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Statistical Analysis of Focal-Length
Calibration Using Vanishing Points

Kenichi Kanatani

Abstract—Camera focal-length calibration is analyzed by applying a
statistical error model of edge fitting in digital images. The reliability of
the focal length is computed from the reliability of the vanishing points,
and the reliability of the vanishing points is computed from the reliability
of the edges to which lines are fitted. A planar grid pattern is placed in
the scene for this purpose, and the 3-D configuration that maximizes
the reliability is theoretically derived. Then, multiple data are fused by
optimally weighted averaging. A real image example is given.

I. INTRODUCTION

Visual sensing plays a central role in controlling robots that
recognize environments, and 3-D information is easily obtained by
detecting “vanishing points” in robotics environments where many
parallel lines usually exist (7], [8], [10]. Vanishing points also play
a key role in autonomously navigating land vehicles by vision [12],
(13}, [16], [18].

Computing 3-D interpretations of images requires the imaging
geometry of the camera, and such parameters as thé 3-D location
of the center of the lens, the 3-D orientation of the optical axis, and
the focal length must be accurately calibrated. Again, the detection
of vanishing points plays an essential role 2], [5], (113, [21}.

Thus, accurate detection of vanishing points is one of the most
essential components of 3-D visual sensing, and various techniques
have been proposed (1], (3}, [7], [17], [22]. However, the reliability
of such techniques is usually tested empirically by using synthetic
and real data. To further the progress of robotics applications, we
need a theory to evaluate the reliability of computation based on
a realistic model of the statistical behavior of noise and error,
correctly estimating the confidence bound and theoretically proving
the optimality of the method. This is particularly necessary when
we attempt to enhance system performance by fusing multiple data
obtained by multiple sensors (sensor fusion), because reliable data
must be given large weights while unreliable data must be given
small weights.

Recently, a comprehensive mathematical theory that serves this
purpose was proposed by Kanatani [9]. In this paper, we apply his
theory to camera focal length calibration. The reliability of the focal
length is computed from the reliability of the vanishing points, and the
reliability of the vanishing points is computed from the reliability of
the edges to which lines are fitted. We derive a calibration procedure
using a planar grid pattern, and the 3-D configuration that maximizes
the reliability of the computed focal length is theoretically derived.
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Fig. 1. Imaging geometry and N-vectors of a point and a line.

Then, multiple data are fused by optimally weighted averaging. A
real image example is also given.

II. PERSPECTIVE PROJECTION AND N-VECTORS

Assume the following camera model. The camera is associated
with an XY Z coordinate system with its origin O at the center of
the lens and the Z axis along the optical axis (Fig. 1). The plane
Z = f is identified with the image plane, on which an =y coordinate
system is defined so that the & and y axes are parallel to the X and
Y axes, respectively. Let us call the origin O the viewpoint and the
constant f the focal length.

A point (. y) on the image plane is represented by the unit vector
m indicating the orientation of the ray starting from the viewpoint
O and passing through that point. A line Az + By + C = 0 on the
image plane is represented by the unit surface normal = to the plane
passing through the viewpoint O and intersecting the image plane
along that line (Fig. 1.) Their components are given by

T A
m==xN y n==+N B (1)
f Clf

where N[-] denotes normalization into a unit vector. Let us call m
and n the N-vectors of the point and the line [8].

A point (X.Y.Z) in the scene is perspectively projected onto a
point (x.y) on the image plane given by

1’=f%- :t,'=f}§- 2

We define the N-vector of a point in the scene to be the N-vector
of its projection on the image plane, and the N-vector of a line in
the scene to be the N-vector of its projection on the image plane. In
order to avoid the confusion of whether we are referring to a point in
the scene or its projection on the image plane, we call a point in the
scene a space point and a point on the image plane an image point.
Similarly, we call a line in the scene a space line and a line on the
image plane an image line.

If m and n are the N-vectors of an image point P and an image
line I, respectively, image point P is on image line [, or image line
1 passes through image point P, if and only if

(m.n)=0 (3)

where (-.-) denotes the inner product of vectors. Then we say that
image point P and image line ! are incident to each other and call
(3) the incidence equation.

An image point that is on two distinct image lines is called their
intersection, and an image line that passes through two distinct image
points is called their join. If n, and n. are the N-vectors of two
distinct image lines, the N-vector m of their intersection is given by

m = :!:_\-[111 X Rg] (4)

because m must satisfy the incidence equation (3) for both image
lines: (m.my) = 0 and (m.n2) = (. Dually, if m; and m. are the

(b)

Fig. 2. (a) The vanishing point of a space line. (b) The vanishing line of a

planar surface in the scene.

N-vectors of two distinct image points, the N-vector n of their join
is given by

n= :t.»\‘—[ml X mg] (5)

because n must satisfy the incidence equation (3) for both image
points: (m,.n) = 0 and (ms.n) = (.

