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A general formulation for detecting geometric configurations of
inaccurate image data is presented. The basic principle is hypothe-
sizing and testing: We first estimate an ideal geometric configura-
tion that supposedly exists, and then check to what extent the
original edge data must be displaced in order to support the hy-
pothesis. All types of tests are reduced to computing a single
measure of edge displacement, which provides a universal mea-
sure of confidence applicable to all types of decision-making. All
the procedures are described by explicit algebraic expressions in
N-vectors from the viewpoint of computational projective ge-
ometry. © 1991 Academic Press, Inc.

1. INTRODUCTION

In many computer vision problems, the 3-D inference
of images is made through two stages: the image process-
ing stage, extracting geometric primitives such as edges
and feature points, and the computational stage, comput-
ing such 3-D properties as the shape and the position of
the object. The accuracy of 3-D information computed in
the second stage depends largely on the accuracy of the
first stage. However, there is one crucial difficulty that
cannot be resolved by simply increasing the accuracy—
the issue of consistency of the image data.

In many problems, a clue to 3-D inference is provided
by the information that image data, such as points and
edges, have a special geometric configuration. For exam-
ple, if several edges are concurrent (i.e., meeting at a
common intersection when extended), we can infer that
these edges may be parallel in the scene [2, 6]. However,
the image data are obtained by pixel-based image pro-
cessing, and inaccuracy due to noise and digitization is
inevitable. As a result, the required consistency is usu-
ally violated for real image data.

The problem we consider in this paper is the question
of how we can detect geometric configurations of image
data that observed image data apparently do not possess.
In the past, many researchers have treated this problem
with ad hoc heuristics [1, 2, 6, 9, 10]). For example, three
points are judged to be collinear if the angle defined by
the two segments connecting these points is close to 180°
within an arbitrarily set threshold value, or three lines are

judged to be concurrent if the maximum separation
among the three intersections is smaller than an arbitrar-
ily set threshold value.

This type of ad hoc treatment requires introduction of
measures to be thresholded and adjustment of the thresh-
old values, but usually there is no justification for choos-
ing particular measures and particular threshold values.
In this paper, we will present a theory based on the Aier-
archical structure of image processing. Consider the fol-
lowing image processing scenario [7]:

1. From a gray-level image, edges are detected by ap-
plication of an edge operator followed by thresholding
and thinning.

2. Straight line segments are fitted to edges consisting
of pixels that are nearly collinear.

3. Nearly collinear segments are grouped together and
replaced by a single straight line.

4. Vertex positions are computed as intersections of
these lines. If more than two lines approximately meet at
a single point, an appropriate average is taken.

5. 3-D inferences are made from concurrency of lines
and collinearity of points in the line drawing thus ob-
tained.

If we look at these processes carefully, we realize that
there is a hierarchy of data. First, we obtain primary data
by pixel-based image processing techniques, then sec-
ondary data by numerical computation over the primary
data. It is reasonable to assume that primary data consist
of edges, because edge detection is usually the first step
of image processing; all subsequent data are derived from
edges.

Our strategy is as follows. If we want to detect some
geometric configuration on the image plane, we first hy-
pothesize the configuration that supposedly exists, and
then test how much the original edges must be displaced
in order to support the hypothesis. The hypothesis is
accepted if the amount of displacement is smaller than a
fixed threshold value, and rejected otherwise.

Although the threshold value must be empirically ad-
justed, the quantity to be thresholded is the amount of
edge displacement alone. Since all image data are com-
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puted from the image data of lower levels, the computa-
tion can eventually be traced down to edges. This reduc-
tion to a single criterion serves as the universal
confidence level of the decision, which enables us to
compare the confidence levels of different types of deci-
sion with each other.

In the following, all expressions are given in terms of
N-vectors representing points and lines in the image [4]
so that all computation is always kept within a finite do-
main. Also, various approximation schemes are intro-
duced so that all computation is reduced to evaluation of
explicitly written expressions without requiring searches
and iterations.

