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Abstract
Computer vision techniques can estimate 3D shape from

images, but usually only up to a scale factor. The scale
factor must be obtained by a physical measurement of the
scene or the camera motion. Using gauge theory, we show
that how this scale factor is determined can significantly
affect the accuracy of the estimated shape. And yet these
considerations have been ignored in previous works where
3D shape accuracy is optimized. We investigate how scale
fixing influences the accuracy of 3D reconstruction and de-
termine what measurement should be made to maximize the
shape accuracy.

1 Introduction
Our goal is to understand factors determining the un-

certainties in 3D estimation from a set of cameras with un-
known positions. In particular we want to know how fixing
scale affects the uncertainty. Through understanding this
we will obtain criteria for optimal scale fixing.

When 3D points are triangulated from known camera
positions as in stereo, the uncertainties of the estimated
points has been studied. The rule of thumb for points
distant from the cameras is that the uncertainty is greater
along the viewing direction than perpendicular to it, as il-
lustrated in Fig. 1.

However, we are interested in the case where the cam-
era positions and orientations are not initially known, but
rather are estimated along with the 3D features. Here the
same qualitative uncertainty analysis no longer applies for
two reasons. First, how the coordinate system and scale are
chosen can significantly affect the uncertainties, as shown
in Fig. 2. Second, strong correlation between 3D feature
points can be introduced when the the camera motions are
also estimated. Consequently it is difficult to obtain a qual-
itative understanding of the uncertainty.

To simplify our analysis we will only consider uncer-
tainties of lengths, which are invariant to choice of coordi-
nate system, but depend on scale. We will seek to under-
stand how uncertainty depends on both physical geometry,
and on how the scale is fixed.

In applications of 3D estimation we often need to know
the scale of the object, and hence must introduce at least
one physical measurement into the estimation process.
This could involve either measuring a length on the ob-

Figure 1:The scaled uncertainties of points estimated from three
known camera positions and orientations. The ellipses represent
the uncertainty, and have the characteristic elongation along the
viewing direction.

Figure 2:The scaled uncertainties of point and camera positions
estimated with three cameras initially having unknown positions
and orientations. The dramatic changes in uncertainties are due
solely to the way the scale and coordinate system are chosen.

ject or equivalently placing a measuring rod in the scene.
In order to decide where to place the measuring rod we
could analyze the results after 3D reconstruction is done,
but then it is too late. Hence one of the goals of this paper
is to use the understanding we develop to determine where
a rod should be placed to maximize accuracy before doing
3D reconstruction. We call this the scale fixing problem.

Previous work that dealt with shape uncertainties ig-
nored the unknown scale factor [10, 12, 16] or stated that
how it is determined is unimportant [14]. While past work
has found optimal shape up to a scale factor, we argue that
this is not good enough. In addition we need an optimal
scale fixing method.

Our work uses recently developed gauge theory for han-
dling indeterminacies in shape estimation [6, 8, 11, 15],
and follows on from the older work in geodesy [2, 13] on
free network design. We apply this to the scale fixing prob-
lem in computer vision.



2 Summary of Gauge Theory
First we summarize gauge theory for modeling indeter-

minacies in estimation problems; see [5, 6, 9, 11].
2.1 Gauge Orbits

In some estimation problems there are inherent indeter-
minacies in the parameters. In our case scale is one such
indeterminacy, since the size of the object and positions of
the cameras can all be rescaled to any value without chang-
ing the measurement. If the parameters are denoted with
a point,s, in a large dimensional space,S, then we repre-
sent the indeterminacies as orbits filling this space. We call
thesegauge orbits, denotedGs. All points on a gauge orbit
are equivalent under our measurements1. A gauge trans-
formation, g, takes one point,s0 2 Gs to another point on
the orbit:s 2 Gs and is expressed as:s = g(s0): (1)

In our case scale acts as a linear gauge transformation,g(s0) = as0, and points on the gauge orbit correspond to
models that are identical except by a scale factor,a:s = as0 : (2)

2.2 Constraints and Covariance Subspace
The covariance matrix provides a first order perturba-

tion analysis around a point in parameter space. But when
our solution is a whole gauge orbit, we need to constrain
it to a unique point to do covariance analysis, as shown in
Fig. 3. In our case, the gauge orbit is one dimensional, and
so a single constraint on the shape will suffice, which we
denote as(s) = 0.