The use of N-vectors for representing image points and image
lines is equivalent to using homogeneous coordinates. Although
homogeneous coordinates can be multiplied by any nonzero number.,
computational problems arise if they are too large or too small. So.
it is convenient to normalize them into a unit vector. Kanatani [§]
reformulated projective geometry from this viewpoint. Rewriting the
relationships of projective geometry as “computational procedures,”
he called his formalism computational projective geometry. In the
following, we adopt his formalism, regarding unit vector m whose Z
component is 0 as the N-vector of an ideal point (a point at infinity)
and n = (0.0.%1) as the N vector of the ideal line (the line ar
infiniry).

As is well known, projections of parallel space lines meet at
a common *“vanishing point” on the image plane. Formally, the
vanishing point of a space line is the limit of the projection of a
point that moves along the space line indefinitely in one direction
(both directions define the same vanishing point). From Fig. 2(a), it
is easy to confirm the following theorem:

Theorem 1: A space line extending along unit vector m has, when
projected, a vanishing point of N-vector m.

Since the vanishing point is determined by the 3-D orientation of
the space line alone, irrespective of its location in the scene, we see
that:

Corollary 1: Projections of parallel space lines intersect at z
common vanishing point.

As is also well known, projections of planar surfaces that are
parallel in the scene define a common “vanishing line.” Formally,
the vanishing line of a planar surface in the scene is the set of all the
vanishing points of space lines lying on it. From Fig. 2(b), it is easy
to confirm the following theorem:

Theorem 2: A planar surface of unit surface normal = has, when
projected, a vanishing line of N-vector %7.

Since the vanishing line is determined by the 3-D orientation of
the planar surface alone, irrespective of its location in the scene, we
see that:

Corollary 2: Projections of planar surfaces that are parallel in the
scene define a common vanishing line.
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Thus, if a vanishing point is detected, its N-vector indicates the 3-
D orientation of the corresponding space line, and if a vanishing
line is detected, its N-vector indicates the surface normal to the
corresponding planar surface. This fact plays an essential role in 3-D
scene analysis of various robotics applications.

III. StATISTICAL MODEL OF EDGE FITTING

In conventional image processing, edges are detected by the Hough
transform or an edge operator, and a set of edge pixels is obtained by
applying thresholding and thinning processes. Then, lines are fitted
to the edge pixels, say, by least squares. Since vanishing points are
estimated as intersections of these fitted lines, the reliability of the
vanishing points depends on the reliability of the edges. Thus, we
need a statistical model for the error behaviors of edge fitting,

Let n be the N-vector of an image line fitted to edge pixels in
the absence of noise. In the presence of noise, each edge pixel is
displaced. Let n’ = n + An be the N-vector of the image line fitted
to the displaced edge pixels. Since the noise behavior is random,
the error An is regarded as a vector-valued random variable. We
assume that Ar is sufficiently small as compared with n. Then An
is orthogonal to » to a first approximation, and »' = n + An is
also a unit vector to a first approximation. We define the covariance
matrix of n by

Vin] = E[AnAnT) - ®

where E[-] means expectation and T denotes transpose. From this
definition, we have the following observations:

*» The covariance matrix V[n] is symmetric and positive semidef-
inite.

* The covariance matrix V[n] is singular with = itself as the unit
eigenvector for eigenvalue 0: V[rjn = O.

e If 1%, 022, and 0 (01 > o2 > 0) are the three eigenvalues
and if {u;, w2, m} is the corresponding orthonormal system
of eigenvectors, the covariance matrix V[r] has the following
“spectral decomposition” (see [10]):

Vin] = oluu] + 022usul (+0°mm ). )

* The root mean square of the orthogonal projection of noise An
onto orientation I (unit vector) takes its maximum for I = u; and
its minimum for I = u,. The maximum and minimum values are
o1 and o2, respectively.

* The root mean square magnitude [|An| is
Vo2 + 022,

In intuitive terms, error An is most likely to occur in orientation
u; (equal to the unit eigenvector of V[r] for the largest eigenvalue
o1%) and least likely to occur in orientation u (equal to the unit
eigenvector of V'[n] for the second largest eigenvalue 0,2). The
magnitude ||An|| is o in orientation u, and o, in orientation u,
in the sense of root mean square.

The theoretical expression of this covariance matrix was derived
from a realistic model of noise by Kanatani [9], who also conducted
simulations to confirm the result. Since the derivation requires a
lengthy analysis, we omit the details and list the final form (Fig. 3):

Theorem 3: The covariance matrix of the N-vector n of an edge
segment of length w in orientation u is given by

trV[n] =

mgm¢ ®)

6 T K

4 = — ——

Vin) = s ut 2f2w

where m¢ is the N-vector of the center point of the edge and & is
the image resolution.

