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4.1 Introduction

The problem of computing from point correspondences over two views their 3-D
locations, the positions and orientations of the two cameras, and their intrinsic
parameters was intensively studied in 1980s and 1990s. Today, it is a well established
technology and is used for many applications including robot navigation and virtual
reality as a typical example of what is known as structure from motion [Kanatani
(1996); Hartley and Zisserman (2000)]. The principle is now extended to multiple
views and video streams [Hartley and Zisserman (2000); Kanatani (2008)].

Although the mathematical principle is well understood today, ceaseless efforts
have still been made to improve component technologies, such as the fundamental
matrix computation, with a view to further upgrade the accuracy and computational
efficiency. This chapter describes such latest efforts for two view reconstruction. The
basic structure of the algorithm was given by Kanatani and Ohta (2003), and we
replace its individual components by latest results. Specifically:

(1) Given point correspondences, we must first compute the fundamental matrix,
for which Kanatani and Ohta (2003) used a method called renormalization
[Kanatani (2000)] and then optimally corrected the resulting solution so that
it satisfies the rank constraint. This produces a statistically optimal solution
up to high order noise terms. Here, we compute the fundamental matrix by
a strictly optimal scheme recently introduced by Kanatani and Sugaya (2009),
using the EFNS (Extended Fundamental Numerical Scheme) [Kanatani and
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Sugaya (2007b)]. This not only achieves yet higher accuracy but also signifi-
cantly simplifies the algorithm.

(2) Optimal estimation of the fundamental matrix requires iterations. Kanatani
and Ohta (2003) initialized their renormalization by least squares. Here, we
use the method of Taubin (1991), which is known to produce a better solution
without any iterations [Kanatani and Sugaya (2007a,c)]. This considerably
accelerates the convergence of the succeeding optimization of the fundamental
matrix.

(3) From the computed fundamental matrix, we next compute the focal lengths of
the two cameras. For this, Kanatani and Ohta (2003) used the formula of Boug-
noux (1998), which we call the “free focal length method”. This method fails
when the two camera are in a degenerate configuration [Kanatani et al. (2006)].
However, this configuration occurs very frequently in practical situations. Fol-
lowing Kanatani and Matsunaga (2000) and Kanatani et al. (2006), we also
describe the “fixed focal length method”, assuming that the two focal lengths
are equal.

(4) After the focal lengths are computed, we can determine the relative camera
positions [Kanatani (1993)], from which we can triangulate the 3-D locations of
the points in the scene. For this, we use the method of Kanatani et al. (2008)
for optimally correcting corresponding points and triangulating them relative
to a given world coordinate system.

This chapter is organized as follows. Section 4.2 describes the entire structure
of our algorithm. Section 4.3 focuses on the fundamental matrix computation. We
describe the details of the initialization by the Taubin method and the subsequent
optimization using the EFNS procedure. In Sec. 4.4, we discuss in detail the com-
putation of the camera focal lengths. We describe the general theory, the free focal
length method, and the fixed focal length method. Section 4.5 concentrates on
computation of 3-D motion and structure from the computed focal lengths and the
fundamental matrix. We describe practical procedures for computing the camera
translation and rotation and optimally triangulating individual points. We con-
clude in Sec. 4.6, summarizing related issues and listing typical situations in which
3-D reconstruction fails if care is not taken. The Appendix describes the details of
computational procedures omitted in the body.

4.2 Entire Algorithm Structure

Figure 4.1 shows the entire structure of the algorithm to be described here. The
input and output are as follows:

Input: The image coordinates (xα, yα), (x′
α, y′

α), α = 1, ..., N (≥ 8), of corre-
sponding points.
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Input image coordinates of corresponding points.

↓
Compute the fundamental matrix.

↓
Compute the focal lengths.

↓
Compute the relative camera motion.

↓
Compute the 3-D locations.

Fig. 4.1 The entire structure of our algorithm.

Output: Their 3-D locations (Xα, Yα, Zα), α = 1, ..., N .

Our algorithm is based on the following assumptions and conventions:

• The principal point (the intersection of the optical axis and the image plane) is
known. We define an xy image coordinate system with the origin (0, 0) at the
principal point. We take the x-axis upward direction and the y-axis rightward .

• Image distortion does not exists or already corrected beforehand. Hence, the
rows and columns of the pixel array are regarded as physically orthogonal with
aspect ratio 1.

• The focal lengths of the two cameras are equal, or equivalently one camera is
moved without changing the zoom or the focus.

Given sufficiently many point correspondences over sufficiently many images, we
can in principle determine the principal point and also correct the image distortion
[Hartley and Zisserman (2000)]. From two views, however, all available information
is the epipolar constraint encoded in the 3 × 3 fundamental matrix (Sec. 4.3.1).
The fundamental matrix has scale indeterminacy, so only five of its elements are
independent. From this limited information, 3-D reconstruction is possible only
when the principal point is known and no image distortion exists (Sec. 4.4.1). For
most of the digital cameras available on the market today, we can safely assume
this. Otherwise, we need prior camera calibration and geometric correction.

The reason we take the x-axis upward and the y-axis rightward is that we view
the camera optical axis, which we identify with the z-axis, as extending away from
the viewer. For humans, this is a natural interpretation of perspective projection.
Taking the x-axis rightward and the y-axis upward would define a left-handed co-
ordinate system, in which rotation matrices have determinant −1. To avoid this,
we could of course take the x-axis downward and the y-axis rightward.

Thus, we model the camera imaging geometry as shown in Fig. 4.2. We take
an XY Z coordinate system fixed to the camera in such a way that the origin O

is at the center of the lens, which we hereafter call the viewpoint , and the Z axis
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Fig. 4.2 Interpretation of perspective projection.

along the optical axis of the lens . We identify the xy image plane with the plane
Z = f , and call f the focal length. The xy image coordinate system is defined so
that the image origin (0, 0) is at the principal point (0, 0, f) and the x- and y-axis
are parallel to the X- and Y -axis, respectively. A point (X,Y, Z) in the scene is
projected to the intersection (x, y) of the image plane with the ray, or the line of
sight , starting from the viewpoint O and passing through (X,Y, Z). This geometry
is known as perspective projection or the pin-hole camera model .

The assumption of equal focal lengths is not necessary as long as the camera
configuration is nondegenerate. However, most practical applications take place in
a degenerate configuration, in which 3-D reconstruction is impossible unless the two
cameras have the same focal length or their focal lengths are known (Sec. 4.4.3). The
equal focal length assumption is not a strong constraint, since people usually take
images without changing the zoom or the focus. The subsequent sections describe
the component algorithms according to the flow shown in Fig. 4.1.

4.3 Fundamental Matrix Computation

4.3.1 Epipolar equation

The first step is to compute the fundamental matrix F from point correspondences
(xα, yα) and (x′

α, y′
α), α = 1, ..., N . We regard xα, yα, x′

α, and y′
α as noisy obser-

vations of their true values x̄α, ȳα, x̄′
α, and ȳ′

α. We represent points (xα, yα) and
(x′

α, y′
α) by 3-D vectors

xα =

xα/f0

yα/f0

1

 , x′
α =

x′
α/f0

y′
α/f0

1

 , (4.1)

where f0 is a scaling constant of the order of the image size for stabilizing numerical
computation [Hartley (1997)]. Let x̄α and x̄′

α be the true values of xα and x′
α,

respectively. They satisfy the following epipolar equation [Hartley and Zisserman
(2000)]:

(x̄α, F x̄′
α) = 0. (4.2)
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Throughout this chapter, we denote the inner product of vectors a and b by (a, b).
The matrix F in Eq. (4.2) is of rank 2 and called the fundamental matrix ; it depends
on the relative positions and orientations of the two cameras and their intrinsic
parameters (e.g., their focal lengths) but not on the scene or the choice of the
corresponding points. As Eq. (4.2) implies, the matrix F has scale indeterminacy.

If the noise in (xα, yα) and (x′
α, y′

α) is regarded as independent and identical
Gaussian variables of mean 0, maximum likelihood (ML) estimators of x̄α, x̄′

α, and
F are computed by minimizing the reprojection error

E =
N∑

α=1

(
‖xα − x̄α‖2 + ‖x′

α − x̄′
α‖2

)
, (4.3)

subject to Eq. (4.2). In order to determine the nine elements of F up to scale from
Eq. (4.2), we need to observe at least eight points. If we consider the rank constraint
det F = 0, we could theoretically determine F from seven correspondences, but in
that case multiple solutions can exist [Hartley and Zisserman (2000)]. Hereafter,
we assume that we observe eight or more points.

If the points we observe are in a special configuration in 3-D, however, Eq. (4.2)
can be satisfied by infinitely many F . This occurs if all the points and the viewpoints
O and O′ of the two cameras are on a quadratic surface, known as a critical surface
[Maybank (1990, 1991), Kanatani (1993, 1996)]. Such a configuration occurs, e.g.,
when all the points are coplanar in the scene. In the following, we assume that the
points are in general position so that Eq. (4.2) is satisfied by a unique F up to scale.
We will return to this issue in Sec. 4.6.

