectors by projecting them
onto that d-dimensional subspace and taking a new
coordinate system in such a way that the first d
coordinate axes span the d-dimensional subspace.
If, for example, one object is moving relative to a
stationary scene, all trajectories are represented by
8-dimensional vectors.

This coordinate change is justified, since the sub-
space separation procedure is based only on the sub-
space structure of the data, which is invariant to
linear transformations of the entire space, resulting
in the same segmentation.

The actual procedure goes as follows. Let λ1 ≥
λ2 ≥ · · · ≥ λn be the eigenvalues of the matrix M
given in eq. (7), and {u1, u2, . . . , un} the orthonor-
mal system of the corresponding eigenvectors. All
we need to do is replace the n-dimensional vectors
pα by the d-dimensional vector

p̃α =




(pα, u1)
(pα, u2)

...
(pα,ud)


 , (13)

where (a, b) denotes the inner product of vectors a
and b.

It seems that we can similarly convert the trajec-
tory vectors {pα} into d-dimensional vectors when
a d-dimensional affine space Ad is chosen as the
camera model. Namely, we take a new coordinate
system such that its origin is in Ad and the first d
coordinate axes span Ad. The affine space structure
should be invariant to such a coordinate change.

However, the affine space separation described
in [11, 16] also uses part of the subspace separa-
tion procedure as internal auxiliary routines. Since
affine transformations destroy the subspace struc-
ture, affine coordinate changes are not allowed as
long as we use Kanatani’s affine space separation.

If a d-dimensional affine space Ad is chosen, we
instead compress {pα} into (d+1)-dimensional vec-
tors by projecting them onto the (d+1)-dimensional
subspace Ld+1 in which Ad is included, and the
projecting them onto Ad. The computation of the
latter part goes as follows.

We calculate a (d + 1) × (d + 1) matrix M ′ in
the same way as eq. (10) in the (d +1)-dimensional
subspace Ld+1. Let λ̃′1 ≥ λ̃′2 ≥ · · · ≥ λ̃′d be its
eigenvalues, and {ũ′1, ũ′2, . . . , ũ′d} the orthonor-
mal system of the corresponding eigenvectors. We
compute the (d + 1)× (d + 1) projection matrix

P̃
′
d =

d∑

i=1

ũ′iũ
′>
i , (14)

and replace (d + 1)-dimensional vectors p̃α by the
following (d + 1)-dimension vectors:

p̂′α = p̃C + P̃
′
d(p̃α − p̃C). (15)

The subspace separation [13, 15] and the affine
space separation [16] both internally use model se-
lection by the geometric AIC, which involves the
codimension of the constraint. If we use the com-
pressed data as input, the codimension should be
the difference of the dimension of the constraint not
from the original dimension of the data but from
their compressed dimension.

7. Summary of the Procedure

Our segmentation procedure is summarized as
follows.

1. Detect feature points in the first frame using
the Harris operator [4], and track them through
the entire video stream using the Kanade-
Lucas-Tomasi algorithm [24].

2. Estimate the number of independent motions
using the method described in [17, 15]2.

2The source program is publicly available at
http://www.suri.it.okayama-u.ac.jp/e-program.html.
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(a) Input sequence

Model L8 A7 L6 A5

G-AIC 836.9 779.1 688.9 631.1

(b) Geometric AIC

(c) Background points (d) Object points

Method Costeira-Kanade Ichimura Shi-Malik L8 A7 L6 A5

Correctness (%) 85.3 92.6 86.8 75.0 86.0 97.7 100

(e) Correctness of segmentation

Figure 1: (a) Input video sequence (1st, 8th, 15th, 22th, 30th frame) and successfully tracked 136 feature points.
(b) The geometric AIC for each model. (c) The segmented trajectories of background points. (d) The segmented
trajectories of object points. (e) The correctness of segmentation for different methods.

3. Remove outlier trajectories using the method
described in [23]2.

4. Test if the trajectory vectors span a 4m-
dimensional subspace L4m, a (4m− 1)-
dimensional affine space A4m−1, a 3m-
dimensional subspace L3m, or a (3m − 1)-
dimensional affine space L3m−1, using the geo-
metric AIC.

5. Select the model for which the geometric AIC
is the smallest.

6. Compress the trajectories into low-dimensional
vectors by projecting them onto the subspace
defined by the selected model.

