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Abstract. This paper focuses on initializing 3-D reconstruction from
scratch without any prior scene information. Traditionally, this has been
done from two-view matching, which is prone to the degeneracy called
“imaginary focal lengths”. We overcome this difficulty by using three
images, but we do not require three-view matching; all we need is three
fundamental matrices separately computed from image pairs. We exploit
the redundancy of the three fundamental matrices to optimize the cam-
era parameters and the 3-D structure. We do numerical simulation to
show that imaginary focal lengths are less likely to occur, resulting in
higher accuracy than two-view reconstruction. We also test the degener-
acy tolerance capability of our method by using endoscopic intestine tract
images, for which the camera configuration is almost always nearly de-
generate. We demonstrate that our method allows us to obtain more de-
tailed intestine structures than two-view reconstruction and hence leads
to new medical applications to endoscopic image analysis.

Keywords: Initialization of 3-D reconstruction, imaginary focal length
degeneracy, three views, three fundamental matrices.

1 Introduction

Today, 3-D reconstruction from images is a common technique of computer vision
thanks to various reconstruction tools available on the Web. The basic principle is
what is known as bundle adjustment , computing from point correspondences over
multiple images all 3-D point positions and all camera parameters by searching
the high-dimensional parameter space. The search is done so as to minimize
the discrepancy, or the reprojection error , between the observed images and
the projections of the estimated 3-D points computed by the estimated camera
parameters. The best known bundle adjustment software is SBA of Lourakis and
Argyros [13]. Snavely et al. [15, 16] combined it with feature point detection and
matching as a package called bundler . Bundle adjustment is an iterative process,
requiring an initial solution, which is usually computed by choosing from among
the input images pairs of well matched views. This is because the 3-D shape



and the camera parameters are easily computed from two views, and various
practically high-accuracy techniques have been presented [11].

However, it is well known that two-view reconstruction fails if the two cam-
eras are in a “fixating” configuration, i.e., their optical axes intersect in the scene
[3, 8]. This configuration is very natural when one takes images of the same ob-
ject from two different positions. Another problem is that irrespective of the
camera configuration, the information obtained from two views is minimal, re-
sulting in the same number of equations as the number of unknowns. This may
be an advantage in that the solution can be obtained analytically, but often the
solution that satisfies all equations does not exist for noisy data. Typically, the
square of some expressions containing the focal lengths become negative; this
problem is known as the “imaginary focal length degeneracy”.

The purpose of this paper is not so much to achieve yet higher reconstruction
accuracy. Rather, we focus on preventing degeneracy. Namely, we want to ini-
tialize 3-D reconstruction stably from scratch, i.e., without requiring any prior
information about the scene structure or the camera positions. There have al-
ready been some such attempts. Observing that fixating configurations occur
when the principal point of one image matches to that of the other image, Hart-
ley and Silpa-Anan [4] used the regularization approach to minimally moved the
assumed principal points so that the imaginary focal lengths do not arise, but the
solution depends on the regularization parameter. Kanatani et al. [9] proposed
random resampling of matching points to avoid imaginary focal lengths, but a
sufficient number of correspondences are necessary. Goldberger [2] adopted the
projective reconstruction framework, computing the camera matrices up to pro-
jectivity from fundamental matrices and epipoles computed from image pairs.
For Euclidean reconstruction, however, more information is required [14].

In this paper, we impose a strict constraint on the cameras so that the Eu-
clidean structure results from minimum information, yet extra degrees of freedom
remain to be adjusted to suppress imaginary focal lengths. This is made possible
by using three images, but we do not require three-view matching; all we need
is three fundamental matrices separately computed from image pairs. We do
numerical simulation and observe that imaginary focal lengths are less likely to
occur, resulting in higher accuracy than two-view reconstruction. Then, we show
a novel medical application: we reconstruct the 3-D structure from endoscopic
intestine tract images. This provides a good testbed for the degeneracy tolerance
capability of our method, because the camera configuration is very pathological:
the camera moves almost in one direction in intestine tracts and hence always
in a near fixation configuration, which is very likely to cause imaginary focal
lengths.