4.3.2 Initializing the fundamental matrix

All known algorithms for minimizing Eq. (4.3) subject to Eq. (4.2) are iterative, so
we need an appropriate initial value. The simplest and most popular is the least
squares (Appendix A). As pointed out by Kanatani and Sugaya (2007a,c), however,
the accuracy of the least squares is rather limited, and a much better solution is
obtained by the method of Taubin (1991). The use of the Taubin solution as the
initial value considerably accelerates the convergence of the subsequent optimization
iterations. For computational convenience, we identify the fundamental matrix F

with the 9-D vector

u = (F11, F12, F13, F21, F22, F23, F31, F32, F33)>. (4.4)

The Taubin method goes as follows (see Appendix B for the derivation):

Input: The image coordinates (xα, yα), (x′
α, y′

α), α = 1, ..., N (≥ 8), of corre-
sponding points.

Output: The 9-D vector encoding the fundamental matrix F .
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(1) Represent the corresponding points (xα, yα) and (x′
α, y′

α) by the following 8-D
vectors:

zα = (xαx′
α, xαy′

α, f0xα, yαx′
α, yαy′

α, f0yα, f0x
′
α, f0y

′
α)>. (4.5)

(2) Compute the following 8 × 8 matrices V0[zα]:

V0[zα] =



x2
α + x′2

α x′
αy′

α f0x
′
α xαyα 0 0 f0xα 0

x′
αy′

α x2
α + y′2

α f0y
′
α 0 xαyα 0 0 f0xα

f0x
′
α f0y

′
α f2

0 0 0 0 0 0
xαyα 0 0 y2

α + x′2
α x′

αy′
α f0x

′
α f0yα 0

0 xαyα 0 x′
αy′

α y2
α + y′2

α f0y
′
α 0 f0yα

0 0 0 f0x
′
α f0y

′
α f2

0 0 0
f0xα 0 0 f0yα 0 0 f2

0 0
0 f0xα 0 0 f0yα 0 0 f2

0


. (4.6)

(3) Compute the following 8-D vectors z̄ and z̃α:

z̄ =
1
N

N∑
α=1

zα, z̃α = zα − z̄. (4.7)

(4) Compute the following 8 × 8 matrices MTB and NTB:

MTB =
N∑

α=1

z̃αz̃>
α , NTB =

N∑
α=1

V0[zα]. (4.8)

(5) Solve the following generalized eigenvalue problem (Appendix C) and compute
the unit generalized eigenvector v for the smallest generalized eigenvalue:

MTBv = λNTBv. (4.9)

(6) Return the 9-D unit vector u

u = N [
(

v

−(z̄, v)/f2
0

)
], (4.10)

where N [ · ] denotes normalization to unit norm (N [a] = a/‖a‖).

The use of f0 in Eqs. (4.5) and (4.6) is for making the vector components and the
matrix elements to have the same order of magnitude for stabilizing the numerical
computation [Hartley (1997)]. The final solution does not depend on the specific
value f0.

4.3.3 Alternating optimization scheme

Starting from the Taubin solution, we iteratively optimize it so that it minimizes
the reprojection error E in Eq. (4.3) subject to the epipolar equation in Eq. (4.2).
The major obstacle is that the fundamental matrix F is constrained to have rank
2. A popular approach to this is to introduce auxiliary variables so that the rank
constraint is automatically satisfied and to do numerical search in the augmented
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Initialize the fundamental matrix (Taubin method).

↓
Optimally estimate {x̄α, x̄′

α}.
(triangulation).

À Optimally compute F .
(EFNS).

↓
Output the final F .

Fig. 4.3 Fundamental matrix computation.

parameter space. Specifically, we first compute from an assumed fundamental ma-
trix a tentative 3-D reconstruction, i.e., the 3-D locations of the observed points,
the relative positions and orientations of the two cameras, and their focal lengths.
Then, we iteratively adjust the 3-D locations, the camera configuration, and the fo-
cal lengths so that the image positions obtained by “reprojecting” the reconstructed
3-D points are as close to the observed points as possible1, see, e.g, Bartoli and
Sturm (2004). This approach is known as bundle adjustment [Triggs et al. (2000)].

The search space for bundle adjustment is very high dimensional, since the N

locations in 3-D are all taken to be variables as well as the camera configuration and
the focal lengths. A well known optimization scheme is the Levernberg-Marquardt
method [Press et al. (1992)], but the search is very inefficient unless one incorpo-
rates a clever implementation such as preprocessing of the Hessian, which is very
high dimensional and very sparse. Here, we describe an efficient method recently
proposed by Kanatani and Sugaya (2009). The computation is done only in the 9-D
space of the fundamental matrix, yet is equivalent to bundle adjustment. The com-
putation of {x̄α, x̄′

α}, and F that minimize Eq. (4.3) subject to Eq. (4.2) consists
of the following two components, which are alternated until the solution converges
(Fig. 4.3):

• Optimally computing the estimate {x̂α, x̂′
α} of {x̄α, x̄′

α} for a given F .
• Optimally computing F for a given estimate {x̂α, x̂′

α} of {x̄α, x̄′
α}.

In the first component, we minimize Eq. (4.3) with respect to {x̄α, x̄′
α} subject

to Eq. (4.2) for a given F . This is nothing but what is known as triangulation of
stereo images. Here, we use the procedure of Kanatani et al. (2008). In the sec-
ond component, we minimize Eq. (4.3) with respect to F subject to Eq. (4.2) and
the rank constraint detF = 0 for a given estimate of {x̄α, x̄′

α}. For this compu-
tation, we use the EFNS (Extended Fundamental Numerical Scheme) of Kanatani
and Sugaya (2007b). This scheme iteratively updates F so that the reprojection
error E decreases and det F approaches 0 at the same time. In other words, the
rank constraint detF = 0 is not satisfied in the course of iterations but is satisfied
in the end. This type of iterations was introduced by Chojnacki et al. (2004), who
called their method CFNS (Constrained Fundamental Numerical Scheme), which is
1From this, Eq. (4.3) comes to be known as the “reprojection error”.
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a modification of their unconstrained optimization scheme called FNS (Fundamen-
tal Numerical Scheme) [Chojnacki et al. (2000)]. However, Kanatani and Sugaya
(2007b) pointed out that the CFNS does not necessarily converge to a correct so-
lution while their EFNS is guaranteed to produce an optimal solution.

4.3.4 Optimal computation of the fundamental matrix

Given an initial value of the 9-D vector representation u of the fundamental matrix
F in the form of Eq. (4.4) and observed corresponding points (xα, yα), (x′

α, y′
α), α

= 1, ..., N , the following algorithm optimally computes the fundamental matrix F

(see Kanatani and Sugaya (2009) and Kanatani (2009) for the derivation).

Input: The image coordinates (xα, yα), (x′
α, y′

α), α = 1, ..., N (≥ 8), of corre-
sponding points, and the 9-D vector u representing an initial estimate of F .

Output: Optimized fundamental matrix F .

(1) Let E0 = ∞ (a sufficiently large number), and initialize x̂α, ŷα, x̂′
α, ŷ′

α, x̃α, ỹα,
x̃′

α, and ỹ′
α, α = 1, ..., N , as follows:

x̂α = xα, ŷα = yα, x̂′
α = x′

α, ŷ′
α = y′

α,

x̃α = ỹα = x̃′
α = ỹ′

α = 0. (4.11)

(2) Compute the following 9-D vectors ξα and 9× 9 matrices V0[ξα], α = 1, ..., N :

ξα =



x̂αx̂′
α + x̂′

αx̃α + x̂αx̃′
α

x̂αŷ′
α + ŷ′

αx̃α + x̂αỹ′
α

f0(x̂α + x̃α)
ŷαx̂′

α + x̂′
αỹα + ŷαx̃′

α

ŷαŷ′
α + ŷ′

αỹα + ŷαỹ′
α

f0(ŷα + ỹα)
f0(x̂′

α + x̃′
α)

f0(ŷ′
α + ỹ′

α)
f2
0


, (4.12)

V0[ξα] =



x̂2
α + x̂′2

α x̂′
αŷ′

α f0x̂
′
α x̂αŷα 0 0 f0x̂α 0 0

x̂′
αŷ′

α x̂2
α + ŷ′2

α f0ŷ
′
α 0 x̂αŷα 0 0 f0x̂α 0

f0x̂
′
α f0ŷ

′
α f2

0 0 0 0 0 0 0
x̂αŷα 0 0 ŷ2

α + x̂′2
α x̂′

αŷ′
α f0x̂

′
α f0ŷα 0 0

0 x̂αŷα 0 x̂′
αŷ′

α ŷ2
α + ŷ′2

α f0ŷ
′
α 0 f0ŷα 0

0 0 0 f0x̂
′
α f0ŷ

′
α f2

0 0 0 0
f0x̂α 0 0 f0ŷα 0 0 f2

0 0 0
0 f0x̂α 0 0 f0ŷα 0 0 f2

0 0
0 0 0 0 0 0 0 0 0


.