The length w is measured in pixels. If m, and m, are the N-

vectors of the endpoints of the edge segment, the vectors « and m¢

Fig. 3. Line fitting to an edge segment.

are formally defined by

u = *N[m, — my), mg = £N{m. + my) ©)]

and the three vectors {u, mg, »} form an orthonormal system of
unit eigenvectors of Vr] for eigenvalues 6x/w?, x/2f*w, and 0,
respectively. The image resolution & is defined by
&2
= —-
~
where ¢ is the image accuracy defined as the root mean square of the
displacement of each edge pixel, while v is the edge density defined
as the number of edge pixels per unit pixel length. If the image is
ideal, the image accuracy is at most one pixel and edge pixels are
aligned at one pixel intervals, so 5 = 1. .
If the length w of the edge segment is very small as compared
with the focal length f, the right-hand side of (8) is dominated by
the first term, and (8) is approximated by

(10)

. 6x
Vin] = Euu". (11)
It has been experimentally confirmed that this is indeed a very good
approximation [9]. From this, we observe that

* The error in the N-vector » almost always occurs in the

orientation u of the fitted line.
+ The error is approximately proportional to /% of the image
resolution x (hence, proportional to the image accuracy € and
to v~!/2 of the edge density 7).

* The error is approximately proportional to w~3/2 of the length
w of the edge segment.

Here, we are assuming that an image line is fitted to a dense
sequence of edge pixels by least squares, but if an image line is
defined as the join of two data points, its error behavior is somewhat
different. It can be shown [9] that the covariance matrix V[n] of the
N-vector » of the join has the form

Vin] = (ui,)%mT (12)
where u is defined by the first of (9) for the N-vectors m, and m,;
of the two points, and w is the distance (in pixels) between them.

IV. OpTIMAL ESTIMATION OF VANISHING POINTS

If image lines {l.}, a = 1,--.. N, are projections of parallel

space lines, they are concurrent on the image plane. Their common

intersection is the “vanishing point” whose N-vector m indicates

the 3-D orientation of the corresponding space lines (Theorem 1).

If {ra}, @ = 1..-. N, are the N-vectors of the image lines,

the incidence equation (m.n,) = 0 (see (3)) must hold for a =

1.---.N. Hence, m is robustly computed by the least squares

optimization

~N

Z Wa(m.n,)® — win.

a=1

(13)
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(b)

Fig. 4. (a) The common intersection of concurrent lines. (b) The center line
lG of concurrent lines. Point Pg is conjugate to the vanishing point P on
line Ig.

(See Fig. 4(a).) The weights W, should be determined so that reliable
* data are given large weights while unreliable data are given small
weights. It can be shown [9] that the optimal weights in the sense of
“maximum likelihood estimation” are

Wa = 1

(m, Vina]m) (14

It is easily seen that reliable data have small covariance matrices, and
are thereby assigned large weights, while unreliable data have large
covariance matrices and are thereby assigned small weights. Since

N
ZM.,(m ne)? = (m. (Z W",,no,nz) m) (15)

a=l a=1

is a quadratic form in unit vector m, it is minimized by the unit
eigenvector of the moment matrix

N= Z Wanan, (16)

for the smallest eigenvalue.

Note that the optimal weights contain the N-vector m we want to
compute. This difficulty can be avoided by computing approximately
optimal weights by using an estimate of m, say the solution for
constant weights. It can be shown [9] that if the estimate of m has an
error Am, the resulting solution m has an error of only O(||Am||?).

If there is no noise, the computed m is exact. If the N-vector n,,
of each line is perturbed, the resulting N-vector m is perturbed, say,
by Am. It can be shown [9] that its covariance matrix V[m] =
E[AmAmT] is given as follows:

Theorem 4: Let {m, u, v} be the orthonormal system of the
eigenvectors of the optimal moment matrix N for eigenvalues 0, A,
and A, respectively. The covariance matrix V'[m] of the N-vector of
the optimally estimated common intersection is

T
. uu vy
Viml = X+ 5

Let ng be the unit eigenvector of the moment matrix N of (16)
for the largest eigenvalue. Vector ng can be regarded as the N-vector
of a hypothetical center line lc of the N lines (Fig. 4(b)). Since the
three eigenvectors form an orthonormal system, the unit eigenvector
mc for the second largest eigenvalue equals +m x ng. The vector

a7

mc is orthogonal to both ng and m and hence can be identified
with the IV vector of the point Pc “conjugate” (8] to the vanishing
point P on the center line Ig.

From (16), the eigenvalue of N for ng is given by

(rg.Nng) = Z Wa(ng.na) . (18)

a=1

The eigenvalue for mc is

N N
ZWa(m X n(;.na,)2 = Z W’alm,nc,nalz

o=t (19)
where |a,b,c|(= (a x b,c) = (b X c.a) = (¢ X a.b)) denotes the
scalar triple product of vectors @, b, and ¢. From Theorem 4, the
covariance matrix V[m] of the N-vector m of the vanishing point
is given by

(mc,Nmc) =

a=1

memd& neng
Ef:n Walm.ng.n.J? E:’_l Wa(ng.na)?