2 The Task

For two-view reconstruction, the cameras must be such that 1) the principal
point is known, 2) the aspect ratio is 1, and 3) no image skew exists [5, 11]. This
constraint stems from the fact that the available information from two views



is limited. We could relax this for three views [2, 4, 14], but since our intention
is to exploit the redundancy of three-view information to do optimization, we
adopt the same constraint. This is no big restriction in practice, because today’s
cameras mostly satisfy the requirements or can easily be so calibrated before-
hand. We define an xy image coordinate system such that the origin o is at the
principle point (at the frame center by default) with the x-axis upward and the
y-axis rightward. This is necessary for the x- and y-axes together with the optical
axis regarded as the z-axis to constitute a right-handed system for 3-D rotation
computation (for this purpose, we could instead take the x-axis rightward and
the y-axis downward).

We capture three images of the same scene by three cameras (or equivalently
by moving one camera). We call these images the 0th, 1st, and 2nd views, and
the corresponding cameras the 0th, 1st, and 2nd cameras, respectively. Suppose
a point (x, y) in the 0th view corresponds to (x′, y′) in the 1st view. We write
the epipolar equation [5] between them in the form

(x,F01x
′) = 0, x =

(
x/f0
y/f0

1

)
, x′ =

(
x′/f0
y′/f0

1

)
, (1)

where F01 is the fundamental matrix between the 0th and 1st views. We write
(a,b) for the inner product of vectors a and b. The scaling constant f0 is for
stabilizing numerical computation; we take it to be an approximate focal length
of the cameras and call it the default focal length (we set it to 600 pixels in our
experiment). The fundamental matrix F02 between the 0th and 2nd views and
the fundamental matrix F12 between the 1st and 2nd views are similarly defined.
Fundamental matrices are uniquely computed from eight or more point corre-
spondence pairs (theoretically seven points are sufficient, but the solution may
not be unique). In our experiment, we use the EFNS (Extended Fundamental
Numerical Scheme) of Kanatani and Sugaya [10], which can compute an exact
reprojection error minimization solution.

We regard the XY Z coordinate system of the 0th camera, the origin O
being at the lens center with the Z axis along the optical axis, as the world
coordinate system. Let t1 and t2 be the lens centers of the 1st and the 2nd
cameras, respectively, and R1 and R2 their rotations relative to the 0th camera.
Let f , f ′, and f ′′ be the focal lengths of the 0th, 1st, and the 2nd cameras,
respectively. The fundamental matrices F01, F02, and F12 ideally (i.e., if they
are exact) satisfy the identities

F01 ' diag(1, 1,
f

f0
)
(
t1 ×R1

)
diag(1, 1,

f ′

f0
),

F02 ' diag(1, 1,
f

f0
)
(
t2 ×R2

)
diag(1, 1,

f ′′

f0
),

F12 ' diag(1, 1,
f ′

f0
)
(

(R>1 (t2 − t1))× (R>1 R2)
)

diag(1, 1,
f ′′

f0
), (2)

where the symbol ' denotes equality up to a nonzero constant and diag(a, b, c)
denotes the diagonal matrix with a, b, and c as the diagonal elements in that



order. For a vector v and a matrix A, we define v ×A to be the matrix whose
columns are the vector products of v and the corresponding columns of A.
The task of this paper is to compute f , f ′, f ′′, t1, t2, R1, and R2 from given
fundamental matrices F01, F02, and F12, considering the fact that the computed
F01, F02, and F12 may not be exact.

3 Focal Length Computation

Instead of computing f , f ′, and f ′′, we compute the following x, y, and z:

x =
(f0
f

)2
− 1, y =

(f0
f ′

)2
− 1, z =

( f0
f ′′

)2
− 1. (3)

It is known [9] that x and y ideally minimize, in the neighborhood of the solution,
the quadratic polynomial in x and y

K01(x, y) =

(k,F01k)4x2y2 + 2(k,F01k)2‖F>01k‖2x2y + 2(k,F01k)2‖F01k‖2xy2

+‖F>01k‖4x2 + ‖F01k‖4y2 + 4(k,F01k)(k,F01F
>
01F01k)xy

+2‖F01F
>
01k‖2x+ 2‖F>01F01k‖2y+‖F01F

>
01‖2

−1

2

(
(k,F01k)2xy+‖F>01k‖2x+‖F01k‖2y+‖F01‖2

)2
, (4)

where k = (0, 0, 1)>, and that the minimum is 0. If quadric polynomials K02(x, z)
and K12(y, z) are similarly defined, x and z minimizes K02(x, z), and y and z
minimize K12(y, z); their minimums are 0. Hence, we can determine x and y from
K01(x, y), y and z from K12(y, z), and z and x from K02(x, z). Moreover, the
solution is analytically computed by the Bougnoux formula [5, 9]. In the presence
of noise, however, the analytically obtained solutions are in general inconsistent
to each other. Here, we adopt the solution x, y, and z that minimize