(4.13)
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(3) Update u by calling the subprogram EFNS in Sec. 4.3.5.
(4) Update x̃α, ỹα, x̃′

α, and ỹ′
α, α = 1, ..., N , as follows:

(
x̃α

ỹα

)
← (u, ξα)

(u, V0[ξα]u)

(
u1 u2 u3

u4 u5 u6

) x̂′
α

ŷ′
α

f0

 ,

(
x̃′

α

ỹ′
α

)
← (u, ξα)

(u, V0[ξα]u)

(
u1 u4 u7

u2 u5 u8

) x̂α

ŷα

f0

 . (4.14)

(5) Update x̂α, ŷα, x̂′
α, and ŷ′

α, α = 1, ..., N , as follows:

x̂α ← xα − x̃α, ŷα ← yα − ỹα,

x̂′
α ← x′

α − x̃′
α, ŷ′

α ← y′
α − ỹ′

α. (4.15)

(6) Compute the reprojection error E as follows:

E =
N∑

α=1

(x̃2
α + ỹ2

α + x̃′
α

2 + ỹ′
α

2). (4.16)

(7) If E ≈ E0, output

F =

u1 u2 u3

u4 u5 u6

u7 u8 u9

 . (4.17)

Else, let E0 ← E and go back to Step (2).

4.3.5 EFNS procedure

The EFNS procedure called in the Step (3) of the above algorithm is the following
computation [Kanatani and Sugaya (2007b)]. It produces the 9-D vector u that
represents an optimal estimate of the fundamental matrix F for the current (x̂α, ŷα),
(x̂′

α, ŷ′
α), α = 1, ..., N , that satisfies the rank constraint detF = 0.

Input: The 9-D vectors ξα, α = 1, ..., N , that encode the corresponding points
and the 9-D vector u that represents the current fundamental matrix.

Output: The 9-D vector u that represents the updated fundamental matrix.

(1) Compute the following 9 × 9 matrices M and L:

M =
N∑

α=1

ξαξ>
α

(u, V0[ξα]u)
, L =

N∑
α=1

(u, ξα)2V0[ξα]
(u, V0[ξα]u)2

. (4.18)



June 15, 2010 12:26 World Scientific Book - 9.75in x 6.5in handbook

210 Handbook of Pattern Recognition and Computer Vision

(2) Compute the following 9-D vector u† and 9 × 9 matrix P u† :

u† = N [



u5u9 − u8u6

u6u7 − u9u4

u4u8 − u7u5

u8u3 − u2u9

u9u1 − u3u7

u7u2 − u1u8

u2u6 − u5u3

u3u4 − u6u1

u1u5 − u4u2


], P u† = I − u†u†>. (4.19)

(3) Compute the following 9 × 9 matrices X and Y :

X = M − L, Y = P u†XP u† . (4.20)

(4) Compute the 9-D unit eigenvectors v1 and v2 for the smallest two eigenvalues
of Y .

(5) Compute the following 9-D vectors û and u′:

û = (u,v1)v1 + (u, v2)v2, u′ = N [P u†û]. (4.21)

(6) If u′ ≈ u up to sign, return u′ as the update of u. Else, let u ← N [u + u′]
and go back to Step (1).

The vector u† in Eqs. (4.19) encodes the nine elements of the cofactor F † of
the fundamental matrix F . The matrix P u† represents projection of the 9-D space
onto the 8-D subspace orthogonal to u†. In Step (4), Kanatani and Sugaya (2009)
computed two eigenvectors for the smallest eigenvalues in absolute values. Later,
it has experimentally been found that simply computing two eigenvectors for the
smallest eigenvalues results in better convergence in the presence of large noise. The
same phenomenon was observed for the FNS of Chojnacki et al. (2000), for which
computing the smallest eigenvalue, rather than the smallest eigenvalue in absolute
value, exhibits better convergence [Kanatani and Sugaya (2007a,c)]. In Step (6), we
could let u ← u′, but it has been observed that the value u′ computed in Step (5) in
the next round often reverts to the former value of u, falling in infinite looping. To
avoid this, the “midpoint” (u′+u)/2 is normalized to a unit vector N [u′+u]. This
greatly improves convergence. In fact, it has been confirmed that this technique
also improves the convergence of FNS of Chojnacki et al. (2000), which sometimes
oscillates in the presence of very large noise.

4.4 Focal Length Computation

4.4.1 General theory

From thus computed fundamental matrix F , we next compute the focal lengths f

and f ′ (in pixels) of the two cameras and their relative translation t and rotation
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R, which we call the motion parameters. The fundamental matrix F has scale
indeterminacy, and it should satisfy the rank constraint detF = 0, so it has seven
degrees of freedom.

The scale indeterminacy of F corresponds to the scale indeterminacy of the
translation t, since we would observe the same images after the 3-D scene, the
depths, and the camera translation t are simultaneously scaled up/down by the
same ratio. In order to fix the scale, we normalize the translation t to unit norm
(‖t‖ = 1), so it has two degrees of freedom. The rotation R has three degrees of
freedom. Together with f and f ′, the unknowns have seven degrees of freedom.
Thus, we should be able to compute the focal lengths {f , f ′} and the motion
parameters {t, R} from F .

If more views were observed, other camera parameters such as the aspect ratio,
the skew angle, and the principal point (see Sec. 4.5.3) could be computed [Hartley
and Zisserman (2000)]. As the above counting of the degrees of freedom indicates,
however, we cannot reconstruct 3-D from two views unless other parameters are
known. Hence, we assume an ideal camera for which the aspect ratio is 1 with no
image skew, and the principal point is at the center of the image plane (Fig. 4.2).
If the two cameras are ideal in the above sense, the fundamental matrix F has the
following expression in the focal lengths {f , f ′} and the motion parameters {t, R}
[Kanatani (1993), Hartley and Zisserman (2000)]:

F = diag(1, 1,
f

f0
) t × R diag(1, 1,

f ′

f0
). (4.22)

The symbol diag(a, b, c) designates the diagonal matrix with diagonal elements a,
b, and c in that order. The product a×V of a vector a and a matrix V is a matrix
consisting of columns a× v1, a× v2, and a× v3, where vi is the ith column of V .
We define the essential matrix E by

E = diag(1, 1,
f0

f
)Fdiag(1, 1,

f0

f ′ ) (= t × R). (4.23)

Huang and Faugeras (1988) proved that a matrix E can be written as t × R for
some vector t and some rotation matrix R if and only if E has singular values σ,
σ, and 0 for some σ > 0. Let us define the Frobenius norm of matrix A by ‖A‖ =√∑N

i,j=1 A2
ij . Kanatani (1993) wrote this condition as

‖EE>‖2 =
1
2
‖E‖4 (4.24)

along with det E = 0, which is automatically satisfied by the rank constraint detF

= 0 of F . If σ1 ≥ σ2 ≥ σ3 (≥ 0) are the singular values of E, the rank constraint
det E = 0 implies σ3 = 0. It can easily be seen that Eq. (4.24) is then equivalent
to (σ2

1 − σ2
2)2 = 0 [Kanatani (1993)]. Thus, if Eq. (4.23) is substituted, Eq. (4.24)

gives a set of equations for f and f ′. Here, we describe the computational theory of
Kanatani and Matsunaga (2000). First, we change the variables from f and f ′ to

ξ =
(f0

f

)2

− 1, η =
(f0

f ′

)2

− 1. (4.25)
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Next, we define the function

K(ξ, η) = ‖EE>‖2 − 1
2
‖E‖4 (4.26)

of ξ and η obtained by expressing f and f ′ in Eq. (4.23) in terms of ξ and η.
Equation (4.24) is equivalent to K(ξ, η) = 0. Moreover, the following relation holds
due to the singular nature of the essential matrix E [Kanatani et al. (2006)]:

K =
∂K

∂ξ
=

∂K

∂η
= 0. (4.27)

This means that the function K(ξ, η) takes its minimum at (ξ, η) and its minimum
equals 0 (Fig. 4.4(a)). After some lengthy manipulations, we see that K(ξ, η) is a
fourth order polynomial in ξ and η, quadratic in each, in the form2

K(ξ, η) = (k,Fk)4ξ2η2 + 2(k, Fk)2‖F>k‖2ξ2η + 2(k, Fk)2‖Fk‖2ξη2

+‖F>k‖4ξ2 + ‖Fk‖4η2 + 4(k,Fk)(k, FF>Fk)ξη + 2‖FF>k‖2ξ

+2‖F>Fk‖2η + ‖FF>‖2 − 1
2

(
(k,Fk)2ξη + ‖F>k‖2ξ

+‖Fk‖2η + ‖F ‖2
)2

. (4.28)

Hence, the solution (ξ, η) can be obtained, in principle, by numerically searching
for the minimum of this polynomial.

Here, we need to distinguish two types of algorithms. One is to see f and f ′

as independent variables and solve for them. Then, if the two cameras have the
same focal lengths, the computed f and f ′ may not be equal, since F is computed
from noisy point correspondences. Let us call this the free focal length method . The
other is to force the equality f = f ′ from the beginning and solve for them. In this
case, Eq. (4.27) provide redundant constraints, since we have only one unknown.
Let us call this the fixed focal length method .