This constraint defines agauge manifold, or simply
gauge, C, of points satisfying it. Enforcing a constraint
like this, we callgauge fixingor choosing a gauge. Per-
turbations must be in the tangent space to this manifold.

2.3 Geometric Equivalence
One of the key results derived in gauge theory is that

given a perturbation,�s, at a point on the gauge orbit,
then incrementing it with any perturbation in the tangent
space to the gauge orbit,T [Gs℄, does not alter its geomet-
ric meaning with respect to the measurements. This is an
extension of the idea that perturbing a point on a gauge or-
bit does not change its measurement. This is captured in
the following theorem which is proved in [6, 9].

Theorem 2.1. Two perturbations,�s 2 T [C℄ and�s0 2T [C0℄, wheres = as0, are geometrically equivalent if and
only if: u>(�s� a�s0) = 0 8u 2 T [Gs℄? : (3)

Geometric equivalence is illustrated in Fig. 4, and it re-
quires that the difference vector,�s� a�s0, is in the tan-
gent space,T [Gs℄. Thus we refer to this tangent space as
consisting of all thegauge freedomsof the point.

1Mathematicians call such an orbit aleaf, and a space filled with leafs
a foliation.
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Figure 3: Plot (a) shows the contradiction we obtain when we
use a full rank covariance to describe perturbations of a point on
a gauge orbit. Ellipses of different probability intersectthe gauge
orbit, all of whose points are equivalent and hence have equal
probability. Instead, we must impose a constraint that reduces
our parameter space to the gauge manifold,C, which intersects
the gauge orbit at a single point, as shown in (b). Perturbations
are now restricted to the tangent plane toC.
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Figure 4: Perturbations in the tangent planes to two gauges,C
andC0, are shown whena = 1. These perturbations are geometri-
cally equivalent when their difference,�s�a�s0, is orthogonal
to all vectorsu 2 T [Gs℄?.

3 Transforming Uncertainties
We will assume our problem is the following. Optimal

3D estimation has been done for a set of points and a set
of camera positions and orientations, but the scale, rotation
and translation are arbitrarily set. We will only consider
distances between feature points which are invariant to ro-
tation and translation, and henceforth can ignore rotation
and translation gauge freedoms. We would like to find the
scale in a way that maximizes the accuracy of our shape
estimation.

For our purposes, we will only need to represent shape
parameters, even though to obtain these we initially had
to estimate camera motion. Let us represent the shape of
our object with a vector,s0 = (s01; : : : ; s0N ), that contains
the 3D coordinates of theN individual feature pointss0i.
The covariance is obtained in the standard way by invert-
ing the Fisher information matrix, which is the Hessian of
the appropriate cost function for optimal shape and motion
estimation. Ifm represents the camera motion parameters,
we obtain the shape covariance,Vs0 , from:� Vs0 Vm0s0Vs0m0 Vm0 � = � Hs HsmHms Hm ��

(4)



with the shape and motion components of the Hessian on
the right, and(�)� indicating the generalized inverse2. In
generalVs0 may contain strong correlation terms between
the shape parameters.

To find the scale we will measure the distance,d, be-
tween two feature points,i andj, on the real object. This
gives us a constraint:(s) = d� ksi � sjk = 0 ; (5)

which defines our gauge manifoldC. The appropriate
rescaling factor is then:a = d=ks0i � s0jk. Once we ob-
tain scale, we can transformVs0 to the tangent plane of the
new gauge,C, and so obtain our transformed covarianceVs as described in the following section.
3.1 Gauge Fixing

We can now derive the transformation of our original
perturbations,�s0, described byVs0 , into the new gauge
constraintC, such that geometric equivalence is main-
tained. To do this we follow the gauge theory method.

One solution to the geometric equivalence relationship
is a simple rescaling of the perturbation�s = a�s0. But
in general the resulting perturbation will not be tangent to
the new gauge,C. The full solution is:�s = a�s0 + b (6)

whereb is a vector in the tangent to the gauge orbit:T [Gs℄.
The tangent is given by�s=�a = s0, and hence we can
write b = xs with some unknown coefficientx.