2. MATHEMATICAL PRELIMINARIES

Given an image, define an xy coordinate system on it
such that the origin o supposedly indicates the position of
the optical axis of the camera from which the image was
obtained. Define an XYZ coordinate system such that the
Z-axis passes through the image origin o perpendicularly.
The X- and Y-axes are taken to be parallel to the image x-
and y-axes, respectively, and the origin O is taken to be
in distance f from the image origin o, where fis suppos-
edly the distance between the center of the lens and the
surface of the film (called the focal length) measured in
the scale of the image coordinates (i.e., pixels) (Fig. 1).

Thus, we are viewing a given image as perspective pro-
Jection of the 3-D scene by identifying the image as the
image plane. However, this camera model need not cor-
respond to the true camera from which the image was
obtained. In other words, the camera model can be hypo-
thetical. However, although the choice of the camera
model does not essentially affect the following argu-
ments, we assume that the focal length f'is approximately
equal to the true value (at least having the same order).

The unit vector starting from the viewpoint O and
pointing toward a point P in the image is called the
N-vector of the point P, and the unit vector normal to the
plane defined by the viewpoint O and a line / in the image
is called the N-vector of the line I [4] (see Fig. 1). From
this definition, the N-vector of point (a, b) is!

a
m=N]||b]]l,
f

and the N-vector of line Ax + By + C = 0 is

2.1

! In this paper, N[u) = u/lju]| denotes the normalization of vector u,
where [lafl is the norm of vector u.
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FIG. 1. N-vectors representing a point and a line on the image
plane.

(2.2)
Cif

(the sign is arbitrary). Representing points and lines by
the N-vectors has the advantage that computation is al-
ways done within a finite domain when otherwise infinite
quantities are involved (e.g., when computing the inter-
section of parallel lines).

Note that although the original image itself is localized
within a finite range around the image origin o, secondary
data (i.e., points and lines computed from primary data)
can lie anywhere on the image plane which conceptually
extends infinitely. Representing points on the image
plane by unit vectors has been familiar to some research-
ers [5], and a general theory of describing all geometrical
relationships involving points and lines in terms of
N-vectors is called computational projective geometry

[4).

LEMMA 1. If m is the N-vector of a point P in the
image, the vector OP starting from the viewpoint O and
ending at P is given by?

op = f™m_
OP = w0 (2.3)

Proof. Since m is the unit vector along OP, we can
put OP = cm and determine the constant ¢ in such a way
that (OP, k) = f (Fig. 2). =

LEMMA 2. Ifnis the N-vector of a line l in the image,
the unit vector u perpendicular to the line |l in the image
(Fig. 3) is given by

g = A=@Kk 2.4
V1= (m, k) ’

? (a, b) designates the inner product of vectors a and b. Throughout
this paper, we put k = (0, 0, )T, where T denotes transpose.
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FIG. 2. Unit vector m lies along OP, and (OP, k) = f

Proof. We can see from Fig. 4 that vector n — (n, k)k
is parallel to the image plane and perpendicular to line /.
Since fin — (n, K)K|2 = (n, n) — 2(n, k)2 + (n, k)*(k, k) =
1 — (n, k)2, we obtain Eq. (2.4) after normalization. =

LEMMA 3. Ifnis the N-vector of a line l in the image,
the unit vector v along the line | in the image (Fig. 3) is
given by

v=_li<_k—. (25)
V1 - (m kP '

Proof. Since vector v lies in the plane defined by line !
and the viewpoint O, and since the N-vector n is the unit
surface normal to that plane, we have (v, n) = 0. Since it
also lies in the image plane, we have (v, k) = 0. Thus,
vector v is perpendicular to both n and k, and hence
parallel ton X k. Since [[n X k|| = V1 — (n, k)?, we obtain
Eq. (2.5) by normalizingn X k. @

LEMMA 4. Ifmis the N-vector of a point P, and n the
N-vector of a line | in the image, the distance h(P, 1) of
point P from line | (Fig. 3) is given by

f |(m, n)|
VT - (m, k? (m, k)’

Proof. Take a point Q arbitrarily on line / (Fig. 3).
The distance h(P, ) is given by |(QP, u)|, where u is the
unit vector perpendicular to /. Noting that QP = OP —
0Q and using Egs. (2.3) and (2.4), we have

hP, 1) = (2.6)

|(OP, w)|
1 Jm — ’
= - 00,n—-(mkk}|. 27
I — (n, kY ((m,k) Q. )) @7
Q
FIG. 3. Unit vector n is perpendicular to line /, and unit vector v lies

along /. Point P’ is the nearest point to point £ on line /.
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FIG.4. Veclorn — (n, k)k is parallel to the image plane and perpen-
dicular to line /.