4.4.2 Free focal length method

Instead of numerically searching for the minimum of Eq. (4.28), we can determine f

and f ′ directly from Eq. (4.22). In fact, the problem of computing the focal lengths
from F has attracted many researchers, and various formulas, all mathematically
equivalent, have been presented in the past [Hartley (1992), Pan et al. (1995a,b),
Newsam et al. (1996), Bougnoux (1998), Kanatani and Matsunaga (2000)]. Here,
we describe the modified Bougnoux formula of Kanatani and Matsunaga (2000) (see
Appendix D for the derivation). In the following, we define k = (0, 0, 1)>.

Input: The fundamental matrix F .
Output: The focal lengths f and f ′ of the two cameras.
2The EFNS procedure in Sec. 4.3.5 normalizes the vector u representing F to ‖u‖ = 1. This

means F is normalized to ‖F‖ = 1.



June 15, 2010 12:26 World Scientific Book - 9.75in x 6.5in handbook

Latest Algorithms for 3-D Reconstruction from Two Views 213

ξ

η

O

K(   ,    )ξ η

(   ,    )ξ η

ξ

η

O

(     ,    )ξ η00 ξ=η

K(   ,    )ξ η =constant

(a) (b)

Fig. 4.4 (a) The focal lengths f and f ′ are determined by the point (ξ, η) at which the surface
of K(ξ, η) touches the ξη-plane. (b) The point (ξ0, η0) is corrected to (ξ, η) on the line ξ = η so

that the increase of K(ξ, η) is minimized.

(1) Let e and e′ be the unit eigenvectors of FF> and F>F , respectively, for the
smallest eigenvalue.

(2) Compute the following ξ and η:

ξ =
‖Fk‖2 − (k, FF>Fk)‖e′ × k‖2/(k, Fk)

‖e′ × k‖2‖F>k‖2 − (k, Fk)2
,

η =
‖F>k‖2 − (k,FF>Fk)‖e × k‖2/(k, Fk)

‖e × k‖2‖Fk‖2 − (k, Fk)2
. (4.29)

(3) If ξ ≤ −1 or η ≤ −1, return the message failure and stop. Else return

f =
f0√
1 + ξ

, f ′ =
f0√
1 + η

. (4.30)

Equations (4.30) are simply rewriting of Eqs. (4.25). The vectors e and e′

computed in Step (1) represent the epipoles of F . Namely, (f0e1/e3, f0e2/e3) is
the projection of the viewpoint of the second camera onto the first image, and
(f0e

′
1/e′3, f0e

′
2/e′3) is the projection of the viewpoint of the first camera onto the

second image (see Eqs. (4.1)). If e3 = 0 or e′3 = 0, the corresponding epipole is
located at infinity in the image plane.

If the focal lengths f and f ′ are known to be equal, we may simply take the
average (f + f ′)/2 as their values or replace ξ and η by their average (ξ + η)/2 in
Step (2), but these are too ad hoc. A reasonable approach is to enforce the equality
ξ = η so that the increase of K(ξ, η) is minimized (Fig. 4.4(b)). Let (ξ0, η0) be
the solution given by Eqs. (4.30). The function K(ξ, η) is Taylor expanded around
(ξ0, η0) in the form

K(ξ, η) =
1
2
(
(

ξ − ξ0

η − η0

)
, H

(
ξ − ξ0

η − η0

)
) + · · · , (4.31)
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where · · · denotes terms of order 3 or higher in ξ − ξ0 and η − η0. From Eq. (4.28),
the Hessian H = (Hij) has the form

H11 = 2(k, Fk)4η2
0+4(k, Fk)2‖F>k‖2η0+2‖F>k‖4−

(
(k,Fk)2η0+‖F>k‖2

)2

,

H12 = 4(k, Fk)4ξ0η0+4(k, Fk)2
(
‖F>k‖2ξ0+‖Fk‖2η0

)
+4(k, Fk)(k, FF>Fk)

−
(
(k, Fk)2ξ0 + ‖Fk‖2

)(
(k,Fk)2η0 + ‖F>k‖2

)
−(k, Fk)2

(
(k,Fk)2ξ0η0 + ‖F>k‖2ξ0 + ‖Fk‖2η0 + ‖F ‖2

)
= H21,

H22 = 2(k, Fk)4ξ2
0 + 4(k, Fk)2‖Fk‖2ξ0 + 2‖Fk‖4 −

(
(k, Fk)2ξ0 + ‖Fk‖2

)2

.

(4.32)

If we ignore the high order terms · · · , Eq. (4.31) is minimized subject to ξ = η by

ξ = η =
(H11 + H12)ξ0 + (H22 + H12)η0

H11 + 2H12 + H22
. (4.33)

(Appendix E.) The corresponding focal lengths f = f ′ are given by Eqs. (4.30).

4.4.3 Fixed focal length method

We can immediately see that the computation of Eqs. (4.29) fails when K33 =
(k, Fk) = 0. If we recall Eqs. (4.1), we can view k as representing the image
origin (0, 0). From Eq. (4.2), we see that (k, Fk) = 0 implies that the image origin
(0, 0) of the first camera corresponds to the image origin (0, 0) of the second, which
means that the optical axes of the two camera intersect in the scene. This camera
configuration is said to be fixating (Fig. 4.5(a)). The fact that the focal lengths
cannot be determined in fixating camera configurations has been repeatedly pointed
out by many researchers [Hartley (1992), Pan et al. (1995a,b), Newsam et al. (1996)].
Kanatani and Matsunaga (2000) showed that for fixating camera configurations the
Hessian H in Eq. (4.31) degenerates to rank 1, so the surface defined by K(ξ, η)
becomes parabolic (“trough” shape) at (ξ, η) (Fig. 4.5(b)). Yet, the fixating camera
configuration occurs very frequently in real situations.

This difficulty is resolved if the focal lengths f and f ′ are known to be equal
[Brooks et al. (1998), Kanatani and Matsunaga (2000), Sturm (2001)]. Geometri-
cally, the surface of K(ξ, η) touches the ξη-plane along the bottom of the trough.
The equal focal lengths ξ = η are obtained by the intersection of the bottom with
the line ξ = η (Fig. 4.5(b)). If ξ and η are equated, Eq. (4.28) reduces to the
following fourth-order polynomial in ξ [Kanatani and Matsunaga (2000)]:

K(ξ) = a1ξ
4 + a2ξ

3 + a3ξ
2 + a4ξ + a5, (4.34)



June 15, 2010 12:26 World Scientific Book - 9.75in x 6.5in handbook

Latest Algorithms for 3-D Reconstruction from Two Views 215

f
f ’

O O’

Y

X X’

Y’

ZZ’x

y

x’

y’

ξ

η

O

K(   ,    )ξ η

(   ,    )ξ η

ξ = η

(a) (b)

Fig. 4.5 (a) Fixating camera configuration. (b) The equal focal lengths f = f ′ are determined

by the intersection of the “bottom’ of the surface of K(ξ, η) and the line ξ = η.

a1 =
1
2
(k,Fk)4,

a2 = (k, Fk)2(‖F>k‖2 + ‖Fk‖2),

a3 =
1
2
(‖F>k‖2 − ‖Fk‖2)2 + (k, Fk)(4(k, FF>Fk) − (k,Fk)‖F ‖2),

a4 = 2(‖FF>k‖2 + ‖F>Fk‖2) − (‖F>k‖2 + ‖Fk‖2)‖F ‖2,

a5 = ‖FF>‖2 − 1
2
‖F ‖4. (4.35)

The minimum of K(ξ) is obtained by solving the following cubic equation in ξ:

K ′(ξ) = 4a1ξ
3 + 3a2ξ

2 + 2a3ξ + a4 = 0. (4.36)

The corresponding f = f ′ are given by Eqs. (4.30). This solution is valid as long as
f = f ′ irrespective of whether the camera configuration is fixating or not. In a strict
fixating configuration, we have (k,Fk) = 0, so a1 = a2 = 0 and hence Eq. (4.36)
reduces to 2a3ξ + a4 = 0 with the solution

ξ = −2(‖FF>k‖2 + ‖F>Fk‖2) − (‖F>k‖2 + ‖Fk‖2)‖F ‖2

(‖F>k‖2 − ‖Fk‖2)2
. (4.37)

Thus, we obtain the following algorithm:

Input: The fundamental matrix F .
Output: The focal lengths f = f ′ of the two cameras.

(1) If (k,Fk) ≈ 0, compute the ξ in Eq. (4.37), and go to Step (3).
(2) Else, solve the cubic equation K ′(ξ) = 0 in Eq. (4.36). If it has a single real

zero, let it be ξ. If it has three real zeros ξ1 ≤ ξ2 ≤ ξ3, let

ξ =


ξ3 ξ2 ≤ −1 or K(ξ1) < 0 or K(ξ3) ≤ K(ξ1)
ξ1 0 ≤ K(ξ1) < K(ξ3)
−1 otherwise

. (4.38)

(3) If ξ ≤ −1, return the message failure and stop. Else return

f = f ′ =
f0√
1 + ξ

. (4.39)
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Fig. 4.6 (a) Symmetric camera configuration. (b) The surface of K(ξ, η) touches the ξη-plane

along ξ = η.

