
2003 年情報論的学習理論ワークショップ
2003 Workshop on Information-Based Induction
Sciences (IBIS2003)
Kyoto, Japan, Nov 11 - 12, 2003, pp. 113–118.

Multi-stage Unsupervised Learning for Multi-body Motion Segmentation

Yasuyuki Sugaya∗ Kenichi Kanatani∗

Abstract: Many techniques have been proposed for separating feature point trajectories tracked
through a video sequence into independent motions, but objects in the scene are usually assumed
to undergo general 3-D motions. As a result, the separation accuracy considerably deteriorates
in realistic video sequences in which object motions are nearly degenerate. In this paper, we
propose a multi-stage unsupervised learning scheme first assuming degenerate motions and then
assuming general 3-D motions. This multi-stage learning enables us to not only separate simple
motions that we frequently encounter with high precision but also preserve the high performance for
considerably general 3-D motions. Doing simulations and real video experiments, we demonstrate
that our method is superior to all existing methods.

1. Introduction
Separating feature point trajectories tracked

through a video sequence into independent motions is
the first step of many video processing applications.
Already, many techniques have been proposed for this
task.

Costeira and Kanade [1] proposed a segmentation
algorithm based on the shape interaction matrix. Gear
[3] used the reduced row echelon form and graph
matching. Ichimura [4] used the discrimination crite-
rion of Otsu [11]. He also used the QR decomposition
[5]. Inoue and Urahama [6] introduced fuzzy cluster-
ing. Kanatani [8, 9, 10] incorporated model selection
using the geometric AIC [7]. Wu et al. [18] introduced
orthogonal subspace decomposition.

However, all these methods assume that objects
in the scene undergo general 3-D motions relative to
the camera. As a result, segmentation fails when the
motions are degenerate, e.g., all the objects are sim-
ply translating independently (not necessarily along
straight lines). This type of degeneracy frequently oc-
curs in practical applications. Though strict degener-
acy may be rare, the segmentation accuracy consider-
ably deteriorates if the motions are nearly degenerate.

At first sight, segmenting simple motions may seem
easier than segmenting complicated motions. In real-
ity, however, the opposite is the case, because compli-
cated motions have sufficient cues for mutual discrimi-
nation. In fact, we have found through our experiments
that many methods that exhibit high accuracy for com-
plicated simulations perform very poorly for real video
sequences.

In this paper, we introduce unsupervised learning
[13] assuming degenerate motions followed by unsu-
pervised learning assuming general 3-D motions. This
multi-stage learning enables us to not only separate
simple motions with high precision but also preserve
the high performance for considerably general 3-D mo-
tions.
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2. Geometric Constraints
2.1 Trajectory of feature points

Suppose we track N feature points over M frames.
Let (xκα, yκα) be the coordinates of the αth point in
the κth frame. Stacking all the coordinates vertically,
we represent the entire trajectory by the following 2M -
dimensional trajectory vector :

pα = (x1α y1α x2α y2α · · · xMα yMα)>. (1)

For convenience, we identify the frame number κ with
“time” and refer to the κth frame as “time κ”.

We regard the XY Z camera coordinate system as
the world frame, relative to which multiple objects (in-
cluding the background) are moving. Consider a 3-D
coordinate system fixed to one moving object, and let
tκ and {iκ, jκ, kκ} be, respectively, its origin and ba-
sis vectors at time κ. If the αth point has coordinates
(aα, bα, cα) with respect to this coordinate system, its
position with respect to the world frame at time κ is

rκα = tκ + aαiκ + bαjκ + cαkκ. (2)

2.2 Affine camera model
We assume an affine camera, which generalizes

orthographic, weak perspective, and paraperspective
projections [12]: the 3-D point rκα is projected onto
the image position

(
xκα

yκα

)
= Aκrκα + bκ, (3)

where Aκ and bκ are, respectively, a 2× 3 matrix and
a 2-dimensional vector determined by the position and
orientation of the camera and its internal parameters
at time κ. Substituting Eq. (2), we have

(
xκα

yκα

)
= m̃0κ + aαm̃1κ + bαm̃2κ + cαm̃3κ, (4)

where m̃0κ, m̃1κ, m̃2κ, and m̃3κ are 2-dimensional
vectors determined by the position and orientation of
the camera and its internal parameters at time κ. From
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Eq. (4), the trajectory vector pα in Eq. (1) can be
written in the form

pα = m0 + aαm1 + bαm2 + cαm3, (5)

where m0, m1, m2, and m3 are the 2M -dimensional
vectors obtained by stacking m̃0κ, m̃1κ, m̃2κ, and m̃3κ

vertically over the M frames, respectively.
2.3 Constraints on image motion

Equation (5) implies that the trajectories of the
feature points that belong to one object are constrained
to be in the 4-dimensional subspace spanned by {m0,
m1, m2, m3} in R2M . It follows that multiple moving
objects can be segmented into individual motions by
separating the trajectories vectors {pα} into distinct
4-dimensional subspaces. This is the principle of the
method of subspace separation [8, 9].