If the separations among the lines are small, the right-hand side is
dominated by the first term. If ¢, is the angle between ng and n.,
we have

Vm] = (20)

Im,ng, nal’ = (m.ng X ns)? = sin® ¢ 21

because m is parallel to ng X no. Let us call ¢, the deviation angle

(from the hypothetical center line). If the covariance matrix V[n,)

of each line is approximated in the form of (11), we have
[iTY)

Vina] —uauI = —5(mGa X na)(mea X 7a)”  (22)
where u, is the orientation of the ath edge segment and mg, is
the N-vector of its center point. The optimal weight W, is then
approximated by

W, 1 wa’ 23)
= m.v [ra]m) 6n|m. MGa.Na|?’
If 8, is the angle between mc. and m, we have
|m.ma‘,.n.,,,|2 = (M X MGo.Ra)? = sin’ 8 24)

because n, is parallel to m X mg.. The angle 8, indicates the
disparity of the vanishing poim from the center point of the ath edge
segment.

If these are substituted into (20), we obtain the approximation

Gnmcmc

Vim] =
fm] ~ SN wal sin? @a/ sin? 8,

(25)

From this, we have the following observations:

* The error of the vanishing point is most likely to occur along
the center line.

* The error of the vanishing point is approximately proportional
to x'/2 of the image resolution ».

* The ermror of the vanishing point is approximately proportional
to w, ~%/2 of the lengths wa’ of the individual edge segments.

* The error of the vanishing point is approximately proportional
to 1/sin @a of the deviation angles ¢, of the individual edge
segments from the center line.

* The error of the vanishing point is approximately proportional
to sinf, of the disparities 8, of the vanishing point from the
center points of the individual edge segments.

See [9] for numerical experiments that confirm these observations.
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)

Fig. 5. (a) N-vectors of image points and image lines are altered if the focal
length f is altered. (b) Vanishing points of two sets of parallel space lines
mutually orthogonal in the scene.

V. DETERMINATION OF THE FOCAL LENGTH

When we analyze images in terms of N-vectors, we are assuming
a camera model (Fig. 1). This camera model can be hypothetical:
it need not correspond to the actual camera as long as no 3-D
interpretation is involved. For example, when we compute vanishing
points as intersections of concurrent image lines, or vanishing lines as
image lines passing through collinear image points, we can arbitrarily
assume the camera model.

However, if we want to infer 3-D relationships such as 3-D
orientations of space lines and surfaces and their orthogonality in
the scene, the resulting 3-D interpretations are valid only when the
camera model exactly agrees with the imaging geometry. Hence, the
camera model must be adjusted so that it agrees with the actual
camera. This process is called camera calibration, and is one of the
most important problems in robotics applxcanons [21, (5], (6}, {11],
(14], [15), [19}-21].

The following proposition is easily obtained from the definition of
the N-vector (see (1) and Fig. 5(a)):

Proposition 1: Letm = (my.m2.m3)" and »n = (nl,ng.ng)T
be the N-vectors of an image point and an image line, respectively,
defined with respect to focal length £, and let m' = (m}.mj, m5)7
and n' = (n},nh,n3)7 be the N-vectors of the same image point
and image line, respectively, defined with respect to a different focal
length f'. Then

m ny
m' =N [( m ) . n' =N ( n2 ):I .
(f'/f)ms (f/f)ms
(26)

Proof: The image coordinates (x.y) are given by
m2

y=f2.

m3

my

z= f— 27)

If the equation of the image line is Az + By + C = 0, we have
A = kny. B = kns. C=kfns (28)

where k& is an arbitrary nonzero constant. From (1), we see that

()] =]
m =+N Y EN| | fma/ms
f! f!
my
=xN [( m )]
(f'/fyms

(29)

Lnl

A 3
(48]
c/f kfns/f'
nm
=N [( n2 )]
(f/f)ns

From this, we obtain the following results:

Proposition 2: Ifm = (m),mz2.m3)" andm' = (m}.mh. m4)7
are the N-vectors of the vanishing points of mutually orthogonal space
lines defined with respect to a tentative focal length f, the true focal
length f is given by

; mym) + mam)
f= f\/ —_—
m3m3

Proof: Let 7 and m' be the N-vectors corresponding to m and
m', respectively, expressed with respect to the true focal length f.
Since they indicate the 3-D orientations of the corresponding space
lines (Theorem 1), they must be orthogonal to each other. From
Proposition 1, s and ' are orthogonal if and only if

(30)