4.4.4 Issues

If the camera configuration is strictly fixating, we have no choice but to use
Eq. (4.37). In a practical situation, however, the camera configuration may be
nearly fixating but not exactly fixating. In a non-fixating situation, we have two
solutions; one obtained using the free focal length method followed by forcing the
equality f = f ′ by Eq. (4.33); the other using the fixed focal length method. Having
two solutions decreases the chance of computational failure. In fact, the inside of
the square roots in Eqs. (4.30) and Eq. (4.39) frequently becomes negative. This
may be due to the inaccurate correspondence point detection but also because the
camera model is not accurate enough, in particular, the principal point is not at
the center of the image [Hartley and Silpa-Anan (2002)].

There is another source of computational failure, however. It has been pointed
out that the focal lengths cannot be computed even for f = f ′ if the camera config-
uration is fixating and symmetric or the two optical axes and the baseline make an
isosceles triangle (including parallel optical axes) [Brooks et al. (1998), Kanatani
and Matsunaga (2000), Sturm (2001)] (Fig. 4.6(a)). In such configurations, the
function K(ξ, η) in Eq. (4.28) is symmetric with respect to ξ and η, i.e., K(ξ, η)
= K(η, ξ). Hence, the surface of K(ξ, η) touches the ξη-plane along the line ξ =
η [Kanatani and Matsunaga (2000)] (Fig. 4.6(b)). Unfortunately, this is the most
frequently encountered situation in real circumstances; people unconsciously place
the cameras in such a configurations.

Thus, in real situations, if one of the two focal length computation methods
returns a real solution while the other fails, we can use the real one. If both
fail, there is no other way but to use some empirical value for f and f ′. If both
returns real values, however, which solution should be used? Kanatani et al. (2006)
reported that even though images are taken without changing the focus or the zoom,
the free focal length method is often more accurate if the camera configuration is
non-fixating to some degree. However, setting an appropriate threshold for it is
very difficult. A practical solution may be to retain both solutions and compute
3-D reconstruction in two ways. In the end, we choose a better one according to
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some criterion, e.g., we may check if corners known to be right angles are correctly
reconstructed. If no such criterion exists, we may choose the reconstruction for
which the reprojection error is smaller (the computation is described in Sec. 4.5.2).

4.5 3-D Reconstruction Procedure

4.5.1 Computation of motion parameters

Once the focal lengths {f , f ′} are computed, it is easy to compute the motion
parameters {t, R} that satisfy Eq. (4.22). The following procedure is well known
[Kanatani (1993)]:

Input: The fundamental matrix F , the focal lengths f and f ′, and the image
coordinates (xα, yα), (x′

α, y′
α), α = 1, ..., N , of corresponding points.

Output: The motion parameters {t, R}.

(1) Compute from F the essential matrix E in Eq. (4.23).
(2) Let t be the unit eigenvector of EE> for the smallest eigenvalue.
(3) Change the sign of t if

N∑
α=1

|t, xα, Ex′
α| < 0, (4.40)

where |a, b, c| denotes the scalar triple product of vectors a, b, and c.
(4) Compute the singular value decomposition (SVD) of −t × E in the form

−t × E = Udiag(σ1, σ2, σ3)V >. (4.41)

(5) Compute the rotation R as follows:

R = Udiag(1, 1,det(UV >))V >. (4.42)

If f and f ′ are exactly computed so that Eq. (4.22) is satisfied, we have E =
t×R. Hence, Et = 0, i.e., t is the eigenvector of E for eigenvalue 0. Step (2) ensures
a stable computation even when f and f ′ are not exact. However, eigenvectors have
sign indeterminacy. Step (3) ensures that on the plane passing through xα, t, and
Rx′

α, the vectors xα and Rx′
α are on the same side of t. This is easily seen from

the identity |t,xα,Ex′
α| = (t×xα, t×Rx′

α). Step (4) returns the rotation R that
minimizes ‖t × R − E‖ [Kanatani (1993)].

4.5.2 Optimal triangulation

Having obtained the focal lengths {f , f ′} and the motion parameters {t, R}, we
can compute the 3-D location of each point. In fact, if we know the intrinsic and
extrinsic camera parameters, we can define for each point its line of sight. The 3-D
location (Xα, Yα, Zα) is the intersection of the lines of sight of (xα, yα) and (x′

α, y′
α).
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(a) (b)

Fig. 4.7 Triangulation. (a) The mid-point method. (b) Optimal correction.

Due to noise in observation, however, the lines of sight need not meet in the scene.
A naive idea is to regard the “midpoint” of the shortest line segment connecting
the two lines of sight as the intersection (Fig. 4.7(a)). The best way is to displace
the corresponding points so that their lines of sight intersect in such a way that
the amount of the displacement is minimum (Fig. 4.7(b)). Mathematically, this
amounts to correct (xα, yα) and (x′

α, y′
α) to (x̂α, ŷα) and (x̂′

α, ŷ′
α) in such a way that

the reprojection error

Eα = (xα − x̂α)2 + (yα − ŷα)2 + (x′
α − x̂′

α)2 + (y′
α − ŷ′

α)2 (4.43)

is minimized. As noted in Sec. 4.3.1, this is maximum likelihood (ML) estimation
if the noise in (xα, yα) and (x′

α, y′
α) is independent and identical Gaussian variables

of mean 0. Minimization of Eq. (4.43) is exactly the same as Sec. 4.3.4 except that
the fundamental matrix is now regarded as given [Kanatani et al. (2008)]:

Input: The focal lengths {f , f ′}, the motion parameters {t, R}, and the image
coordinates (xα, yα), (x′

α, y′
α), α = 1, ..., N , of corresponding points.

Output: Corrected image coordinates (x̂α, ŷα), (x̂′
α, ŷ′

α), α = 1, ..., N , and the
reprojection error E.

(1) Recompute the essential matrix E as follows:

E = t × R. (4.44)

(2) Compute the following 9-D vector u:

u = (E11, E12, E13, E21, E22, E23, E31, E32, E33)>. (4.45)

(3) Do the following computation for α = 1, ..., N :

(a) Let E0
α = ∞ (a sufficiently large number), and initialize x̂α, ŷα, x̂′

α, ŷ′
α, x̃α,

ỹα, x̃′
α, and ỹ′

α as follows:

x̂α = xα, ŷα = yα, x̂′
α = x′

α, ŷ′
α = y′

α,

x̃α = ỹα = x̃′
α = ỹ′

α = 0. (4.46)
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(b) Compute the following 9-D vectors ξα and 9 × 9 matrices V0[ξα]:

ξα =



x̂αx̂′
α + x̂′

αx̃α + x̂αx̃′
α

x̂αŷ′
α + ŷ′

αx̃α + x̂αỹ′
α

f ′(x̂α + x̃α)
ŷαx̂′

α + x̂′
αỹα + ŷαx̃′

α

ŷαŷ′
α + ŷ′

αỹα + ŷαỹ′
α

f ′(ŷα + ỹα)
f(x̂′

α + x̃′
α)

f(ŷ′
α + ỹ′

α)
ff ′


, (4.47)

V0[ξα] =



x̂2
α + x̂′2

α x̂′
αŷ′

α fx̂′
α x̂αŷα 0 0 f ′x̂α 0 0

x̂′
αŷ′

α x̂2
α + ŷ′2

α fŷ′
α 0 x̂αŷα 0 0 f ′x̂α 0

fx̂′
α fŷ′

α ff ′ 0 0 0 0 0 0
x̂αŷα 0 0 ŷ2

α + x̂′2
α x̂′

αŷ′
α fx̂′

α f ′ŷα 0 0
0 x̂αŷα 0 x̂′

αŷ′
α ŷ2

α + ŷ′2
α fŷ′

α 0 f ′ŷα 0
0 0 0 fx̂′

α fŷ′
α ff ′ 0 0 0

f ′x̂α 0 0 f ′ŷα 0 0 ff ′ 0 0
0 f ′x̂α 0 0 f ′ŷα 0 0 ff ′ 0
0 0 0 0 0 0 0 0 0


.

(4.48)
(c) Update x̃α, ỹα, x̃′

α, and ỹ′
α as follows:(

x̃α

ỹα

)
← (u, ξα)

(u, V0[ξα]u)

(
u1 u2 u3

u4 u5 u6

)  x̂′
α

ŷ′
α

f ′

 ,

(
x̃′

α

ỹ′
α

)
← (u, ξα)

(u, V0[ξα]u)

(
u1 u4 u7

u2 u5 u8

)  x̂α

ŷα

f

 . (4.49)

(d) Update x̂α, ŷα, x̂′
α, and ŷ′

α as follows:

x̂α ← xα − x̃α, ŷα ← yα − ỹα,

x̂′
α ← x′

α − x̃′
α, ŷ′

α ← y′
α − ỹ′

α. (4.50)

(e) Compute the reprojection error Eα as follows:

Eα = x̃2
α + ỹ2

α + x̃′
α

2 + ỹ′
α

2. (4.51)

(f) If Eα 6≈ E0
α, let E0

α ← Eα and go back to Step (3b).