In addition, the coefficient of m0 in Eq. (5) is
identically 1 for all α. This means that the trajec-
tories are in a 3-dimensional affine space within that
4-dimensional subspace1. It follows that multiple mov-
ing objects can be segmented into individual motions
by separating the trajectory vectors {pα} into distinct
3-dimensional affine spaces. This is the principle of the
method of affine space separation [10].

Theoretically, the segmentation accuracy should be
higher if we use stronger constraints. In fact, accord-
ing to simulations, the affine space separation performs
better than the subspace separation except in the case
in which perspective effects are very strong in the pres-
ence of small noise [10]. For real video sequences, how-
ever, the affine space separation accuracy is sometimes
lower than that of the subspace separation [14, 15],
which is inconsistent with the simulation results. The
cause of this inconsistency will be clarified in the sub-
sequent analysis.

3. Unsupervised Learning
3.1 Principle

Segmentation by the subspace and affine space sep-
aration is not always correct. Here, we consider op-
timizing the segmentation a posteriori by optimally
fitting a 3-dimensional affine space (or a 4-dimensional
subspace) to each trajectory class, considering the data
distributions over the fitted spaces. Then, each trajec-
tory is fractionally classified to all classes according to
the posterior probability of its belonging. This process
is iterated until the classification converges.

This is the standard approach to unsupervised
learning for pattern recognition. However, the exis-
tence of geometric constraints somewhat complicates
the likelihood computation. For the affine space con-
straint, the actual procedure becomes as follows (the
procedure for the subspaces constraint goes similarly).

1Customarily, m0 is identified with the centroid of

{pα}, and Eq. (5) is written as
(
p′1 · · · p′N

)
=

(
m1 m2 m3

)(
a1 · · · aN
b1 · · · bNc1 · · · cN

)
or W = MS, where

p′α = pα −m0. However, our formulation is more convenient
for the subsequent analysis.

3.2 Procedure
Let n = 2M . Suppose N n-dimensional trajectory

vectors {pα} are initially classified into m classes. De-
fine the weight W

(k)
α of the vector pα for the kth class

by

W (k)
α =

{
1 if pα belongs to the kth class
0 otherwise . (6)

Then, iterate the following procedures A and B in turn
until all the weights {W (k)

α } converge.

A. Do the following computation for each class k = 1,
..., m.

1. Compute

w(k) =
1
N

N∑
α=1

W (k)
α . (7)

2. Compute the centroid p
(k)
C of the kth class:

p
(k)
C =

∑N
α=1 W

(k)
α pα∑N

α=1 W
(k)
α

. (8)

3. Compute the n × n moment matrix of the kth
class:

M (k) =
∑N

α=1 W
(k)
α (pα − p

(k)
C )(pα − p

(k)
C )>

∑N
α=1 W

(k)
α

.

(9)

4. Let λ1 ≥ λ2 ≥ λ3 be the three largest eigenvalues
of the matrix M (k), and u

(k)
1 , u

(k)
2 , and u

(k)
3 the

corresponding unit eigenvectors.
5. Compute the n× n projection matrices

P (k) =
3∑

i=1

u
(k)
i u

(k)>
i , P

(k)
⊥ = I − P (k), (10)

where I denotes the n× n unit matrix.
6. Estimate the noise variance in the direction or-

thogonal to the kth affine space by

σ̂2
k = max[

tr[P (k)
⊥ M (k)P

(k)
⊥ ]

n− 3
, σ2], (11)

where tr[ · ] denotes the trace and σ is an estimate
of the tracking accuracy2.

7. Compute the n× n covariance matrix of the kth
class by

V (k) = P (k)M (k)P (k) + σ̂2
kP

(k)
⊥ . (12)

B. Do the following computation for each trajectory
vector pα, α = 1, ..., N .

1. Compute the conditional likelihood P (α|k), k =
1, ..., m, by

P (α|k) =
e−(pα−p(k)

C
,V (k)−1(pα−p(k)

C
))/2

√
detV (k)

. (13)

2We found σ = 0.5 (pixels) a reasonable value [16].
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2. Recompute the weights W
(k)
α , k = 1, ..., m, by

W (k)
α =

w(k)P (α|k)∑m
l=1 w(l)P (α|l) . (14)

After the iterations of A and B have converged,
the αth trajectory is classified into the kth class that
maximizes W

(k)
α , k = 1, ..., m.