If we note that (6@, n) = 0 and (@, k) = f, we obtain
Eq. 2.6). =

LEMMA 5. Ifnis the N-vector of a line |, and m the
N-vector of a point P in the image, the N-vector m’ of the
point P' nearest to point P on line | (Fig. 3) is given by?

. _ [m, n, K|
m = N[k (n, k)n + W n X k]. (2.8)
Proof. Define point P’ by
AD! — f _ lm’ n, kl
OP ——l—(n,k)z(k (n, kK)n + ) xk).
2.9

It is easy to confirm that (OP', k) = f. Hence, P’ is a
point on the image plane. It is also easy to confirm that
(OP', n) = 0. Hence, point P’ lies on line /. It can also be
shown that PP’ is perpendicular to /, namely (PP’, v) =
0, where the unit vector v along [ is given by _Eq. (2.5).
This is confirmed by substituting Eq. (2.5) and PP’ = OP'
— OP, and noting that OP = fm/(m, k) by Eq. (2.3) and
that OP' is given by Eq. (2.9). Thus, P’ is the point on /
closest to point P. Its N-vector is obtained by normaliz-
ing Eq. (2.9). =

3. FITTING ALGORITHMS FOR INACCURATE DATA

We now consider an algorithm for detecting a ‘‘com-
mon intersection’” of not necessarily concurrent lines. A
reasonable method is as follows [3, 4]:

METHOD 1. The N-vector m of the common intersection
of lines 1y, . . . ,lywhose N-vectors are respectively my,

. . , Ny is estimated by the unit eigenvector for the
smallest eigenvalue of the matrix

3 In this paper. |a, b, ¢/ = (a x b, ¢) = (b X ¢, a) = (¢ X a, b) denotes
the scalar triple product of vectors a, b, and c.
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(3.1

N
E anlxna ’

where W, is an appropriately chosen weight of line |,.

Derivation. If point P of N-vector m is on all the
lines, we must have (n,, m) = 0foralla =1, ., N
(see Fig. 1). Hence, the vector m is estimated by mini-
mizing 22~ W,(n,, m)? on the condition that m be a unit
vector. This expression is rewritten as 2i=1Nymim;,
where the matrix N = (Ny), i,/ = 1, 2, 3, is defined by Eq.
(3.1). The minimum of this quadratic form in unit vector
m is attained by the unit eigenvector of N for the smallest
eigenvalue. ®

Now, consider an algorithm for ‘‘fitting’’ a line to not
necessarily collinear points. A reasonable method is as
follows [3, 4]:

METHOD 2. The N-vector n of the line fitted to points
P, . , Py whose N-vectors are respectively m,,

. ., my is given by the unit eigenvector for the small-
est eigenvalue of the matrix

M=

M=) W,m,mg, (3.2)

where W, is an appropriately chosen weight of point P,.

Derivation. If line [ of the N-vector n passes through
all the point, we must have (im,, n) = 0 for all « = 1,
, N (see Fig. 1). Hence, the vector n is estimated
by mlnlmlzmg SN W, (m,, n)2 on the condition that n
be a unit vector. This expression is rewritten as
2} ;1M im;m;, where the matrix M = (M), i,j = 1,2, 3,
is defined by Eq. (3.2). The minimum of this quadratic
form in unit vector n is attained by the unit eigenvector of
M for the smallest eigenvalue. =

The most widely known method for intersection esti-
mation and line fitting may be the least-squares method:
If d(P, I) denotes the distance of point P from line /, the
common intersection P of lines /;, . . . , Iy is estimated
by minimizing 2., W.d(P, 1,)?, and the line [ is fitted
to points Py, . . . , Py so that 23, W, d(P,, )%, is mini-
mized. This works well if all points and lines appear near
the image origin. However, if the points and lines are
“‘computed data,’’ they can exist anywhere (possibly at
infinity), and the computation may break down. No com-
putational problems arise in the above methods; all data
are unit vectors, and no distinction is made whether the
points and the line appear in the image or are computed
to be at infinity.