(4) Return (x̂α, ŷα), (x̂′
α, ŷ′

α), α = 1, ..., N , and the following (total) reprojection
error E:

E =
N∑

α=1

Eα. (4.52)
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If we use the focal lengths {f , f ′} computed by the free focal length method
(without failure), the resulting values of (x̂α, ŷα) and (x̂′

α, ŷ′
α) are identical to those

computed in Sec. 4.3.4, because the fundamental matrix F was computed to min-
imize the reprojection error E in Eq. (4.52). If the equality f = f ′ is enforced,
however, the results are not necessarily the same, and we need the recomputation
as described above. If we have retained two solutions, one by the free focal length
method followed by enforcement of f = f ′, the other by the fixed focal length
method, the selection can be done at this stage: we choose the one that has a
smaller reprojection error E computed here.

4.5.3 3-D location computation

A 3-D point (X,Y, Z) is projected to a point (x, y) on the image plane by a general
perspective camera in the form

x/f0

y/f0

1

 ' P


X

Y

Z

1

 , (4.53)

where the symbol ' means that both sides are equal up to a nonzero constant.
Here, P is a 3× 4 matrix called the projection matrix or the camera matrix . If the
camera coordinate system is placed at t and rotated by R relative to a fixed world
coordinate system, P has form

P ' K
(
R> −R>t

)
, (4.54)

where K is an upper triangular matrix, called the matrix of intrinsic parameters,
in the following form [Hartley and Zisserman (2000)]:

K =

γf/f0 γ tan θ u0/f0

f/f0 v0/f0

1

 . (4.55)

Here, f is the focal length, γ is the aspect ratio, θ is the skew angle (defined to be
0 in the skewless case), and (u0, v0) is the principal point location. As discussed in
Sec. 4.4.1, we need to assume that γ = 1, θ = 0, and (u0, v0) = (0, 0) for doing 3-D
reconstruction from two views. Thus, if the two cameras have focal length f and f ′

with motion parameters {t, R} and if the first camera is identified with the world
coordinate system, the projection matrices of the first and the second cameras can
be written up scale as follows:

P ' diag(1, 1,
f0

f
)
(
I 0

)
, P ′ ' diag(1, 1,

f0

f ′ )
(
R> −R>t

)
. (4.56)



June 15, 2010 12:26 World Scientific Book - 9.75in x 6.5in handbook

Latest Algorithms for 3-D Reconstruction from Two Views 221

From Eq. (4.53), we obtain the following projection relations:
x = f0

P11X + P12Y + P13Z + P14

P31X + P32Y + P33Z + P34
,

y = f0
P21X + P22Y + P23Z + P24

P31X + P32Y + P33Z + P34
,


x′ = f0

P ′
11X + P ′

12Y + P ′
13Z + P ′

14

P ′
31X + P ′

32Y + P ′
33Z + P ′

34

,

y′ = f0
P ′

21X + P ′
22Y + P ′

23Z + P ′
24

P ′
31X + P ′

32Y + P ′
33Z + P ′

34

.

(4.57)
From these, we obtain the following linear equations:

xP31 − f0P11 xP32 − f0P12 xP33 − f0P13

yP31 − f0P21 yP32 − f0P22 yP33 − f0P23

x′P ′
31 − f0P

′
11 x′P ′

32 − f0P
′
12 x′P ′

33 − f0P
′
13

y′P ′
31 − f0P

′
21 y′P ′

32 − f0P
′
22 y′P ′

33 − f0P
′
23


X

Y

Z

 = −


xP34 − f0P14

yP34 − f0P24

x′P ′
34 − f0P

′
14

y′P ′
34 − f0P

′
24

 .

(4.58)
These provide four equations for three unknowns X, Y , and Z. We can choose
from among them any three and solve them. Alternatively, we can solve the four
redundant equations by least squares (Appendix F). Both give the same solution
if we use (x̂α, ŷα) and (x̂′

α, ŷ′
α) as image coordinates, because the procedure in

Sec. 4.5.2 is done for that purpose in an optimal manner.
However, we need to check the cheirality [Hartley and Zisserman (2000)]. The

perspective projection described by Eq. (4.53) stipulates that a 3-D point is pro-
jected to the intersection of the ray it defines with the image plane, but no constraint
is imposed on the 3-D point to be in front of the camera. The condition in Eq. (4.40)
only ensures that the 3-D points are both in front of the two cameras (the correct
shape) or both behind them (the mirror image shape). This ambiguity originates
from the sign indeterminacy of the fundamental matrix F in Eq. (4.2); Eq. (4.40)
merely choose the sign of t compatible to F . Thus, after computing the 3-D loca-
tions (Xα, Yα, Zα) of all the points, we reverse the sign of t and all (Xα, Yα, Zα)
if

N∑
α=1

sgn(Zα) < 0, (4.59)

where sgn(x) is the signature function that returns 1, −1, and 0 for x > 0, x < 0,
and x = 0, respectively. We introduce sgn(x) because if we require

∑N
α=1 Zα > 0,

the judgment may be reversed when a very large depth Zα ≈ ∞ with nearly parallel
lines of sight may be computed to be Zα ≈ −∞.

The reconstructed 3-D shape has scale ambiguity, as we discussed in Sec. 4.4.1,
so we introduced the scale normalization ‖t‖ = 1. This ambiguity is resolved
if some metric information is available. For example, if the camera transla-
tion ‖t‖ is known, the computed 3-D shape is magnified by ‖t‖. If the dis-
tance between two 3-D points, say (X1, Y1, Z1) and (X2, Y2, Z2), is known to be
d12, we can recover the correct scale by multiplying all (Xα, Yα, Zα) and t by
d12/

√
(X2 − X1)2 + (Y2 − Y1)2 + (Z2 − Z1)2. Instead of taking the first camera

as a reference, we can also view the first camera as displaced by tc and rotated
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by Rc relative to a fixed world coordinate system. The 3-D locations (X̄α, Ȳα, Z̄α)
with respect to this coordinate system are given by X̄α

Ȳα

Z̄α

 = Rc

Xα

Yα

Zα

 + tc

(
=

(
Rc tc

)
Xα

Yα

Zα

1

)
. (4.60)

4.6 Concluding Remarks

3-D reconstruction from two views has intensively been studied since early 1980s
as one of the major problems of computer vision. After nearly 30 years of its
history, however, efforts are still being made to improve the computational accuracy
and efficiency. This chapter has presented the state-of-the-art technology of this
problem.

Since we only need to take two pictures, two view reconstruction is one of the
most useful tools in computer vision applications. However, we must also realize
that limiting to two views imposes severe restrictions on its applicability. Computer
vision practitioners are frequently confounded by the failure of 3-D reconstruction
due to the lack of understanding such restrictions. Here, we describe typical failure
modes:

Infinitely far away scene: If the scene is infinitely far away, the two views are
essentially the same (up to camera rotation), so no 3-D information is obtained.
In practice, this is the case if the scene is sufficiently far away as compared to
the translation t,

Planar scene: The fundamental matrix F cannot be computed uniquely if all the
points are coplanar in 3-D (Fig. 4.8(a)). This is a typical instance of the critical
surface mentioned in Sec. 4.3.1; that plane and a plane passing through the two
viewpoints O and O′ constitute a degenerate quadric surface. However, it is
possible to compute 3-D structure and motion by exploiting the geometry of
projective transformation, or “homography”, instead of the epipolar geometry.
[Kanatani (1993, 1996), Hartley and Zisserman (2000)].

Box scene: The fundamental matrix F cannot be computed uniquely if we ob-
serve the eight vertices of a cube (Fig. 4.8(b)). This is also an instance of the
critical surface; there always exists a quadric surface that passes through the
eight vertices and arbitrarily placed viewpoints O and O′. This configuration
usually does not occur in real circumstances, yet this frequently happens in
simulation, because people tend to test their algorithms using this configura-
tion. In simulation, we should use general configurations, avoiding too regular
or exceptional settings.

Pure rotation: No 3-D information is obtained if we observe the scene by rotating
the camera around the lens center (Fig. 4.8(c)). This is because the lines of
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(a) (b)

ZZ’

O

R

Z
Z’

R

t

(c) (d)

t

Z
Z’

t

(e) (f)

Fig. 4.8 Typical failure modes of two view 3-D reconstruction. (a) Planar scene. (b) Box scene.

(c) Pure rotation. (d) Advancing camera. (e) Symmetric cameras. (f) Pure translation.

sight coming through the lens center are the same before and after the camera
rotation. Hence, the fundamental matrix cannot be computed. However, the
camera rotation can be determined by computing the homography [Hartley and
Zisserman (2000)].