F (x, y, z) = K01(x, y) +K02(x, z) +K12(y, z). (5)

In our experiment, we used Newton iterations starting from x = y = z = 0,
which is equivalent to f = f ′ = f ′′ = f0. Then, f , f ′, and f ′′ are given from
Eq. (3) in the form

f =
f0√
1 + x

, f ′ =
f0√
1 + y

, f ′′ =
f0√
1 + z

. (6)

Note that if any of x, y, and z are equal to or less than −1, the computation
fails. This is the so called “imaginary focal length problem”, which frequently
occurs in two-view reconstruction. One of the causes of this phenomenon is that
the analytical solution relies on the fact that the solution not only minimizes
K01(x, y), K02(x, z), and K12(x, z) but also their minimums are exactly 0, which
does not hold for real data. Here, we are not assuming that their minimums are



0, so we expect that the imaginary focal length problem will be alleviated, if not
completely avoided. In fact, we never encountered imaginary focal lengths in our
three-view reconstruction experiments.

It is known [9] that if two cameras, say the 0th and the 1st, are in a fixating
configuration, the minimum of K01(x, y) in Eq. (4) degenerates to a curve in the
xy plane so it does not have a unique minimum. If we assume that f = f ′, the
solution is uniquely determined as the intersection of that curve with the line x =
y. However, if the two cameras are in an “isosceles” configuration (fixating with
equal distance), the minimum curve of K01(x, y) is “tangent” to the line x = y
and hence no clear intersection is defined. The same holds for the other pairs
of cameras. However, our three-view formulation can uniquely determine the
solution even when fixating camera configurations are included, unless the three
cameras are in a simultaneous fixating configuration, in which case the Hessian
of F (x, y, z) in Eq. (5) becomes singular at the minimum, making numerical
minimization unstable (we omit the details).

4 Translation Computation

The relative camera translation can be computed from the fundamental matrix
between two views [11]. Hence, the three fundamental matrices F01, F02, and
F12 can determine the translations between all the camera pairs. However, their
signs and scales are indeterminate. Although we cannot fix the absolute scale
as long as images are used, we can fix their relative scales from the “triangle
condition”, requiring that the three translations form a closed triangle. However,
as we show shortly, the triangle condition involves camera rotations, so, unlike
two-view reconstruction, translations cannot be determined separately. Here, we
introduce a procedure for computing the translations and rotations at the same
time.

Using the computed focal lengths f , f ′, and f ′′, we define the essential ma-
trices E01, E02, and E12 by

E01 ≡ diag(1, 1,
f0
f

)F01diag(1, 1,
f0
f ′

), E02 ≡ diag(1, 1,
f0
f

)F02diag(1, 1,
f0
f ′′

)

E12 ≡ diag(1, 1,
f0
f ′

)F12diag(1, 1,
f0
f ′′

), (7)

From Eqs. (2), they ideally satisfy

E01 ' t1 ×R1, E02 ' t2 ×R2, E12 ' t12 ×R>1 R2, (8)

where
t12 = R>1 (t2 − t1), (9)

is the lens center of the 2nd camera viewed from the 1st camera. The triangle
condition means enforcing this equation. However, it involves R1, which is un-
known yet. We resolve this as follow. Since Eqs. (8) imply that t1, t2, and t12
are, respectively, null vectors of E>01, E>02, and E>12 in the absence of noise, we



compute those translations t1, t2, and t12 that minimize ‖E>01t1‖2, ‖E>02t2‖2,
and ‖E>12t12‖2, respectively. The solution is given by the eigenvectors of E01E

>
01,

E02E
>
02, and E12E

>
12 for their smallest eigenvalues. At this sage, the scales and

the signs of t1, t2, are t12 are indeterminate. As in the case of two-view recon-
struction [11], we choose their signs so that∑
α

|t1,xα,E01x
′
α| > 0,

∑
α

|t2,xα,E02x
′′
α| > 0,

∑
α

|t12,x′α,E12x
′′
α| > 0,

(10)
where |a,b, c| is the scalar triplet product of a, b, and c. The vectors xα, x′α,
and x′′α are the coordinates of the αth point represented by vectors as in Eqs. (1)
with the default focal length f0 replaced by the computed f , f ′, and f ′′. The
summations run over the image pairs from which that point is visible. Equations
(10) state that almost all points are “in front” of the three camera pairs provided
the signs of E01, E02, and E12 are correct (this issue is discussed shortly). Note
that the epipolar equation of Eq. (1) holds even if the point is “behind” the
cameras and that the signs of the essential matrices in Eqs. (7) are indeterminate,
inheriting the sign indeterminacy of the fundamental matrixes in Eqs.(2).