4. MEASURE OF DEVIATION FOR PRIMARY LINES

In general, once an estimate is obtained, we must test
“‘how good’’ the estimate is. As shown in the preceding
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FIG. 5. The deviation of line / from line iis defined by the integral of
the square distance from / along the primary segment of /.

section, we can treat points and lines in a symmetric way
in terms of N-vectors. Indeed, the duality between points
and lines is the essence of projective geometry (4]. How-
ever, this fundamental property is lost if we try to test the
‘‘quality’’ of estimation, because the roles of points and
lines cannot be interchanged due to the hierarchy of im-
age data: Edges are detected by an edge operator; lines
are fitted to edges; points are defined as intersections of
lines; new lines are defined by connecting them; . . .

Let us call lines fitted to edges primary lines. By defini-
tion, a primary line has a finite part that was fitted to an
edge.* Let us call it the primary segment. Let w be its
length. Let us call the midpoint G of the primary segment
its center. Let mg be the N-vector of the center G of the
line 1.}

Suppose we expect a line / with N-vector @i but instead
observe a line / with N-vector n.8 How can we define the
measure of deviation of the line / from line /? Since it is
very difficult to incorporate all factors, we adopt the fol-
lowing simplified model by noting that a longer line is
generally more definite than a shorter one. Let P(r) be a
point on line / apart from the center G by distance ¢ (the
distance is signed appropriately), and m(¢) its N-vector.
As a measure of deviation of / from /, consider the inte-
gral ["2,h(P(t), [)? dt, where h(P(t), I) is the distance of
point P(¢) from line I given by Eq. (2.6) (Fig. 5). From
Lemma 3, we have

PROPOSITION 1.

wi2 -
[ hea), iy ar

w (mg, 1)2  w? |fi, n, k|2 @D
_ lef) > s 20,
1 - (@, k)2 (fZ (mg, k)2 + 121 - (n, k)z)'

4 Each edge segment defines one primary line. Fitting a common line
to multiple edges is considered later.

* Hence, the data structure for a primary line [ consists of its N-
vector m, the N-vector mg of its center, and the length w of its primary
segment. The center and the length of the primary segment are defined
only for primary lines; secondary lines are specified by their N-vectors
alone.

¢ Throughout the rest of this paper, we use bars to denote quantities
that are supposed to exist if no noise exists.
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Proof. Since (7”(1) = fm(1)/(m(s), k) by Lemma 1, we
have from Lemma 4

[(OP(1), B)|

O Ry

4.2)

Now_, O—I;(t) =0G + v, where ¥ is the unit vector along
line {. From Lemmas | and 3, we have

AP — Jmg n Xk
OP(t) e, K + tm. 4.3)

Substituting this in Eq. (4.2), and integrating its square
over —w/2 < t < w/2, we obtain Eq. (4.1). =

Now, we introduce an approximation. Since / is a pri-
mary line, its primary segment actually appears in the
original image. This means that line / passes near the
image origin (i.e., the distance from the image origin is
small compared with the focal length f). Since we are
considering a small deviation of line /, line / is also
expected to pass near the image origin. Hence, their
N-vectors n and n are nearly parallel to the image plane.
Thus, we have (n, k) = 0, and (0, k) = 0. Since both n and
n are nearly parallel to the image plane, vector i X n is
nearly perpendicular to the image plane, and we have
i, n, k| = @ x n, k) =i X n] = VI — (@, )2 Since the
primary segment of line / actually appears in the original
image, its center G is fairly close to the image origin.
Hence, its N-vector mg is nearly perpendicular to the
image plane, and we have (mg, k) = 1.