Advancing camera: If one camera is moved along its optical axis and then rotated
(Fig. 4.8(d)), the focal lengths f and f ′ cannot be computed by the free-focal
length method. This is because the two cameras are in a fixating configuration
with the fixating point at the lens center of the second camera. This fact is
easily overlooked in a real situation. In such a case, the focal lengths f = f ′

can be computed if the fixed focal length method is used as long as the rotation
of the second camera is nonzero. However, a care is necessary: the 3-D location
of a point at the center of the first image cannot be determined, because it is
the epipole of the first camera, i.e., the projection of the viewpoint of the second
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camera. In fact, a 3-D point P on the line connecting the viewpoints O and
O′ of the two cameras cannot be “triangulated” if O, O′, and P are collinear.
In actual computation, the rank of the matrix in Eq. (4.58) drops to 2, and
the solution is indeterminate. Points near the center of the first image can be
triangulated, but their computed 3-D locations suffer considerable degradation
in accuracy.

Symmetric cameras: As mentioned in Sec. 4.4.4, the focal lengths f and f ′ can-
not be computed if the camera configuration is symmetric (Fig. 4.8(e)). We
cannot compute f and f ′ even if we impose the equality f = f ′. Of course, 3-D
reconstruction is possible if the focal lengths f and f ′ are known. In fact, this
is a standard camera configuration of stereo vision.

Pure translation: The focal lengths f and f ′ cannot be computed if one camera
is translated with the optical axis direction fixed (Fig. 4.8(f)). This is a fixating
configuration with the fixation point at infinity. We cannot compute f and f ′

even if we impose the equality f = f ′, because the translation t and the two
optical axes make an (infinitely elongated) isosceles triangle with the vertex at
infinity. Again, 3-D reconstruction is possible if the focal lengths f and f ′ are
known; this is also a standard camera configuration of stereo vision.

Besides avoiding these failure modes, caution is necessary when black box tools
are used. For example, the numerical values of the fundamental matrix F depends
on the image coordinate system used as well as the scaling constant f0. For example,
if we regard the upper-left corner of the image as the origin (0, 0), take the x-
axis direction rightward and the y-axis direction upward, and let f0 = 1, which
is a standard convention in image processing applications, the fundamental matrix
F has a completely different numerical value. Some authors, e.g., Hartley and
Zisserman (2000), define the fundamental matrix F to be the transpose of the
one defined in this chapter, so that the epipolar equation is written, instead of
Eq. (4.2), as (x̄′

α, F x̄α) = 0. Thus, users must correctly understand the definitions
and conventions used in ready-made tools. Then, the theories and computational
techniques described in this chapter will allow users to do two view reconstruction
in many practical applications in useful ways.

Finally, it should be stressed that the quality of 3-D reconstruction critically
depends on the quality of correspondence detection. The standard procedure is
to first detect typical points called feature points, corner points, points of inter-
est, or keypoints by image filters such as the Harris operator [Harris and Stephens
(1988)], SUSAN [Smith and Brady (1997)], MSER [Matas, et. al (2002)] and SIFT
[Lowe (2004)] in two images independently and then match them using appropriate
measures such as intensity correlations, patch similarities, and feature descriptors.
Finally, false matches, or outliers, that are incompatible with the epipolar geometry
are removed by a voting procedure such as RANSAC [Fischer and Bolles (1981)] and
LMedS [Rousseeuw and Leroy (1978)], e.g. see Zhang et al. (1995) and Kanazawa
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and Kanatani (2004). Today, the use of video images is common, and feature points
trackers such as the Kanade-Lucas-Tomasi algorithm (KLT) [Tomasi and Kanade
(1991)] is widely used. Then, two frames are selected from the sequence, and those
points continually tracked between them are used for 3-D reconstruction. How-
ever, correct correspondence detection is still a difficult task, and further progress
is required for reliable 3-D reconstruction.

Appendix

A. Least squares

The simplest scheme for fundamental matrix computation is the following least
squares, also known as algebraic distance minimization and Hartley’s 8-point algo-
rithm [Hartley (1997)].

Input: The image coordinates (xα, yα), (x′
α, y′

α), α = 1, ..., N (≥ 8), of corre-
sponding points.

Output: The fundamental matrix F .

(1) Represent the corresponding points (xα, yα) and (x′
α, y′

α), α = 1, ..., N , by the
following 9-D vectors:

ξα = (xαx′
α, xαy′

α, f0xα, yαx′
α, yαy′

α, f0yα, f0x
′
α, f0y

′
α, f2

0 )>. (4.61)

(2) Let u be the 9-D unit eigenvector of the 9 × 9 matrix

M =
N∑

α=1

ξαξ>
α , (4.62)

for the smallest eigenvalue.
(3) Return the following fundamental matrix:

F =

u1 u2 u3

u4 u5 u6

u7 u8 u9

 . (4.63)

If xα and x′
α are converted in to the 9-D vector in Eq. (4.61) and if the fun-

damental matrix F is represented by the 9-D vector u in Eq. (4.4), the epipolar
equation (xα, Fx′

α) = 0 is equivalently written as

(u, ξα) = 0. (4.64)

Mathematically, the vector ξα in Eq. (4.61) is called the Kronecker product of xα

and x′
α (multiplied by f2

0 ). For noisy data, Eq. (4.64) is not exactly satisfied, so we
seek the vector u that minimizes

JLS =
N∑

α=1

(u, ξα)2 =
N∑

α=1

u>ξαξ>
α u = (u, Mu), (4.65)
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where M is defined by Eq. (4.62). If we normalized u to a unit vector (‖u‖ = 1) to
remove the scale indeterminacy of F , the quadratic form in Eq. (4.65) is minimized
by the unit eigenvector of M for the smallest eigenvalue.

The matrix F thus computed does not necessarily satisfy the rank constraint
det F = 0. A simple method for remedy is to compute the singular value decom-
position (SVD) of F and replace the smallest singular value by 0 [Hartley (1997)].
More sophisticated methods exist for optimally correcting F so that det F = 0 holds
based on statistical analysis of noise [Kanatani and Sugaya (2007a)]. However, such
sophistication is not necessary in practice, because the least squares solution itself
has only limited accuracy [Kanatani and Sugaya (2007a,c)].

B. Taubin method

If the noise in xα, yα, x′
α, and y′

α is regarded as independent Gaussian variables
of mean 0 and standard deviation σ, the vector ξα in Eq. (4.61) has the following
covariance matrix [Kanatani and Sugaya (2007a,c)]:

V [ξα] = σ2V0[ξα], (4.66)

V0[ξα] =



x2
α + x′2

α x′
αy′

α f0x
′
α xαyα 0 0 f0xα 0 0

x′
αy′

α x2
α + y′2

α f0y
′
α 0 xαyα 0 0 f0xα 0

f0x
′
α f0y

′
α f2

0 0 0 0 0 0 0
xαyα 0 0 y2

α + x′2
α x′

αy′
α f0x

′
α f0yα 0 0

0 xαyα 0 x′
αy′

α y2
α + y′2

α f0y
′
α 0 f0yα 0

0 0 0 f0x
′
α f0y

′
α f2

0 0 0 0
f0xα 0 0 f0yα 0 0 f2

0 0 0
0 f0xα 0 0 f0yα 0 0 f2

0 0
0 0 0 0 0 0 0 0 0


. (4.67)

If we regard each ξα as perturbed from its true value ξ̄α by independent Gaussian
noise of mean 0 and covariance matrix V [ξα], maximum likelihood (ML) estimation
of the fundamental matrix is to minimize the Mahalanobis distance

JML =
N∑

α=1

(ξα − ξ̄α, V0[ξα](ξα − ξ̄α)), (4.68)

subject to

(u, ξ̄α) = 0. (4.69)

We can eliminate the constraint of Eq. (4.69) by using Lagrange multipliers and
reduce the problem to unconstrained minimization of

JML =
N∑

α=1

(u, ξα)2

(u, V0[ξα]u)
. (4.70)
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This function can be minimized by various means such as FNS (Fundamental
Numerical Scheme) of Chojnacki et al. (2000), HEIV (Heteroscedastic Errors-In-
Variables) of Leedan and Meer (2000), and projective Gauss-Newton iterations of
Sugaya and Kanatani (2007a,c), but all requires iterations, which sometimes do not
converge in the presence of large noise. If the denominators in Eq. (4.70) are re-
placed by a constant, the problem reduces to least squares, minimizing Eq. (4.65).
The Taubin method replaces the denominators in Eq. (4.70) by their average and
minimizes

JTB =
∑N

α=1(u, ξα)2∑N
α=1(u, V0[ξα]u)/N

=
N(u, Mu)
(u, Nu)

, (4.71)

where M is the matrix in Eq. (4.62) and the matrix N is defined by

N =
N∑

α=1

V0[ξα]. (4.72)

Eq. (4.71) is the ratio of quadratic forms, called the Rayleigh quotient , and is min-
imized by the generalized eigenvector of the generalized eigenvalue problem

Mu = λNu, (4.73)

for the smallest generalized eigenvalue. However, this problem cannot be solved by
the standard method (Appendix C), because the matrix V0[ξα] in Eq. (4.67) and
hence the matrix N in Eq. (4.72) are singular, the elements in the ninth column
and the ninth row all being 0. So, we reduce Eq. (4.73) to a generalized eigenvalue
problem of a smaller dimension. We decompose the 9-D vectors u, ξα and the 9×9
matrix V0[ξα] into their 8-D parts and the 9th elements in the form

u =
(

v

F33

)
, ξα =

(
zα

f2
0

)
, V0[ξα] =

(
V0[zα] 0
0> 0

)
, (4.74)

where zα is the 8-D vector zα in Eq. (4.5) and V0[zα] is the 8×8 matrix in Eq. (4.6).
Then, Eq. (4.73) is written as( ∑N