Once the signs of t1, t2, and t12 are determined, we can determine the rota-
tions R1 and R2 (next section). Then, substituting the computed R1 into the
triangle condition of Eq. (9), we minimize not ‖E>01t1‖2, ‖E>02t2‖2, and ‖E>12t12‖2
separately but their sum

‖E>01t1‖2 + ‖E>02t2‖2 + ‖E>12t12‖2 = (

(
t1
t2

)
,G

(
t1
t2

)
), (11)

where we define the 6× 6 matrix G by

G =

(
E01E

>
01 + R1E12E

>
12R

>
1 −R1E12E

>
12R

>
1

−R1E12E
>
12R

>
1 E02E

>
02 + R1E12E

>
12R

>
1

)
. (12)

Equation (11) is minimized by the unit eigenvector
(
t1t2

)
of G for the smallest

eigenvalue, which is normalized to ‖t1‖2 + ‖t2‖2 = 1. The sign is adjusted so
that the recomputed t1 and t2 align to their original orientations. After t1 and
t2 are thus updated, we compute t12 in Eq. (9). From these t1, t2, and t12,
we update R1 and R2 (next section). Using the resulting R1, we compute the
unit eigenvector of G in Eq. (12) to update t1 and t2. We repeat this until they
converge; usually, a few iterations are sufficient.

5 Rotation Computation

Given t1, t2, and t12, we compute R1 and R2 that satisfy Eqs. (8) by minimizing

‖E01− t1×R1‖2+‖E02− t2×R2‖2+‖E12− t12 ×R>1 R2‖2. (13)

It can be shown [7] that this minimization is equivalent to maximizing

J = tr[K>01R1] + tr[K>02R2] + tr[K>12R
>
1 R2], (14)



where tr[ · ] denotes the trace of a matrix and we define

K01 = −t1 ×E01, K02 = −t2 ×E02, K12 = −t12 ×E12. (15)

For maximizing Eq. (14), we make use of the fact [7] that if K = VΛU> is
the singular value decomposition of matrix K, the rotation R that maximizes
tr[K>R] is given by R = Vdiag(1, 1,det(VU>))U>. First, we compute the
rotation R1 that maximizes tr[K>01R1]. Equation (14) can be rewritten as

J = tr[K>01R1] + tr[(K02 + R1K12)>R2]. (16)

Using the computed R1, we determine the rotation R2 that maximizes tr[(K02+
R1K12)>R2]. Equation (14) can also be rewritten as

J = tr[K>02R2] + tr[(K01 + R2K
>
12)>R1]. (17)

Using the computed R2, we determine the rotation R1 that maximizes tr[(K01+
R2K

>
12)>R1]. We iterate this, each time J increasing, until J ceases to increase.

For this computation, however, we need to resolve a critical issue: the signs
of E01, E02, and E12 in Eq. (7) are indeterminate. The condition of Eqs. (10)
merely ensures that the signs of t1, t2, and t12 are compatible with the signs of
E01, E02, and E12. Here, we assume that the sign of E01 is correct (this will be
checked later). For selecting the signs of E02 and E12, we note that we should
ideally have E>12R

>
1 (t2 − t1) = 0 and E12 ' t12 × R>1 R2 and introduce the

following two rules, which resolve the problem (we omit the details):

– If ‖E>12R>1 (t2−t1)‖ > ‖E>12R>1 (t2 +t1)‖, we change the signs of t2 and E02.
– If ‖E12 − t12 ×R>1 R2‖ > ‖E12 + t12 ×R>1 R2‖, we change the sign of K12.