Substituting these into Eq. (4.1), we obtain

[ hew, 17 di
@.4)

-, W —
~w (f2me, w2 + 2 (1 - (WD),
We define the measure of deviation of line ! from line I by
- w? _
DU, T) = Cw (fmg, 52 + 35 (1 - (0, 8), @.9)

where C is a factor reflecting the edge intensity and the
edge width of the primary segment; let us call it the edge
strength factor. The first term of the right-hand side can
be regarded as measuring the *‘separation’’ of the center
G of line { from line I, while the second term can be
regarded as measuring the *‘difference of orientations’” of
lines [ and /. A **physical analogy’’ helps our interpreta-
tion of this measure: If we imagine a hypothetical elastic
‘““‘membrane’’ stretched between the primary segment of
line / and the corresponding part of line / with a sliding
rim along the line /, Eq. (4.5) is viewed as the ‘‘energy”’
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of the membrane, where the edge strength factor plays
the role of the ‘‘elasticity constant.”’

5. COLLINEARITY TEST FOR PRIMARY LINES

Given multiple primary lines, how can we decide
whether or not these lines can be judged as identical?
This problem is very important in many low-level vision
problems, because a straight object boundary is often
detected as multiple fragmented edges in the presence of
noise. In the past, this problem of “‘edge grouping’’ has
been treated in ad hoc ways [1, 9].

Consider, for example, the two edges shown in Fig.
6(a). We can measure the distance 8 and the angle a of
deviation for each consecutive two edges, and judge the
two edges as collinear if 8 and « are respectively smaller
than appropriately set threshold values. However, this
may cause inconsistencies if we want to make a judgment
about three or more edges unless additional heuristics are
introduced (Fig. 6(b)). Thus, more and more ad hoc crite-
ria become necessary as the problem becomes more and
more complex.

Here, we take a simple and consistent approach. Con-
sider the case of Fig. 6(a). First, we hypothesize that the
two line segments are collinear, and estimate a line [ that
supposedly contains the two edges. Then, we test this
hypothesis by computing to what extent the original
edges must be displaced if they all lie on the line I. The
hypothesis is accepted if the deviation is smaller than a
threshold value, and rejected otherwise.

The case of Fig. 6(b) can be treated in the same way;
we first hypothesize a line that supposedly contains all
the edges by the same fitting scheme, and then test this
hypothesis by computing to what extent these edges must
be displaced, using the same measure of deviation. This
measure is thresholded by the same threshold value.
Thus, we need not introduce any new criteria, measures,
or threshold values. Although we must introduce the
measure of deviation and adjust the threshold value, they
can be fixed for all types of problems.

A formal description is as follows. Let/,,a=1,. . . ,
N, be the primary lines to be tested for collinearity, and
e, a« = 1, . » N, their respective N-vectors.
Let mg,, @ = 1, ..., N, be the N-vectors of their

I \\‘5: s
. ay \%}i:j}tﬁ;:—;

(a) (b)

FIG. 6. (a) Two edges are judged as collinear if the angle « and the
distance & are separately smaller than appropriately set threshold val-

ues. (b) A different heuristic is necessary if we want to make a judgment
about three or more edges.
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centers G,. The first step is hypothesizing a line /. Here,
we fit a line to the centers of the lines /, by an appropriate
method (e.g., Method 2 of Section 3 with each point
weighted by C,w,, where C, and w,, are the edge strength
factor and the length of the primary segment, respec-
tively, for the ath line). Let i be the N-vector of the fitted
line. The next step is testing this hypothesis. Using Eq.
(4.6), we define the following measure of collinearity:

Ay D) = max D(l,, )

@

Dtlys: 5 s

= max CoWq (‘I'z(mgn. n)y + % (1 — (ng,, ﬁ)z)). (5.1)

@

The hypothesis is accepted if this value is below a fixed
threshold value, and rejected otherwise.