@n

mimy + mamb + m3m3 =0 (32)

fﬁ
from which follows (31). n

Proposition 3: If n = (n1,n2.n3)" and n' = (n},nh.n4)7 are
the N-vectors of the vanishing lines of planar surfaces mutually
orthogonal in the scene defined with respect to a tentative focal length
f, the true focal length f is given by

7
: _ nany
f=1 v nn| + ngnj’

Proof: Let and n’ be the N-vectors corresponding to n and n',
respectively, expressed with respect to the true focal length f. Since
they indicate the unit surface normals to the corresponding planar
surfaces (Theorem 2), they must be orthogonal to each other. From
Proposition 1, # and #’ are orthogonal if and only if
2

n3n3 =0

(33

niny + nany + f (34)
from which follows (33). u
Proposition 2 provides the following simple procedure for cali-
brating the focal length (Fig. 5(b)):
1) Take an image of a rectangular grid pattern placed in the scene.
2) Fit lines to the grid line and compute the N-vectors of the
vanishing points in the two directions with respect to a tentative
focal length f.
3) Compute the true focal length f by (32).

This procedure is very simple, and essentially the same idea has
been suggested by many researchers [2], [7], [11], [21]. However,
(31) does not necessarily yield a reliable value if the vanishing points
are located very far from the image origin o; as the vanishing points
move away from o, both the numerator and the denominator approach
0. This means that the two vanishing points must be close to the image
origin o, but as one approaches o, the other goes away from it, and the
image lines that define the vanishing points become short or close to
each other, thereby reducing the accuracy of the detected vanishing
points. Thus, the reliability of calibration critically depends on the,
3-D configuration of the space lines.

In the following, we analyze various effects that affect the relia-
bility of this computation and compute an “optimal estimate” of the
focal length and its “confidence interval.”
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V1. RELIABILITY OF FOCAL LENGTH

If the tentative focal length f happens to be the exact value, the
left-hand side of (31) should be precisely f. However, if the N-vectors
m and m’ are computed from a real image, they may contain errors,
and the left-hand side of (31) may predict f + Af. The variance
VIf] = E[(Af)?] is given as follows:

Theorem 5: If errors in the N-vectors m = (m;.m3,m3)7 and

= (m}.m}.m})" are independent, the variance V[f] is given by

f2 (m'.V[m]m') + (m,V[m'|m)
(mamg3')?

Vifl= (33)

where V[m] and V[m'] are the covariance matrices of N-vectors m
and m', respectively.

Proof: Equation (31) was derived from (32). If m; and m are
perturbéd by Am; and Am!, i = 1, 2, 3, respectively, we have to
a first approximation

Amim] +mi1Am] + Amamy + maAmy

f 2fAf f

f"’ ——mymy+ = f fmgAmg =0. (36)

f

Amsma +

If we let f = f, we obtain (37), given at the bottom of this page.
Since errors in m and m’ are independent, the variance is given by

f m'" E[AmAmT|m’ + m” E[Am/’ Am'T]m

E[(AfY) =

(m3zm})?
fz (m'.V[m]m') + (m. V[m']m)
1 (mamj)? (38)
| |

If the two vanishing points are detected as intersections of N and
N’ concurrent image lines fitted to edge segments, substitution of (25)
into (35) yields the approximation given by (39) at the bottom of this
page, where mc and m are the N-vectors of the points “conjugate”
to the vanishing points on the “center lines” of the two sets of image
lines, wo and w), are the lengths of the edge segments, 9o and &
are their “deviation angles,” and 8, and 6, are the “disparities” of
the vanishing points from the center points of the individual edge
segments.

If @ and @' are the disparities of the two vanishing points from the
image origin o, we have
(40)

. ) 9
(mzm3)? = cos® 8 cos® ¢’

Suppose the center lines of the two sets of image lines meet at the
image origin 0. Then we have the following:

Proposition 4:

cos @

c.m) = 1)

g (me sng "

Proof: In spherical coordinates, vectors m and m’ have com-
ponents

sin @ cos ¢ sin 8’ cos ¢’

m=| sinfsing ). m' = | sind'sing’ |. (42
cosf cos @’

Since m and m' are mutually orthogonal, we have

(m.m') = sin @ sin 8'(cos ¢ cos ¢’ + sin @ sin ¢’ ) + cos § cos 8’

=sinfsin 8’ cos(¢ = ¢') 4+ cosfcosd’ =0 43)
or
. '
cos(¢ — Q’) = _C’LGC_(_)_S_GT (44)
sinfsin @

The N-vectors m¢ and m¢ are expressed in spherical coordinates
in the form

— cos 8 cos ) —cos ' cos ¢’
me = | —cosfsing |. me = | —cosf'sing’ |. (45

sin @ sin @'
“Hence,
(m.mg) = = sinf cos '(cos ¢ cos ¢’ + sin @sin@') + cosfsin '
= —sinf cos ' cos(¢ — ¢') + cos § sin §'
. 2 gt .
=-c°b—0.cu+c050$in0'= c‘oae' . (46)
sin ¢’ sin @'
The first of (41) is obtained similarly. n