We want to choosex to satisfy the gauge constraint, so
we letv be a vector orthogonal to the gauge tangent space,v 2 T [C℄?. One such vector is given by the gradient of
the constraintv = rs(s), where(s) = 0 is defined by
Eq. (5). Sincev is orthogonal to�s, our gauge constraint
is satisfied if: v>�s = 0 : (7)

Applying this to Eq. (6), lettingb = xs, and solving forx, we obtain:x = �(v>s0)�1v>a�s0. Then substituting
this into Eq. (6) we get:�s = a�s0 � s0(v>s0)�1v>a�s0 = aQ�s0 ; (8)

where Q = I � s0v>v>s0 : (9)

The matrixQ is an oblique projection operator3, and it cor-
responds to Baarda’s S-Transformation [2]. It takes any
scaled perturbationa�s0 along the tangent plane to a geo-
metrically equivalent perturbation�s in a new gaugeC.

2If this is not full rank we typically take the Moore-Penrose inverse.
See [9] for details.

3It is becauseQ has this form that we can drop the motion elements,Vs0m0 etc., from the full covariance. Only the elements that interact with
the constraint vector,v, and that we want to estimate need to be included,
as one can easily confirm by expanding the corresponding fullexpression.

We can then transform our covariance toT [C℄:V s = E[�s�s>℄ = a2QVs0Q>; (10)

whereVs gives the uncertainty of the shape after we make
measurementd.
3.2 Measurement Uncertainty

If there is uncertainty in our measurementd, we can
modify Eq. (2) to incorporate this:�s = aQs0 + s0�a : (11)

The scale isa = d=d0 whered0 = ks0i � s0jk, and so�a =�d=d0. If d is measured with standard deviation�m, then
we obtain: Vs = a2QVs0Q> + �2m s0s0>d02 : (12)

We see that this measurement error has less effect the larger
lengthd0 is compared to the object.

4 Finding the Best Gauge Constraint
We want to find the best gauge constraint. Our criterion

is that we want to estimate a certain length on the object,e = ksk � slk, with the greatest accuracy, and that we can
set the scale factor by measuring another length,d. What
qualities shouldd have to minimize the variance ofe?

Let g0 = (e0 d0)> andg = ag0, and so we can write:Vg0 = rs0g0>Vs0rs0g0 � � �2e0 �e0d0�d0e0 �2d0 � : (13)

If we measured with variance�2m, we obtain from Eq.
(12): Vg = a2QgVg0Qg> + �2m gg>d2 : (14)

Here our scale factor gives us a gauge freedom:�g=�a =g0, and our measurementd gives us a local constraint:v =(0 1)>, and so Qg = � 1 �e=d0 0 � : (15)

We want to minimize the variance ofe, which can be
obtained algebraically from Eq. (14) as:�2e = a2(�e02� 2 ed�e0d0 +� ed�2 �2d0) +� ed�2 �2m : (16)

This is quadratic in the ratioe=d, and its minimum has
two cases. The first is when the noise is uncorrelated or
anti-correlated, (�e0d0 � 0). The variance,�2e , is reduced
when the ratio,e=d, is reduced. Thus the longer the length
we measure,d, the more accurate our estimate fore is.
The second case is when the noise is positively correlated,�e0d0 > 0. The ratio that minimizes�2e is then:ed = a2�e0d0a2�2d0 + �2m : (17)
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Figure 5:Illustrated are the projections of a covarianceVg0 onto
a single axis to give us�e, as described in Eq. (14) with�m=0.
In (a) the gauge freedom direction is given bye=d = 1, whereas
in (b) e=d > 1. Notice that the gauge freedom direction,e=d,
significantly affects the magnitude of the projection onto the e
axis.
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Figure 6:The plot shows the standard deviation,�e, of the pre-
dicted line length,e, as a function of the ratio of the measured line
length to the predicted line length,d : e. In general the largerd
the better the estimate, except beyond a certain value afterwhich
the uncertainty increases moderately to an asymptote.

If the noise is perfectly correlated, namely�e0d0 = �e0�d0 ,
and�2m = 0, and the ratio,e=d, is given by Eq. (17), then
the lengthe will be perfectly estimated.

We can also understand Eq. (14) geometrically using
our oblique projection interpretation. Let us representV g0
with a 2D ellipse giving the standard deviation ofd0 ande0. The oblique projection operator,Qg, projects this along
the gauge freedom onto thee axis. The gauge freedom is
a line whose slope ise=d as shown in Fig. 5. The steeper
the slope, or the smallerd is compared toe, the larger the
resulting uncertainty,�e, is. The relationship between ratiod : e and�e is plotted for this example in Fig. 6.