6. CONCURRENCY TEST FOR PRIMARY LINES

Consider how to judge whether or not multiple primary
lines are concurrent. This problem frequently arises in
computer vision. For example. if we detect edges of an
image of an object having corners, multiple (typically
three) edges should precisely meet at one corner vertex.
This, however, rarely happens for real images (Fig. 7(a)).
Hence, we must make a judgment whether or not a given
set of line segments define a single corner and, if so,
estimate the corner position. Similarly, projections of
edges parallel in the scene are concurrent, meeting, if
extended, at a single vanishing point [2-6, 10]. However,
we cannot expect this for real images (Fig. 7(b)). Hence,
we must make a judgment as to whether or not a given set
of line segments define a single vanishing point and, if so,
estimate its position.

A naive way to solve this problem is to judge that lines

L=
-
-
! L
\ ! ""7»’/,
o =T R
T —=" - e
/ ”/ /I
- ’
’
/
s
td
’
s
e

FIG. 7. (a) Edges that are supposed to meet at one corner verlex
rarely define a single corner position. (b) Images of parallel line seg-
ments in the scene should meet, when extended, at a single vanishing
point, but this cannot be expected for real images.
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FIG. 8. Linel, passes through point P and the center G, of line [,.

are concurrent if the maximum separation of their inter-
sections is below an appropriately set threshold value
[2, 6]. However, the threshold value cannot be fixed. For
example, tolerable errors must be severely restricted for
the case of Fig. 7(a), while larger errors must be tolerated
for the case of Fig. 7(b) because slight displacements of
individual edges may cause a large deviation of their van-
ishing points.

As in the preceding section, our procedure is divided
into two steps. First, we hypothesize concurrency and
estimate the common intersection. Then, we fes¢ this hy-
pothesis by computing to what extent the original edges
must be displaced to support the hypothesis. The hypoth-
esis is accepted if the deviation is below a fixed threshold
value, and we can use the same threshold value for both
Figs. 7(a) and 7(b).

Let [,, « = 1, ..., N, be the line to be tested
for concurrency, and n,, « = 1, ..., N, their
N-vectors. First, we hypothesize their common interscc-
tion P by computing its N-vector m by an appropriate
method (e.g., Method | of Section 3 with each line /,
weighted by C,w,, where C, and w,, are the edge strength
factor and the length of the primary segment, respec-
tively, of the ath line). Note that point P can be located
anywhere on the image plane (even at infinity), but the
computation is always confined in a finite domain. The
next step is to test this hypothesis. Draw a line [, passing
through P and the center G, of line [, (Fig. 8). Let m;, be
the N-vector of the center G, of line I,. The measure of
deviation, D(l,. [,), of line I, from line I, is given as
follows:

PROPOSITION 2.

2

‘ﬁv “n L] ln(i..

Dl 1) = T2 (0o (1 ). 61

I — (m, mg )

Proof. First, note that a line of N-vector n passes
through a point of N-vector m if and only if (m, n) = 0
(sce Fig. 1). Also note that the N-vector n of the line
passing through two points whose N-vectors are m; and
m; is N[m; X m;], because n must be orthogonal to both
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€s

€y €3

FIG. 9. A line drawing of a polyhedron.

of m; and m,.” Let i, be the N-vector of line /,. Since line
I, passes through the center G,, we have (mg_, n,) =0,
and hence from Eq. (4.6)

DUe L) = B0l - B 62)

The N-vector of the line /, passing through points P and
G, is given by

m X mg,

V1 - (m, mg)?

Substituting this in Eq. (6.2), we obtain Eq. (6.1). =

i, = N[m X mg,] = 6.3)

Thus, we can test the concurrency by defining the fol-
lowing measure of concurrency:
D(y, . .. ,Iy; P) = max D(,, I,)
_|m, ny, mg |2
1 — (m, mg,)?

). (6.4)

— Ca 3
= mflx 7 (Wa) (l

The hypothesis is accepted if this value is below a fixed
threshold value.