7. Do segmentation by subspace separation2 [13,
15] or by affine space separation2 [16] according
to the selected model.

8. Real Video Experiments

We tested our proposed method using real video
sequences. The image size is 320×240 pixels. In or-
der to focus only on the segmentation performance
by our proposed model selection, we assumed that
the number of independent motions was two in the
following examples.

Fig. 1(a) shows five frames decimated from a 30
frame sequence taken by a moving camera. We cor-
rectly tracked 136 points, which are indicated by
the symbol 2 in the images.

We fitted to them an 8-dimensional subspace L8,
a 7-dimensional affine space A7, a 6-dimensional

subspace L6, and a 5-dimensional affine space A5

and computed their geometric AICs. Fig. 1(b)
shows their values. As we can see, the 5-dimensional
affine space A5 was chosen as the best model.

In order to compute the geometric AIC as given
in eqs. (9) and (12), we need to know the noise level
ε. Theoretically, it can be estimated from the resid-
ual of the most general model L8 if the noise in each
frame is independent and Gaussian [11]. In reality,
however, strong correlations exist over consecutive
frames, so that some points are tracked unambigu-
ously throughout the sequence, while others fluctu-
ate from frame to frame [23]. Considering this, we
empirically set ε to 0.5 pixels3. We have confirmed
that changing this value over 0.1 ∼ 1.0 does not af-
fect the selected model in this and the subsequent
experiments.

The video sequence of Fig. 1(a) was taken from a
distance, and the object (a car) and the background
are moving almost rigidly in the image. Hence, the
selection of A5 seems reasonable.

Figs. 1(c) and (d) show the trajectories of the
object points and the background points segmented
by the affine space separation based on the selected
model A5.

Fig. 1(e) compares the correctness of segmenta-
tion measured by (the number of correctly classified
points)/(the total number of points) in percentage

3We also used this value for the outlier removal procedure
[23].
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(a) Input sequence

Model L8 A7 L6 A5

G-AIC 434.6 413.6 398.7 379.8

(b) Geometric AIC

(c) Background points (d) Object points

Method Costeira-Kanade Ichimura Shi-Malik L8 A7 L6 A5

Correctness (%) 57.1 57.1 57.1 92.0 61.9 61.9 100

(e) Correctness of segmentation

Figure 2: (a) Input video sequence (1st, 5th, 9th, 13th, 17th frame) and successfully tracked 63 feature points.
(b) The geometric AIC for each model. (c) The segmented trajectories of background points. (d) The segmented
trajectories of object points. (e) The correctness of segmentation for different methods.

for different methods. The correctness of individual
matches was judged by visual inspection.

In the table, “Costeira-Kanade” means the
method of Costeira and Kanade [1], which progres-
sively interchanges the rows and columns of the
(shape) interaction matrix (Appendix A) to make
it approximately block-diagonal in such a way that
the off-diagonal elements have small absolute val-
ues. “Ichimura” means the method of Ichimura [6],
who applied the Otsu discrimination criterion [20]
to each row of the interaction matrix and segmented
the elements according to the row with the high-
est discrimination measure. “Shi-Malik” indicates
the result obtained by partitioning the graph de-
fined by the interaction matrix (the feature points
as vertices and the absolute values of its elements
as the weights of the corresponding edges) in such a
way that the normalized cut [21] is minimized (Ap-
pendix B). The fuzzy clustering of Inoue and Ura-
hama [10] is also based on a similar idea. The sym-
bols L8, A7, L6, and A5 indicate the subspace sep-
aration and affine space separation using the corre-
sponding models. As expected, the affine space sep-
aration using the selected model A5 alone achieved
100% correct segmentation.

Fig. 2(a) shows another video sequence, through
which 63 points are tracked over 17 frames. The
results are arranged in the same way as Figs. 2(b)–
(e). Again, A5 was chosen as the best model, and
the affine space separation using this model alone

achieved 100% correct segmentation. This sequence
was also taken from a distance, and the object and
the background are moving almost rigidly in the
image, so the choice of A5 seems reasonable.

Fig. 3(a) shows a different sequence, through
which 73 points are tracked over 100 frames. This
sequence was taken near the moving object (a per-
son) by a moving camera, so the perspective ef-
fects are relatively strong. As expected, the 8-
dimensional subspace L8 was chosen as the best
model, and the subspace separation using it gave
the best result.