α=1 zαz>
α f2

0

∑N
α=1 zα

f2
0

∑N
α=1 z>

α Nf4
0

) (
v

F33

)
= λ

(
NTB 0
0> 0

) (
v

F33

)
, (4.75)

where the 8× 8 matrix NTB is defined by the second of Eqs. (4.8). If we define z̄α

and oz̃α by Eqs. (4.7) and the 8× 8 matrix MTB by the first of Eqs. (4.8), we have
the identity

N∑
α=1

zαz>
α = MTB + z̄z̄>. (4.76)

Hence, Eq. (4.75) splits into the following two equations:

MTBv = λNTBv, (z̄, v) + f2
0 F33 = 0. (4.77)

The second equation determines F33 in terms of v by F33 = −(z̄, v)/f2
0 , so if we

solve the first equation, which is the same as Eq. (4.9), the 9-D vector u (normalized
to unit norm) is given by Eq. (4.10). Thus, the procedure in Sec. 4.3.2 is justified.
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C. Generalized eigenvalue problem

The generalized eigenvalue problem can be solved by the following procedure:

Input: An n × n symmetric matrix A and an n × n positive definite symmetric
matrix G.

Output: The generalized eigenvalues λ1, ..., λn and the corresponding generalized
eigenvectors w1, ..., wn (normalized to unit norm) that satisfy

Awi = λiGwi. (4.78)

(1) Compute the eigenvalues µ1, ..., µn (> 0) of G and the corresponding unit
eigenvectors g1, ..., gn.

(2) Define the following n × n matrices T and Ã:

T =
g1g

>
1√

µ1
+ · · · + gng>

n√
µn

, Ã = TAT . (4.79)

(3) Compute the eigenvalues λ1, ..., λn of Ã and the corresponding unit eigenvectors
u1, ..., un.

(4) Return λ1, ..., λn and the unit vectors w1, ..., wn defined by

w1 = N [Tu1], ..., wn = N [Tun]. (4.80)

This procedure is justified as follows. Since {gi} are an orthonormal system,
the first of Eqs. (4.79) implies

T 2 =
g1g

>
1

µ1
+ · · · + gng>

n

µn
= G−1. (4.81)

Multiplied by T from left, Eq. (4.78) is written in the form

TATT−1wi = λiTGTT−1wi. (4.82)

However, we see that

TGT = T (T 2)−1T = TT−1T−1T = I. (4.83)

So, if we define

ui = T−1wi, (4.84)

Eq. (4.82) has the following form of the standard eigenvalue problem:

Ãui = λiui. (4.85)

Hence, if Ã has eigenvalues λi with corresponding unit eigenvectors ui, then λi are
the generalized eigenvalues of Eq. (4.78), and from Eq. (4.84) the corresponding
generalized eigenvectors wi are given by wi = N [Tui] after normalization.
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D. Free focal length method

From Eq. (4.22), we can immediately see that the following e and e′ are the eigen-
vectors of F> and F , respectively, for eigenvalue 0:

e ' diag(1, 1,
f0

f
)t, e′ ' diag(1, 1,

f0

f ′ )R
>t. (4.86)

Hence, we obtain

t ' diag(1, 1,
f

f0
)e ' Rdiag(1, 1,

f ′

f0
)e′. (4.87)

Substituting this into Eq. (4.22), we obtain

F ' e × diag(1, 1,
f0

f
)Rdiag(1, 1,

f ′

f0
) ' diag(1, 1,

f

f0
)Rdiag(1, 1,

f0

f ′ ) × e′, (4.88)

where we have used the identity (Av) × I = (A−1)>(v × I)A−1 for an arbitrary
vector v and an arbitrary nonsingular matrix A. The product A × v of a 3 × 3
matrix A and a 3-D vector is defined to be A(v × I)>. Equation (4.88) implies

Fdiag(1, 1,
f0

f ′ ) ' e × diag(1, 1,
f0

f
)R,

diag(1, 1,
f0

f
)F ' Rdiag(1, 1,

f0

f ′ ) × e′. (4.89)

Eliminating R by using the orthogonality relation R>R = RR> = I, we obtain
the following Kruppa equations [Bougnoux (1998), Hartley and Zisserman (2000)]:

Fdiag(1, 1,
f2
0

f ′2 )F> ' e × diag(1, 1,
f2
0

f2
) × e,

F>diag(1, 1,
f2
0

f2
)F ' e′ × diag(1, 1,

f2
0

f ′2 ) × e′. (4.90)

In terms of {ξ, η} defined by Eqs. (4.25), these equations are rewritten as

F (I + ηkk>)F> ' e × (I + ξkk>) × e,

F>(I + ξkk>)F ' e′ × (I + ηkk>) × e′, (4.91)

which reduce to

FF> + η(Fk)(Fk)> ' P e + ξ(e × k)(e × k)>,

F>F + ξ(F>k)(F>k)> ' P e′ + η(e′ × k)(e′ × k)>, (4.92)

where we define the projection matrices

P e = I − ee>, P e′ = I − e′e′>, (4.93)

onto the planes perpendicular to e and e′, respectively. Multiplying k from the
right on both sides of Eqs. (4.92), we obtain

FF>k + η(k, Fk)Fk = cP ek, F>Fk + ξ(k, Fk)F>k = c′P e′k, (4.94)
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where c and c′ are unknown constants. Computing the inner product of k and the
second of Eqs. (4.94) on both sides and the inner product of F>k and the second
of Eqs. (4.94), on both sides, we obtain

‖Fk‖2 + (k,Fk)2ξ = c′‖e′ × k‖2,

(k,FF>Fk) + (k,Fk)‖F>k‖2ξ = c′(k, Fk), (4.95)

which can be solved for {ξ, c′}, resulting in the first of Eqs. (4.29). Similarly,
computing the inner product of k and the first of Eqs. (4.94) on both sides and the
inner product of Fk and the first of Eqs. (4.94) on both sides, we obtain

‖F>k‖2 + η(k, Fk)2 = c‖e × k‖2,

(k, F>FF>k) + η(k,Fk)‖Fk‖2 = c(k, F>k), (4.96)

which can be solved for {η, c}, resulting in the second of Eqs. (4.29) (note the
identity (k, F>FF>k) = (k, FF>Fk)). Our derivation is essentially the same as
Bougnoux (1998) but has a slightly different appearance.

E. Equality enforcement

If we equate ξ with η in Eq. (4.31) and ignore the higher order terms · · · , we have

K(ξ) =
1
2

(
H11(ξ − ξ0)2 + 2H12(ξ − ξ0)(ξ − η0) + H22(ξ − η0)2

)
. (4.97)

Differentiating this with respect to ξ and setting the result to 0, we have

H11(ξ − ξ0) + H12(ξ − ξ0) + H12(ξ − η0) + H22(ξ − η0) = 0. (4.98)

Solving this for ξ, we obtain ξ and η (= ξ) in the form of Eq. (4.33).

F. Generalized inverse

The singular value decomposition (SVD) of an m × n matrix A has the form

A = UΣV >, Σ =


σ1 . . .

σr 0
. . .

 , (4.99)

where U and V are m×m and n×n orthogonal matrices, respectively, and Σ is an
m×n matrix. The numbers σ1 ≥ σ2 ≥ · · · are the singular values, and the number
r (≤ min(m, n)) is the rank of A. Let Σ− be the n × m matrix

Σ− =


1/σ1 . . .

1/σr 0
. . .

 . (4.100)
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The (Moore-Penrose) generalized inverse (or pseudoinverse) of A is the n × m

matrix

A− = V Σ−U>. (4.101)

In practice, the rank r need to be specified by the user, since a theoretically zero
value is treated as a very small nonzero value in floating-point arithmetic. If r =
min(n,m), in particular, we can easily see that

A− =
{

(A>A)−1 m ≥ n

(AA>)−1 m ≤ n
. (4.102)

The n-D vector x that minimizes

J = ‖Ax − b‖2, (4.103)

for an m-D constant vector b is given by

x = A−b. (4.104)

This is shown as follows. Since the norm ‖ · ‖ is invariant to orthogonal transfor-
mations, i.e., ‖a‖ = ‖Ua‖ for any orthogonal matrix U , we see that

J = ‖Ax − b‖2 = ‖UΣV >x − b‖2 = ‖ΣV >x − U>b‖2

= ‖Σy − c‖2 =
r∑

i=1

(σiyi − ci)2 +
m∑

i=r+1

c2
i , (4.105)

where we put y = V >x and c = U>b. Thus, J is minimized by y1 = c1/σ1, ...,
yr = cr/σr. If r < n, then yr+1, ..., yn are indeterminate, so we let them be all 0,
which minimizes ‖y‖ = ‖x‖ among all solutions. Thus, we have

x = V y = V Σ−c = V Σ−U>b = A−b. (4.106)
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