Figure 9 is a line drawing based on a real image, where
the edges labeled as shown.® If the above concurrency
test is applied, three sets of parallel edges {e,, ¢4, ¢7, €10,
e}, {82, e3, eg, €9, ey}, and {en, e, eis} are detected
with a threshold value of 10-3f3. The threshold value
1078f3 serves as the universal confidence level of this
judgment (the less, the more confident). The same group-
ing is also obtained by the concurrency test algorithm of
Kanatani [2, 3] based on spherical trigonometry, but his
method employs many heuristics in an ad hoc way, and
no clear-cut confidence value is given.

7 These relationships are described in terms of N-vectors in a dual
form with points and lines playing interchangeable roles. A formulation
is presented in [4] under the name of computational projective geome-
try.

* The edge strength factor was taken to be unity.
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FIG. 10. The vanishing points of all the edges of horizontal faces
must lie on a common **horizon.”

7. COLLINEARITY TEST FOR SECONDARY POINTS

Consider how to make a judgment as to whether or not
a given set of points is collinear. Recall that, in our model
of image processing, points are always defined as inter-
sections of lines. Let us consider secondary points, i.e.,
points defined as intersections of primary lines fitted to
edges. The necessity of testing collinearity occurs in
many problems of computer vision. For example, if hor-
izontally placed object faces exist in the scene, all the
vanishing points of their edges must all lie on a common
horizon (Fig. 10). Hence, we can check whether individ-
ual faces are horizontal or not by testing collinearity.

However, exact concurrency cannot be expected for
real data. Moreover, since points are computed data,
they can be located anywhere on the image plane (even at
infinity). The judgment must be done in a finite domain of
computation, and the tolerance must depend on the posi-
tions and the configuration of these points. These issues
are solved by the use of N-vectors and our strategy of
hypothesizing and testing.

LetP,,a=1,. .. ,N,bethe points to be tested, and
letm,,a=1,. .., N, betheir N-vectors. The first step
is to hypothesize a line [ that supposedly passes through
these points. Let 1 be the N-vector of the line fitted to
these points by an appropriate method (e.g., Method 2 of
Section 3). The next step is testing this hypothesis. Recall
that each point is defined as the intersection of some
lines. Let/§’, 8 =1,. . . , N,, be the primary lines that
define point P,, and n§’, 8 = 1, ..., N,, their
N-vectors. In other words, point P, is given as the com-
mon intersection of primary lines /§”, B =1,. . . , N,.

Let P, be the point on the hypothesized line / that are
closest to point P,. The N-vector m, of point P, is com-
puted by Eq. (2.8) of Lemma 5. Let n§”’ be the N-vector
of line /§?, and w§” and C§” the length of its primary
segment and the edge strength factor, respectively. Let
mg: be the N-vector of its center G§”. We use the follow-
ing measure to test collinearity (Fig. 11):

Dy, ... ,Pn;)=max D({, . . . Q5 P

Iﬁav n(ﬁa)a mG:;"IZ
1 - (ﬁai mG};"’)z

(a)
- Cé (e)y3
max m;?x 2 (wg”) (I ) (7.1
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FIG. 11. The measure of collinearity of secondary points Py, . . . ,
Py.

Thus, we are measuring to what extent the original
edges must be displaced so that the intersections all lie
on the hypothesized line /. The hypothesis is accepted if
this measure is below a fixed threshold, and rejected oth-
erwise.

Figure 12 is a line drawing based on a real image,
where the edges are labeled as shown.® If the concur-
rency test of Section 6 is applied, four groups of concur-
rent edges, {e, eq, €12}, {e2, es, ey}, {e3, s, €3}, and {e7,
eg, ey, eyo}, are detected. If the collinearity test described
above is applied to the vanishing points of the first three
groups, they are judged to be concurrent with the thresh-
old value of 10-3f3, which serves as the universal confi-
dence level of this judgment (the less, the more confi-
dent). This confidence level can be compared with the
example in the preceding section, because both have the
same meaning—the necessary displacements of original
edges. Thus, we can assert that this judgment is as confi-
dent as that one. An algorithm of collinearity test is also
suggested on the basis of spherical trigonometry in [2, 3],
but the present approach is theoretically more consistent
and useful. '

8. CONCLUDING REMARKS

In this paper, we have presented a general formulation
for testing geometric configurations of inaccurate image
data by taking into account the hierarchy of image data
resulting from image processing procedures. The basic
principle is hypothesizing and testing: We first estimate
an ideal geometric configuration that supposedly exists,
and then check ro what extent the original edges must be
displaced in order to support the hypothesis. All types of
tests are reduced to computing a single measure of edge
displacement, which provides a universal measure of
confidence applicable to all types of decision-making.