Table 1 shows the computation time and its re-
duction ratio brought about by our dimension com-
pression for the above three examples. Here, we
converted the trajectories into 8-dimensional vec-
tors, irrespective of the selected model. The reduc-
tion ratio is measured by (the computation time
for compressed data)/(the computation time for the
original data) in percentage.

The sequence in Fig. 1 is only 30 frames long,
but the number of feature points is very large. In
this case, the reduction ratio is only 94.7%. The
sequence in Fig. 2 is also short, and the number of
feature points is very small. Again, the reduction
ratio is merely 71.4%. In contrast, the sequence in
Fig. 3 is very long with relatively a small number of
feature points. In this case, the computation time
is dramatically reduced to 15.2%.

Thus, the reduction of computation time is par-
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(a) Input images

Model L8 A7 L6 A5

G-AIC 2117.9 2281.5 3158.5 3340.1

(b) Geometric AIC

(c) Background points (d) Object points

Method Costeira-Kanade Ichimura Shi-Malik L8 A7 L6 A5

Correctness (%) 76.7 58.9 76.7 93.1 60.2 57.5 89.0

(e) correctness

Figure 3: (a) Input video sequence (1st, 25th, 50th, 75th, 100th frame) and successfully tracked 73 feature points.
(b) The geometric AIC for each model. (c) The segmented trajectories of background points. (d) The segmented
trajectories of object points. (e) The correctness of segmentation for different methods.

Table 1: The computation time and its reduction ratio.

Fig. 1 Fig. 2 Fig. 3

Number of frames 30 17 100

Number of points 136 63 73

Computation time (sec) 373 5 12

Reduction ratio (%) 94.7 71.4 15.2

ticularly significant for a long sequence. This is be-
cause the compressed dimension d of the data de-
pends only on the camera model, irrespective of the
number M of the frames. As a result, the computa-
tion time is approximately a function of the number
N of feature points alone. From Table 1, we can
guess that the computation time is approximately
O(N5) or O(N6), through rigorous analysis is very
difficult.

9. Concluding Remarks

We have proposed a technique for automatically
selecting the best model by using the geometric AIC
in an attempt to improve the segmentation accuracy
of the subspace separation [13] and the affine space
separation [16] before doing segmentation. Using
real video sequences, we demonstrated that the sep-
aration accuracy indeed improves if the segmenta-
tion is based on the selected model.

We also confirmed that we can compress the tra-
jectories into low-dimensional vectors, irrespective
of the frame number, by projecting them onto the

subspace defined by the selected model. This is very
effective in reducing the computation time for long
video sequence.
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Appendix A: Interaction Matrix

Consider a set of N points {pα} ∈ Rn. Suppose
each point belongs to one of the m r-dimensional
subspaces Lr

i of Rn, i = 1, ..., m, in such a way that
each Lr

i contains more than r points. Let d = rm.
Define the N ×N metric matrix G = (Gαβ) by

Gαβ = (pα, pβ). (16)

Let λ1 ≥ · · · ≥ λN be its eigenvalues, and
{v1, . . . , vN} the orthonormal system of the corre-
sponding eigenvectors. Define the N × N (shape)
interaction matrix Q by

Q =
d∑

i=1

viv
>
i . (17)

Theorem 1 The (αβ) element of Q is zero if the
αth and βth points belong to different subspaces:

Qαβ = 0, pα ∈ Lr
i , pβ ∈ Lr

j , ]i 6= j (18)

This theorem, which is the essence of the
Costeira-Kanade algorithm [1], is proved as follows.
Since N (> n) vectors {pα} are linearly dependent,
there exist infinitely many sets of numbers {cα},
not all zero, such that

∑N
α=1 cαpα = 0, but if the

points {pα} belong to two separate subspaces L1

and L2 such that L1 ⊕ L2 = Rn (⊕ denotes di-
rect sum), the set of such “annihilating coefficients”
{cα} (“null space” to be precise) is generated by
those for which

∑
pα∈L1

cαpα = 0 and those for
which

∑
pα∈L2

cαpα = 0 (A formal proof is given
in [13]). This theorem also plays an important role
in Kanatani’s subspace separation [13, 15] and affine
space separation [16].