6 3-D Position Computation

Using the computed translations t1 and t2 and rotations R1 and R2, we recom-
pute the essential matrices E01, E02, and E12 as follows:

E01 = t1 ×R1, E02 = t2 ×R2, E12 =
(
R>1 (t2 − t1)

)
×R>1 R2. (18)

We optimally correct x, x′, and x′′ (the image coordinates represented by vectors
as in Eqs. (1) with the default focal length f0 replaced by the computed f , f ′,
and f ′′) to x̂, x̂′, and x̂′′, respectively in such a way that ‖x̂ − x‖2 + ‖x̂′ −
x′‖2 +‖x̂′′−x′′‖2 is minimized subject to (x̂,E01x̂

′) = (x̂,E02x̂
′′) = (x̂′,E12x̂

′′)
= 0. For two views, this is nothing but the optimal triangulation procedure of
Kanatani et al. [10, 12], which can be straightforwardly extended to three views
(we omit the details).

The projection matrices P, P′, and P′′ of the three cameras have the form

P = diag(1, 1,
f0
f

)
(
I 0
)
, P′ = diag(1, 1,

f0
f ′

)
(
R>1 −R>1 t1

)
,

P′′ = diag(1, 1,
f0
f ′′

)
(
R>2 −R>2 t2

)
. (19)



Fig. 1. The 0th, 1st, and 2nd views a simulated curved grid surface. The 0th and the
2nd cameras are nearly in a fixating configuration.
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Fig. 2. The RMS error of focal length computation for σ, where “2view01”, etc. denote
the values computed from the 0th-1st image pair, etc., and “3view” means the value
computed from the three views.

Let Xα = (Xα, Yα, Zα)> be the 3-D position of the αth point, and x̂α, x̂′α, x̂′′α
its 2-D positions in the 0th, 1st, and 2nd views, respectively, after the optimal
correction. The following projection relationships hold:

x̂α ' P

(
Xα

1

)
, x̂′α ' P′

(
Xα

1

)
, x̂′′α ' P′′

(
Xα

1

)
. (20)

These define in total six linear equations in Xα. Since Eqs. (20) exactly hold due
to the optimal correction procedure, we can choose any three equations to solve
for Xα (or all equations by least squares). If the point is visible only in two views,
we choose three equations from their corresponding projection relationships.

So far, we have assumed that the sign of E01 is correct (Section 5). If its
sign is wrong (hence the signs of E02 and E12 are also wrong), the reconstructed
shape is a mirror image of the true shape locating behind the cameras [5, 7].

Hence, if
∑N
α sgn(Zα) < 0, for the visible points from the 0th camera, where

sgn(x) returns 1, −1, and 0 according to x > 0, x < 0, and x = 0, respectively,
we reverse the signs of all (Xα, Yα, Zα)>.

7 Simulation Experiments

Figure 1 shows three simulated views (0th, 1st, and 2nd from left) of a grid
surface. The frame size is assumed to be 800× 800 pixels and the focal lengths
f = f ′ = f ′′ = 600 pixels. We added independent Gaussian random noise of
mean 0 and standard deviation σ pixels to the x and y coordinates of each grid
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Fig. 3. The RMS error (in degree) of translation computation for σ. “2view01”, etc.
denote the values computed from the 0th-1st image pair, etc., and “3view” means the
value computed from the three views.

point and conducted calibration and 3-D reconstruction. For a computed focal
length f , we evaluated the difference ∆f = f − f̄ from its true value f̄ . If the
computation failed (“imaginary focal lengths”), we let f = 0. Since the absolute
scale of translation is indeterminate, we evaluated for a computed translation t
the angle ∆θ = cos−1(t, t̄)/‖t‖ · ‖t̄‖ (in degree) it makes from its true value t̄.
If the computation failed due to imaginary focal lengths, we let ∆θ = 90◦. For
a computed rotation R, we evaluated the angle ∆Ω (in degree) of the relative
rotation RR̄> from the true value R̄. If the computation failed due to imaginary
focal lengths, we let ∆Ω = 90◦. Then, we evaluated the RMSs

Ef =

√√√√ 1

K

K∑
a=1

∆f2a , Et =

√√√√ 1

K

K∑
a=1

∆θ2a, ER =

√√√√ 1

K

K∑
a=1

∆Ω2
a, (21)

over K = 10000 independent trials, each time using different noise, where the
subscript a indicates the value of the ath trial.