We have constructed, as typical examples of our strat-
egy, the collinearity test for primary lines, the concur-

° The edge strength factor was taken to be unity.
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FIG. 12. A line drawing of a polyhedron.

rency test for primary lines, and the collinearity test for
secondary points. These tests are all very crucial to 3-D
inference of images in computer vision. In our formula-
tion, no explicit forms of probability distribution need be
introduced. All the procedures are described by explicit
algebraic expressions in N-vectors, so no searches or
iterations are required.

The discipline proposed in this paper is consistent as
compared with ad hoc/heuristic approaches adopted by
many researchers in the past. It is also simple and easy to
implement from a practical point of view. From a purely
theoretical point of view, however, there remain the fol-
lowing issues to be settled:

1. Although the measure of edge displacement intro-
duced in this paper is reasonable in view of its geometric
meaning, the subsequent procedures would be the same if
some other measures were adopted. This is not a problem
from a pragmatic point of view, but as a ‘‘theory”’ it is not
desirable: can we justify our measure by means of more
fundamental principles?

2. In this paper, estimation and testing are treated sep-
arately in the sense that any estimation can be tested for
its validity by our method. But can we derive an ‘‘optimal
estimate’’ based on the hypothesis by a theoretical
means? For example, if Methods 1 and 2 in Section 3 are
to be used, can we find ‘‘optimal weights’> W, such that
the resulting estimates have the highest reliability? From
a practical viewpoint, all estimates to be tested should be
computed easily, but from a theoretical viewpoint, such
*‘optimal estimates’’ should be tested.

3. Although all types of tests are reduced to a single
measure of edge displacement with a single threshold,
this threshold, as well as the edge strength factor, must
be empirically adjusted. This is certainly an advance as
compared with adjusting problem-dependent thresholds
each time; we only need to consider how images were
processed. However, it would be preferable to have a
theory to determine such image-based values.
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All these three issues can be settled affirmatively by
means of statistical inference: If we introduce a statisti-
cal model of image data, i.e., the probability that particu-
lar image data are observed, we can construct maximum
likelihood estimators [8], or we can test hypotheses by
setting the threshold values so that the probability of mis-
detection is below some level, e.g., the 5% level. How-
ever, in order to derive such a theory, we need long
mathematical preliminaries and intricate mathematical
techniques. This will be discussed as separate papers in
the future.

Our final remark is on the ‘‘goodness’ of our ap-
proach. Take the edge grouping procedure discussed in
Section 5, for instance. One may be tempted to ask how
*good” it is as compared with other ad hoc/heuristic
methods. Such a question is ‘‘ill-posed’’. For example,
applying two edge grouping algorithms to a real image,
one may say, ‘‘This edge and this edge belong to the
same house wall, so they should be grouped together.
Let’s see. Algorithm A groups them together, while Al-
gorithm B does not. So, algorithm A is better than algo-
rithm B.” This is a typical example of the subjective
reasonings that have confused and misguided many com-
puter vision researchers in the past. If we are construct-
ing a low-level algorithm based on image properties
alone, we may as well ask to what extent the output is
affected by image noise or edge operators, but it does not
make sense to compare the algorithm with an ‘‘oracle’’
(““They belong to the same house wall, so . . .”, etc.).
The procedure of Section 5, on the other hand, is based
on a clearly stated logic on image properties. If it does
not group two edges which belong to the same house
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wall, then that image is as such. This is all we can expect:
we cannot expect such a low-level algorithm to be intelli-
gent enough to recognize and identify objects in the
scene. To emphasize the necessity of objective reason-
ings based on consistent and sound logic is also one of the
purposes of this paper.
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