The eigenvalues and eigenvectors of the metric
matrix G can also be obtained by computing the
eigenvalues and eigenvectors of the N ×N moment
matrix

M =
N∑

α=1

pαp>α . (19)

Let λ1 ≥ · · · ≥ λN be its eigenvalues, and
{v1, . . . , vN} the orthonormal system of corre-
sponding eigenvectors. The matrices G and M are
both positive semi-definite symmetric and of the
same rank, sharing the same nonzero eigenvalues.
Their eigenvectors for the nonzero eigenvalues are
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converted to each other in the form

vi =
1√
λi




(p1, ui)
...

(pN , ui)


 , ui =

1√
λi

N∑
α=1

viαpα,

(20)
where viα is the αth component of vi.

A third way4 is to do the singular value decom-
position (SVD) of the n×N observation matrix

W =
(

p1 · · · pN

)
, (21)

into the form

W = Un×ndiag(σ1, σ2, ..., σn)V >
N×n, (22)

where diag(σ1, σ2, ..., σn) denotes the diagonal ma-
trix with the singular values σ1 ≥ σ2 ≥ · · · ≥ σn

as its diagonal elements in that order. It is easy to
see that σ2

1 , . . . , σ2
n coincide with λ1, . . . λn and that

V N×n and Un×n are, respectively, the N × n ma-
trix consisting of v1, . . . , vn as its columns and the
n×n matrix consisting of u1, . . . , un as its columns.

We can choose from among the above three meth-
ods the most efficient one5, which generally depends
on the relative magnitude of N and n.
Appendix B: Normalized Cut Minimization

Consider the problem of partitioning a weighted
undirected graph with N vertices. Regarding the
weight of each edge as the similarity between the
two vertices connected by that edge, we want to
partition the vertices into two groups A and B in
such a way that the similarities between the vertices
within each group are large while the similarities
between the vertices that belong to different groups
are small.

Let Wαβ be the weight of the edge that connects
vertices α and β, and dα (=

∑N
β=1 Wαβ) the degree

of the vertex α, i.e., the sum of the weights of the
edges starting from it.

Let xα be the group indicator of vertex α, taking
the value 1 if it belongs to group A and the value
0 if it belongs to group B. Shi and Malik [21] pro-
posed to partition the graph in such a way that the
following normalized cuts is minimized:

Ncut =

∑
xα=1,xβ=−1

Wαβ

∑
xκ=1

dκ

+

∑
xα=−1,xβ=1

Wαβ

∑
xκ=−1

dκ

. (23)

4This is the original form described by Costeira and
Kanade [1], but their proof is rather difficult to understand.
Theoretically, it is more consistent to start from the metric
matrix G and regard the SVD as a computational tool.

5In theory, the use of SVD should be the most efficient if
it is properly implemented.

It appears that in order to reduce the similarity
between the two groups one only needs to minimize
the cut , i.e., the sum of the weights of the edges
that connect the two groups. However, this would
often result in an unbalanced partitioning such as
a single vertex with a small degree forming one
group. Eq. (23) is obtained by normalizing the cut
by the sum of the similarities within each group,
so that the similarities within each group become
large while the similarities between the two groups
become small.

Shi and Malik [21] showed that the normalized
cut can be minimized by the following procedure:

1. Define the N ×N diagonal matrix

D = diag(d1, ..., dN ). (24)

2. Let W be the N × N matrix whose (αβ) ele-
ment is Wαβ .

3. Compute the N -dimensional generalized eigen-
vector y = (y1, . . . , yN )> of the generalized
eigenvalue problem

(D −W )y = λDy, (25)

for the second smallest generalized eigenvalue.
4. Let ymax and ymin be, respectively, the max-

imum and the minimum of y1, · · · , yN . Di-
vide the interval [ymin, ymax] into an appropri-
ate number of subintervals of equal width. For
each dividing point y∗, let xα = 1 if yα > y∗
and xα = −1 if yα ≤ y∗, α = 1, ..., N , and
compute the normalized cut (23). Do this for
all the dividing points and find the value y∗ for
which the normalized cut is minimized.

5. Return the N -dimensional binary vector x =
(x1, . . . , xN )> given by that y∗.

Step 3 of the above procedure can be computed
as follows: Let

D−1/2 = diag(
1√
d1

, ...,
1√
dN

), (26)

and compute the N -dimensional eigenvector z of
the N ×N symmetric matrix

A = D−1/2(D −W )D−1/2, (27)

for the second smallest eigenvalue. The vector y is
given by multiplying z by the N ×N matrix

D1/2 = diag(
√

d1, ...,
√

dN ). (28)

Namely, return
y = D1/2z. (29)
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