Figure 2 compares the accuracy of focal lengths computed from two views
and from three views. We see that f and f ′′ computed from the 0th-2nd image
pair have large errors. This is because the 0th and 2nd cameras are nearly in
a fixating configuration. The large fluctuations of the plots indicate the occur-
rence of imaginary focal lengths. However, we can obtain accurate values for all
the focal lengths if we use three images. In this noise range, no imaginary focal
lengths occurred for three-view computation. Figures 3 and 4 compare the accu-
racy of translation and rotation. The error is large for the values computed from
the 0th-2nd image pair due to the low accuracy of the focal length computation
from them. As we see, however, we can obtain accurate values by using three
views despite the fixating camera configuration of the 0th and 2nd cameras.

8 Endoscopic Image Experiments

Figure 5 shows two sets of three consecutive frames of intestine tract images
taken by an endoscope receding along the tract. It is well known that if a camera
is moved forward or backward, two-view reconstruction frequently fails because
any two camera positions are nearly in a fixating configuration, frequently result-
ing in imaginary focal lengths. Hence, this is a good testbed for examining the
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Fig. 5. Two sets of three consecutive frames of endoscopic intestine tract images.

degeneracy tolerance capability of our method. At the same time, our method,
if successful, would bring about a new medical application of reconstructing 3-D
structures from endoscopic images.

We extracted feature points and matched them between each pair of frames,
using the method of Hirai, et al. [6]. Figure 6(a) shows the reconstruction from
the three frames of the data set A in Fig. 5. For comparison, Fig. 6(b), (c),
(d) shows the two-view reconstructions from the 0th-1st frame pair, the 0th-2nd
frame pair, and the 1st-2nd frame pair, respectively; only those points viewed in
the corresponding image pairs are reconstructed.

Since the ground truth is not known, we cannot tell which of (a), (b), (c),
and (d) is the most accurate. As we can see, however, the three-view recon-
struction (a) provides a detailed shape in a longer range along the tract with
a larger number of points than the two-view reconstructions (b), (c), and (d).
Ideally, the superimposition of (b), (c), and (d) should coincide with (a) if we
correctly adjust the scale of the two-view reconstructions in (b), (c), and (d)
(recall that the scale is indeterminate in each reconstruction). For real data,
however, the two-view reconstructions do not necessarily agree with the three-
view reconstruction. In this sense, our three-view reconstruction can be viewed
as automatically adjusting the scales of two-view reconstructions and optimally
merging them into a single shape.

Figure 7 shows the reconstruction from the data set B in Fig. 5. Figure 7(a)
shows the resulting three-view reconstruction. In this case, two-view reconstruc-
tion was possible only from the 1st-2nd frame pair (Fig. 7(b)); the computation
failed both for the 0th-1st frame pair and for the 0th-2nd frame pair due to
imaginary focal lengths. Yet, using three images, we can accurately compute the
3-D positions of all pairwise matched points and obtain a detailed structure in
a longer range along the tract.



(a) (b) (c) (d)

Fig. 6. Front views (above) and side views (below) of the 3-D reconstruction from
the data set A in Fig. 5. (a) Using the three frames. Different colors indicate different
image pairs they originate from. (b) Using the 0th-1st frame pair. (c) Using the 0th-2nd
frame pair. (d) Using the 1st-2nd frame pair.

(a) (b)

Fig. 7. Front views and side views of the 3-D reconstruction from the data set B in
Fig. 5. (a) Using the three frames. (b) Using the 1st-2nd frame pair. Reconstruction
from the 0th-1st frame pair and reconstruction from the 0th-2nd frame pair both fail.

9 Concluding Remarks

We have presented a new method for initializing 3-D reconstruction from three
views, generating a candidate solution to be refined later. Our main focus is
to prevent the imaginary focal length degeneracy, which two-view reconstruc-
tion frequently suffers. Our method does not require correspondences among
the three images; all we need is three fundamental matrices of image pairs. We
exploited the redundant information provided by the three fundamental matri-
ces to optimize the camera parameters and the 3-D structure. We conducted
numerical simulation and observed that imaginary focal lengths never occurred
in the experimented noise range while two-view computation frequently failed,
resulting in higher average accuracy of our method than two-view reconstruc-
tion. We also tested the degeneracy tolerance capability of our method by us-
ing endoscopic intestine tract images, noting that the camera configuration is
almost always near degeneracy. We observed that unlike two-view reconstruc-
tion our three-view computation never failed in our experimented instances (not
all shown here) and that even when two-view reconstruction did not fail, our
method produced a more detailed structure in a wider range than pairwise two-
view reconstructions combined. Thus, our method is expected to bring about
new medical applications to endoscopic image analysis.
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