A further interesting consequence of the projection
shown in Fig. 5(a) is that if the ratio,e=d = 1, then the
gauge freedom will be at45Æ, and the projection of the
ellipse onto the coordinate axes will be the same if eitherd or e is fixed. This means that if the lines are the same
length, then holding one line fixed and predicting the other,
or holding the other fixed and predicting the first will give
exactly the same uncertainty. This symmetry property, de-
pending only on the length, will simplify gauge fixing cal-
culations for lines of equal length.

4.1 Line Orientation in Sphere Estimation
It is not only line length that affects the accuracy of

gauge fixing. In this section we consider relative orien-
tation of lines. For simplicity we take�m = 0.

A synthetic sequence of a sphere is created by orthogo-
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Figure 7:(a) Views of a sphere created by intersecting 3 circles
orthogonally, and five cameras. Diameter 1 is along the viewing
direction and 7 and 18 are in the plane orthogonal to the view-
ing direction. The dashed circles are only to aid in viewing.(b)
Images seen by the cameras, with lines connecting points added
afterwards.

nally intersecting 3 circles. Lines are formed by connect-
ing antipodal points, and are all of the same length. The
camera faces the sphere and five images are taken, as illus-
trated in Fig. 7. Uniform, zero-mean, uncorrelated Gaus-
sian noise is assumed. Our goal is to find which lines pro-
vide the best gauge fixing constraints. To do this we will
test the four diameters labeled 1, 7 and 18 in the figure.

As a first step in fixing line 1, we calculateVg0 between
line 1 and each of the other lines, withd0 representing line
1, ande0 in turn representing each of the other lines. The
uncertainty of each line,�e0 is shown in Fig. 8(a) along
with the relative correlation between it and line 1. We
rescale and obliquely project it according to Eq. (16) to get�e, the standard deviation of each line given line 1, which
shown in Fig. 8(b). Figure 9 shows the result for lines 7
and 18.

We see from Fig. 8(a) that lines along the viewing direc-
tion, (numbers 2, 3, 11, 12, 13, 22, 23), have the greatest
initial uncertainty when calculated fromVs04. However,
they are also very strongly correlated to line 1. Hence if
we compare their uncertainties after we measure line 1,
(Fig. 8(b)), to their uncertainties after we measure line 7,
(Fig. 9), we find that they are estimated to almost twice the
accuracy when line 1 is measured.

Again comparing Fig. 8(b) and Fig. 9, we see that lines
orthogonal to the viewing direction are much more accu-
rately predicted when line 7, or any of the lines orthogonal
to the viewing direction, is measured. The orientation in
this plane makes no difference to the accuracy.

4The values in Fig. 8(a) could vary depending on how we calculateVs0 , but they still reveal the structure of the uncertainty.
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Figure 8:The black bars in (a) show�e0 , the uncertainty of each
line calculated fromVs0 . The white bars give the relative corre-
lation,�e0d0=�d0 , between each line and line 1. (b) Rescaling and
performing our oblique projection in Eq. (16) for each case,we
obtain the uncertainty,�e, for each measured line.
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Figure 9: The uncertainties,�e, in predicting each line when
(a) line 7, and (b) line 18 is measured. The plot for line 4 is
intermediate between this and that in Fig. 8.

4.2 Reducing Correlation Effects
In the previous example our sphere is the whole ob-

ject. We would like to know how our results change when
the lines we are interested in are only part of the object
that we are reconstructing. Experiments show that adding
more features on or close to the sphere will not qualita-
tively change the results [9]. But if our object is large com-
pared to the sphere, the results do change. To show this we
added one hundred randomly positioned features, within a
rectangular region, that are assumed to be rigidly attached
to the sphere, as shown in Fig. 10(a).

We find that when line 1 is measured, the uncertainty
pattern is inverted: compare Figs. 8(b) and 10(). Now
lines in the plane perpendicular to the viewing direction
are more accurately predicted than lines close to line 1.

The immediate reason for the inversion of this uncer-
tainty pattern can be found in Figs. 8(a) and 10(b). In the
case of the single sphere, line 1 is strongly correlated with
the other lines, whereas in the case where the sphere is a
small part of the object, the correlation between line 1 and
the other lines is virtually gone. (No correlation means we
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Figure 10:(a) A random set of 3D points in a large rectangular
planar region are added to the 3D sphere. (b) Uncertainties fromVg0 are shown. Black lines give�e0 for each line and the white
lines show the correlation with line 1. () The resulting uncer-
tainty,�e, for each line when line 1 is measured, and (d) �e when
line 7 is measured.

will get the same uncertainty pattern as the known camera
case shown in Fig. 1, see Matthies and Shafer [7]).