If the center points of the edge segments are located close to the
image origin o, the disparities 6, and 6, are all approximated by 8
and @', respectively. Hence, (39) is further approximated by

3k f 1/ cos? @ 1/ cos® §'
Vil = L LU
o Walsin® oo T0 wa3sin? ¢l
7

From this, we observe that

* The error of f increases as the error of the detected vanishing
points, which is approximately proporuonal to k'/2 of the image
resolution &, to we~/? and w’, ~*/* of the individual lengths
wa and w!, of the edge segments, and to 1/ sin @ and 1/ sin 64
of their deviation angles ¢, and &, from their center lines.

» The error of f is approximately proportional to 1/cosé and
1/ cos §' of the disparities 4 and 6’ of the vanishing points from
the image origin.

f Amym| + myAmy + Amoaml + mayAmb + Amzm’y + mazAm)y

Af = 2 mam’y
__i(m Am) + (m. Am) 67
-2 mam’
v [f] 3x f2 ] (mC'-m,)2 (mc m).! (39)
2(mymy)? Z;'::l wo? sin? 6,/ sin? 6, z:;, wa' sin? o), / sin® 6%
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Fig. 6. The 3-D configuration of the grid pattern.

VII. OPTIMAL CONFIGURATION OF SPACE LINES

Consider a square grid pattern placed in the scene (Fig. 6). Let r
be the distance from the viewpoint O to the center of the grid pattern.
The pattern consists of two sets of /V (equal to an odd number) lines.
Let I be the size of the pattern, and d the size of the individual grid
squares. If I/r is small, we have the approximation

we = f % sin 4. (48)
The length w,, is approximated similarly. Let ¢o and ¢y be the
deviation angles between neighboring grid lines in the two directions,
respectively. If Nd/r is small, we have the approximation

N (N-1)/2 o2
2 2.2, _ NN -1)
c;sm Oo =2 gﬂ k°sin® ¢o = 12

The summation EL, sin? ¢/, is approximated similarly. Let k =
(0.0.1)T. We assume that m and m’ are oriented so that |m.m'. k|
> 0. The N-vector of the central grid line extending in the direction
of m is

sin? @o. 49)

; mxk
mo = NlmxH="Guo (50)
If d/r < 1, the N-vector of the neighboring grid line is
ny = N[m x (rk'*'dm')]:c(mxk-f-gmx,n') 51)
where
1 1 d
‘T limxE+(@/rmxm']  smb +0(=). (52

From the definition of the deviation angle ¢o, we have singo =
Jln1 x nol|. From (50) and (51), we have

(_:_ti(mxm') x (mx k) _ c_d|m.m'.l:|

™ X %o = sin 6 r sinf 53)
From (52), we obtain
!
.m. d.;
singp = LMk L o dye), (54)
r sin“@ r

We also obtain a similar expression for sin .
Three vectors {m, m’, m x m'} form an orthonormal set. Since
k makes angles 4 and 6’ from m and m', respectively, vector k can

be expressed in the form
k = cosfm + cos@'m' + Cm x m’ (55)

$0 [m.m'. k| = (m x m’. k) = C. Since k is a unit vector, we have
C? = 1 - cos® 6 = cos® 0'. Hence,

jm.m' . k|* =1—cos’ 0 —cos®0'. (56)
Thus, we obtain

Vifl=

18xs° sin@ + sin '
N(N2 —1)fd2I3(1 — cos2 6 — cos2 8')2 \cos28 ' cos?8' )’

&0))

Proposition 5: The variance V[f] is minimized when

8 =6 =sin"! \/3"‘1—2‘/3—3 ~ 58.6°

(58
for which the two sets of grid lines make angle
vy=m—cos™! -—\/532_—0 =~ 111.9°. (59)

Proof: The right-hand side of (57) is written' as const.
x F(sin 8,sin 8') if we define the function F(z.y) by

1 1 1
Flz.y) = x2+y2—1(1—x'2 + l—y"’)'
This function attains its minimum for 0 < z,0 < y, and 2% +¢? >

1 when z = y = 1/(3+ V/33)/12. If 7 is the angle made by the
two grid lines at the image origin, we have cos v = cos(¢ — ¢') =
— cos? 8/ sin? @ (see (44)). Thus, we obtain the assertion. ]

In intuitive terms, the planar surface must be inclined to make a
large angle from the image plane so that the effect of foreshortening is
large. However, too much inclination compresses the resulting image
of the grid pattern, decreasing the lengths of the edge segments and
the separations between them, thereby decreasing the accuracy of
the detected vanishing points. The optimal balance is attained at the
values given in Proposition 5.