We would like to know why there is large correlation in
one case and not in the other. This comes from the original
calculation of theVs0 covariance in Eq. (4). If the camera
positions and orientations are known exactly, thenVs0 =H�1s , and it turns out that the points are all uncorrelated.
However, when there is uncertainty in motion, this ends up,
in part, as correlation terms inVs0 in Eq. (4). When addi-
tional points are added as in Fig. 10(a), the greater field of
view enables rotations to be estimated with much less un-
certainty as shown in Fig. 11, and so gives less correlation
in Vs0 .

We conclude from this set of experiments that when our
object is large in width and height, compared to the set of
lines we want to estimate, then it is best to measure lines
orthogonal to the viewing direction. On the other hand, for
objects with lines all clustered around a single point, lines
along the viewing direction are best predicted by measur-
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Figure 11:The uncertainty in rotation for the single sphere from
Fig. 7 is shown in (a), and for the sphere with additional points
from Fig. 10 in (b).
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Figure 12:Eighteen lines of equal length in a plane are labeled.

ing other lines along the viewing direction. This is illus-
trated in Table 1.

4.3 Position in the Plane
Next we would like to find out how position of a line in

a plane affects its usefulness for gauge fixing. A synthetic
object made from two planes is shown in Fig. 12.

Figure 13 shows the resulting uncertainties when a se-
lection of the lines is used to fix the scale. We notice first
that irrespective of which line is used to fix the scale, the
accuracy order of the lines stays the same (of course ex-
cluding the line that is fixed in each case). That is, lines 1,
4, 7, 10, 13 and 16 are always most accurately predicted,
lines 2, 5, 8, 11, 14 and 17 are next, and lines 3, 6, 9, 12,
15 and 18 are least accurately predicted. This result applies
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Figure 13:The uncertainty of line prediction is shown for each
of the labeled lines.
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Figure 14:Five views of a shape made from two planes. In both
plots the mid-points of lines 1 through 8 are on one plane and
the rest on the plane behind this. Lines 2, 4, 6 and 8 are fully on
the front plane, and lines 1, 3, 5 and 7 are of the same length but
oriented so that they are orthogonal to their viewing directions. In
(b) an additional set of points are added to make the object large
compared to the sphere.

in reverse too, that is, better predicted lines are better for
gauge fixing.

One might suppose that the reason for this pattern is due
to the projected line length in the images. But this cannot
be the case since for a perspective camera all the lines in
the plane have the same projected line length. Our next
experiment will investigate reasons for this effect.

4.4 Viewing Directions and Perpendicular Lines
Consider the row consisting of lines 1, 2, 3, 10, 13, and

16 in Fig. 12. We find that fixing any one of the lines 10, 13
or 16, generates equal accuracy in predicting other lines,
but that fixing one of lines 1, 2 or 3, gives increasingly
poor accuracy. To understand this we created the following
experiment. Hereviewing directionof a line refers to the
line from the center camera to the center of the line.

We took a row of lines from the parallel planes exam-
ple, shown in Fig. 12, and, keeping their mid-points fixed,
we swivelled the lines so that each one is orthogonal to
its viewing direction. Thus we obtained the shape shown
in Fig. 14(a). The results of measuring lines 1 and 7 are
shown in Fig. 15. We see from this plot that lines that share
a viewing direction, and are orthogonal to it, have approx-
imately the same uncertainty. In this example the height
of the object is small and so the line lengths are strongly
correlated with each other.

In order to remove line correlation, and so make our
setup analogous to the previous parallel plane example, we
added a set of random points to our shape and obtained the
new object shown in Fig. 14(b). The resulting uncertainties
are shown in Fig. 16. We see that all lines with mid-points
on the front plane have the same uncertainty.

This allows us to explain our result in section 4.3. The
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Figure 15:The uncertainty of the line prediction for the shape
in Fig. 14(a) is shown in (a) for line 1, and in (b) for line 7.