(60)

VIII. OpTIMAL ESTIMATION OF FOCAL LENGTH

A well-known strategy to enhance the accuracy of a measurement
is repeating it and averaging the results. However, a simple average
can be greatly distorted by a small number of very disturbed values
(so-called outliers). Hence, a weighted average should be taken so
that unreliable values are given small weights while reliable values
are given large weights. Let fo, a = 1.--- N, be estimates of
the focal length f obtained from N different images. Consider the
weighted average in the form

N N
f=) Wafor Y Wa=1l
a=l a=1

The accuracy of f is maximized by minimizing the variance V'[f].
Let us call the weights W, that minimize V'[f] the optimal weights,
and the resulting estimate f the optimal estimate. The following is
well known in statistics [4]:

Proposition 6: If f, is independent with positive variances V[fa],
a =..--. N, the optimal weights W, are given by

S 1 [ 1
Wo = 171 / a; Tk

Proof: If each estimate is independent, the variance of f is

(61

(62)

VIfl = 3 WL

a=1

(63)

If we introduce a Lagrange multiplier for the constraint ZZL; We =
1, it is easy to see that (63) is minimized by (62).

Substituting (62) into (63), we obtain the following:

Proposition 7: The variance of the optimal estimate is given by

N
= c 1
Vv =1 e
7 / 2 )
Once the variance V[ f] is evaluated, the confidence interval can be

computed by employing the Gaussian approximation. Namely, if fis
the computed optimal estimate for the true value f, the statistic « =

(64)
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(f=£)/\/V[f] obeys the standard normal distribution (of mean 0 and
variance 1), so we have —\, < u < A, with (100 — a)% confidence,
where A, is the a% point of the standard normal distribution (e.g.,
As = 1.96). Hence, with (100 — a)% confidence, the true value f is
inferred to be in the interval

[f— Aay/VIAL F+ 2 V[f]]-

In order to compute the optimal estimate f by (61), the optimal
weights W, must be computed by (62), which involves the variance
V[fa] of each estimate f,. The variance V'[f.] is computed by
(35), which involves the covariance matrices V'[m] and V[m'] of
the vanishing points. They are computed by (20), which involves
optimal weights for individual image lines. They are computed by
(14), which involve the covariance matrices V'[no] of the individual
image lines. They are computed by (8), which involves the image
resolution k.

Note that the optimal weights 1, of (62) are not affected by
multiplication of V[f,] by a constant. It is also easily confirmed that
the optimally estimated vanishing points and the optimal estimates
fa are not affected by the image resolution «. It follows that the
optimal estimate f is not affected by &, for which an arbitrary value
can be assumed.

However, the image resolution « directly affects all the covariance
matrices and variances, and thereby the confidence interval. If the
image resolution « is difficult to estimate a priori, we can do without
its value by the following statistical technique:

Proposition 8: Let

(65)

§= (66)
If f is the true value of the focal length, then
t=vN-1L1 (67)

is a statistic obeying the Student distribution with N — 1 degrees of
freedom.

Proof: Since (fa — f)/\/VI[fa] obeys the standard normal
distribution (of mean 0 and variance 1), the statistic

( =
Z L[f -me f)zwl (68)

obeys the \? distribution with N — 1 degrees of freedom, where
Proposition 7 has been used. On the other hand, the statistic u =
(f=f)/+/V[f] obeys the standard normal distribution, so the statistic

VN =1(f - I Zi, 1YVIfa
. \/\—_ Zn_l\- / [ ]
\ JE; 1 W, {fi" )2\/2;.:1 1/‘-[.1{')]
=VN - 15-_-1 (69)
5
obeys the Student distribution with N — 1 degrees of freedom, where
Proposition 6 has been used. |

The statistic ¢ is no longer affected by multiplication of 17[f.] by
a constant, so the image resolution » can be chosen arbitrarily. We
now have —t, v <t < t,.n with (100 — @)% confidence, where
ta.n is the a% poim of the Student distribution with N degrees of
freedom (e.g., 5.9 = 2.262). Hence, with (100 — @)% confidence,
the true value f is inferred to be in the interval

[f— ta o1 f o N1 (70)

VN—1, VN =1]

(a)

bl fa V[fal Ws

1] 206.942 | 1091.712 | 0.000303
2 | 522.662 24.635 | 0.013423
3 | 551.018 9.621 | 0.034369
4 | 575.322 1.057 | 0.312835
5 | 588.870 0.733 | 0.451114
6 | 665.852 3.679 | 0.089880
7| 675.818 5.501 | 0.060110
8 | 680.580 10.368 | 0.031893
9 | 722.831 56.581 | 0.005844

10 | 925.895 | 1447.349 | 0.000228

(b)

Fig. 7. (a) A real image of a planar board. A square grid pattern is drawn on
it. (b) Focal length fq, variance V'[fa], and optimal weight W7, for ten trials.

Example: The planar grid pattern of Fig. 7(a) was placed in
various locations and orientations in the scene. Edges were detected,
and lines were fitted by least squares. Then, the vanishing points were
computed by the optimal least-squares method described in Section
IV, and the true focal length was estimated by the method described in
Section V. At the same time, the covariance matrix of each estimate
was computed.

Fig. 7(b) shows the estimated focal lengths f,, their variances
V[fa], and the corresponding optimal weights W, for ten different
positions and orientations of the pattern. The variances V[f.] were
computed by assuming # = 1. Trials 1 and 10 correspond to
the case where the board is nearly parallel to the image plane.
The corresponding variances are very large, meaning that the re-
liability is very low for such configurations. This is obvious be-
cause foreshoretening effect is very small if the pattern is nearly
parallel to the image plane. As a result, the computed estimates
are given very small weights. Applying the optimally weightad
average of (61), we obtain the optimal estimate of f to be f=
598.257. The 95% confidence interval given by (70) is [568.979,
627.534].

In each trial, the square grid pattern was projected onto a large
area in the image, so roughly //r = 2/3 and d/r = 1/3. For these
values, the minimum of V'[f] given by Proposition 5 is 0.5223....
Hence, trial 5 is close to the optimal configuration. Indeed, we confirm
that the grid lines intersect at an angle very close to the optimal
value.

In computing the optimal weights by (14), the N-vector m was
approximated by the value obtained by using uniform weights. This
process could be iterated. However, such iterations cause a change of
m of about 0.0001° in orientation, resulting in changes of each f,
by about 0.001% and of f by about 0.0001%. The upper and lower
bounds of the 95% confidence interval change only by about 0.03%.
Hence, no further iterations are necessary.
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IX. CONCLUDING REMARKS

In this paper, we have presented a theory of evaluating the
reliability of camera focal length calibration. Although only the
focal length was studied here, many other factors exist that must
be considered in real situations. For example, straight lines may
not be projected to straight lines due to optical distortion of the
lens (aberration). So, an appropriate mapping must be applied to
remove such distortions (geometric correction). Another important
parameter is the aspect ratio— the ratio of the horizontal scale to
the vertical scale. Then the image origin must be located. This is
theoretically possible by image analysis alone [2], [10], [11], but
the procedure is very sensitive to noise. The most reliable way
is probably the use of a “mechanical” method. For example, we
can physically locate the center of the lens [5]. If a face of the
camera body parallel to the optical axis is identified, we can move
the camera along the assumed optical axis. Then, image origin is
located by detecting the “focus of expansion™ on the image plane
[14].

In the past, many researchers have tried to estimate all the
parameters by, say, “across-the-board fitting":

1) Set, in the scene, multiple reference points whose scene coor-
dinates are known.

2) Locate their images on the video display.

3) Construct a parameterized camera model that incorporates all
conceivable factors (lens aberration, focal length, aspect ratio,
raster scanning distortion, 3-D camera position, etc.), and
express the image coordinates of the reference points in terms
of the model parameters.

4) Adjust the parameters by minimizing, say by least squares, the
discrepancies between the image coordinates of the observed
reference points and their predicted locations.

The quantity to be minimized is usually a complicated nonlin-
ear function of the model parameters, so numerical iterations are
necessary. If lens and image distortions are neglected, the equations
can be “linearized” by introducing auxiliary variables (*homogeneous
coordinates”), and in appearance the optimization reduces to solving
simultaneous linear equations. However, what is actually minimized
is not clear if such artificial linearization is involved. The least-
squares minimization makes sense only when error behaviors are
well understood.

On the other hand, if parameters that attain the minimum are
found, this does not necessarily mean that each parameter is reliable.
Suppose, for example, quantity .J is to be minimized but it is not
0 very sensitive to one parameter, say «, as compared with another
parameter, say /3, near the optimum: |0.J/8a| < |8.7/83|. Then, the
estimate of a may be largely disturbed to compensate for the error
in 3. This typically occurs when parameters of different geometric
origins, such as the focal length and the 3-D camera position, are
incorporated at the same time.

This is because the mechanism of estimation is different from
parameter to parameter. As pointed out earlier, the focal length
cannot be detected accurately unless the effect of foreshortening
is strong, because assuming different focal lengths does not affect
the resulting 3-D interpretation very much if foreshortening is not
apparent. Hence, if a planar pattern is used, it must be placed so
that it makes a large angle with the image plane, whereas if the 3-
D camera position is to be computed by using the same pattern, a
reliable estimate is obtained when it is placed nearly parallel to the
image plane.

Since each parameter has a different configuration in maximizing
the reliability, the calibration procedure should be decomposed
into separate modules corresponding to individual parameters.

Then each module should be designed so that its reliability
is maximized, and the reliability of the resulting estimate
must be evaluated in quantitative terms. One of the main
purposes of this paper is to emphasize the effectiveness of this
approach.
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