1 2 3 4 5 6 7 8 9 10111213141516
0

2

4

6

1 2 3 4 5 6 7 8 9 10111213141516
0

2

4

6

(a) (b)
Figure 16:The uncertainty of the line prediction for the shape
in Fig. 14(b) is shown in (a) for line 1, and in (b) for line 7.

difference in pattern between Figs. 16 and 13 is due only
to line orientation with respect to the viewing direction.
Hence this plays a determining role in uncertainty. The
lines in the plane that provided the best gauge fixing con-
straints were precisely those that are orthogonal to their
viewing directions, and those that gave the greatest uncer-
tainty were those having the greatest angle from the plane
orthogonal to its viewing direction. This is the difference
between lines 3 and 16 in Fig. 12. For a fuller set of exper-
imental results see [9].

4.5 Desk Reconstruction
Our next experiment involved the reconstruction of a

computer and desk. Seven images were taken of it using a
digital camera and features were registered in the sequence
as shown in Fig. 17. A 3D reconstruction was then per-
formed and the result is shown in Fig. 18.

The first goal for this sequence was to estimate the width
of the computer monitor labeled as line 1. We measured a
number of lengths in the scene so see how each of these
would do in fixing the scale for predicting line 1. All were
assumed to have0:5mm measurement uncertainty.
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Figure 17:The two end-images from a seven image sequence of
a computer and desk with lines marked.
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Figure 18: The 3D reconstruction of the desk is shown along
with the camera positions.
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Figure 19:The predicted monitor width is shown, along with its
uncertainty in standard deviations for each of the thirteenlines,
calculated using Eq. (16).

The most promising lines for optimizing the accuracy
of predicting line 1 through gauge fixing are 2, 4, 6 and
7 since they are all long and approximately orthogonal
to their viewing directions. Lines 10 and 11 are even
longer,and so better, although being oriented partly along
the viewing direction this advantage may be somewhat off-
set. We expect 3 and 5 to be poor since they are oriented
along their viewing directions and 9, 12 and 13 also to be
poor since they are short. Figure 19 sustains all of these
predictions.

Now instead imagine we want to know the length of
the sub-woofer, indicated as line 3 in the image. The key
question here is whether it would be better to know line 5,
which is parallel to line 3, or else one of the lines orthog-
onal to the viewing direction. Since the desk has a large
field of view in both height and width compared to the line
lengths, we expect that the lines are relatively uncorrelated
and hence that lines orthogonal to the viewing direction
would be better than line 5. This is confirmed in Fig. 20.
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Figure 20: The predicted length of the sub-woofer is shown,
along with its uncertainty in standard deviations for each of the
thirteen lines, calculated using Eq. (16).
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Figure 21: The predicted length of the sub-woofer is shown,
along with its uncertainty in standard deviations for just lines 2,
3, 4, 5 and 6, calculated using Eq. (16).

  a

  a′

  b′
  b

Figure 22:Four equal-length lines in an object,a, a0, b, andb0,
with the first two being along the viewing direction, and the sec-
ond two orthogonal to it. Table 1 shows the prediction accuracies.

But let us consider another situation in which the only
features that we tracked are those belonging to lines 2, 3, 4,
5 and 6. We can do shape estimation with just these data,
and then estimate the sub-woofer length by measuring one
of the other lengths. With points from just these lines, the
object has a relatively small field of view compared to the
line lengths. Hence we might expect that measuring line 5
would give us the greatest accuracy. We see in Fig. 21 that
this is indeed the case.

5 Conclusion
We have investigated how the covariances of object

lengths are affected by fixing the scale. We found out
how length, position and orientation of a line each affect
the line’s utility for fixing the scale. In doing this we dis-
tinguished objects having a large field of view from those
having a small field of view relative to line length, as this
determines the relative accuracy of camera motion estima-
tion and hence the amount of correlation between the lines.
Table 1 summarizes how line orientation can effect accu-
racy in scale fixing.

It is important to considering how the scale will be fixed
when doing shape estimation. One way to fis scale is to
place a measuring rod of known length in the scene prior
to taking images, and include it as part of the object. The
qualitative understanding obtained in this paper allows us
to place the measuring rod in the scene at the position and
orientation that will maximize the final 3D accuracy of the
part of the object that we most want to estimate.

These results are also useful for optimally designing
calibration objects for multi-camera systems or mobile

Table 1:The table shows which of linea or b is more accurately
estimated whena0 or b0 is fixed in Fig. 22. As explained in section
4.2 this depends on the size of the complete object of which these
lines are only a part.

Small object Large object
(high correlation) (low correlation)a0 fixed a bb0 fixed b b

robots. Future work will involve extending these princi-
ples to use multiple lines for scale fixing.
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