3.3 Interpretation
In the above iterations, we fit a Gaussian distribu-

tion of mean p
(k)
C (Eq. (8)) and the rank 3 covariance

matrix P (k)M (k)P (k) (Eqs. (9), (10)) to the data dis-
tribution inside each 3-dimensional affine space. For
the outside deviations, we fit a Gaussian distribution
of mean 0 and a constant variance σ̂2

k (Eq. (11)).
Using these distributions, we compute the proba-

bility P (α|k) of the trajectory vector pα conditioned
to be in the kth class (Eq. (14)). Regarding the frac-
tion w(k) as the a priori probability of the kth class
(Eq. (7)), we compute the a posterior probability W

(k)
α

by Bayes’ theorem (Eq. (14)). Then, we reclassify all
the trajectories according to W

(k)
α , which are fractions

in general. (i.e., one trajectory can belong to multi-
ple classes with fractional weights). This procedure is
iterated until all the weights W

(k)
α converge. Finally,

we associate the αth trajectory with the kth class that
maximizes W

(k)
α .

This type of unsupervised learning3 is widely used
for pattern recognition, and the likelihood is known
to increases monotonously in the course of iterations
[13]. However, it is also well known that the iterations
are very likely to be trapped at a local maximum. It
is almost impossible to do correct segmentation by the
above procedure alone unless we start from a very good
initial value.

4. Degenerate Motion Model
4.1 Degenerate motions

The motions we most frequently encounter are such
that the objects and the background are translating
and rotating 2-dimensionally in the image frame with
varying sizes.

For such a motion, we can choose the basis vector
kκ in Eq. (2) in the Z direction (the camera optical
axis is identified with the Z-axis). Under the affine
camera model, motions in the Z direction do not affect
the projected image except for its size. Hence, the
vector m̃3κ in Eq. (4) can be taken to be 0; the scale
changes of the projected image are absorbed by the
scale changes of m̃1κ and m̃2κ over time κ. It follows
that the trajectory vector pα in Eq. (5) belongs to
the 2-dimensional affine space passing through m0 and
spanned by m1 and m2 [14, 15].

3This scheme is often referred to as the EM algorithm [2],
because the mathematical structure is the same as estimating
parameters from incomplete data by maximizing the logarithmic
likelihood marginalized by the posterior of the missing data given
by Bayes’ theorem.

O
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2m
1m

2m
1m

Figure 1: If the motions of the objects and the back-
ground are degenerate, their trajectory vectors belong to
mutually parallel 2-dimensional affine spaces.

All existing segmentation methods based on the
shape interaction matrix of Costeira and Kanade [1] as-
sume that the trajectories of different motions belong
to independent 3-dimensional subspaces [8, 9]. Hence,
degenerate motions cannot be correctly segmented.

If, in addition, the objects and the background do
not rotate, we can fix the basis vectors iκ and jκ in
Eq. (2) to be in the X and Y directions, respectively.
Since the basis vectors iκ and jκ are common to the
objects and the background, the vectors m1 and m2

in Eq. (5) are also common. Thus, the 2-dimensional
affine spaces of all the motions are parallel (Fig. 1).

Note that two parallel 2-dimensional affine spaces
can be included in a 3-dimensional affine space. Since
the affine space separation method attempts to seg-
ment the trajectories into different 3-dimensional affine
spaces, it does not work if the objects and the back-
ground undergo such degenerate motions. This ex-
plains why the accuracy of the affine space separation
is not as high as expected for real video sequences.
4.2 Learning for degenerate motions

Since most of the motions we encounter in practice
are degenerate, we can expect that the segmentation
accuracy increases by unsupervised learning assuming
such degenerate motions. The actual procedure goes
as follows:

First, we set the weight W
(k)
α of pα for the kth class

by Eq. (6). Next, we iterate the following procedures
A, B, and C in turn until all the weights {W (k)

α } con-
verge:

A. Do the following computation for each class k = 1,
..., m.

1. Compute w(k) by Eq. (7).
2. Compute the centroid p

(k)
C of the kth class by

Eq. (8).
3. Compute the n × n moment matrix M (k) by

Eq. (9).
B. Do the following computation.

1. Compute the total n× n moment matrix

M =
m∑

k=1

w(k)M (k). (15)

2. Let λ1 ≥ λ2 be the two largest eigenvalues of
the matrix M , and u1 and u2 the corresponding
unit eigenvectors.
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(a)

(b)

(c)

Figure 2: Simulated image sequences of 14 object points and 20 background points: (a) almost degenerate motion; (b)
nearly degenerate motion; (c) general 3-D motion.

3. Compute the n× n projection matrices

P =
2∑

i=1

uiu
>
i , P⊥ = I − P . (16)

4. Estimate the noise variance in the direction or-
thogonal to all the affine spaces by

σ̂2 = max[
tr[P⊥MP⊥]

n− 2
, σ2]. (17)

5. Compute the n× n covariance matrix of the kth
class by

V (k) = PM (k)P + σ̂2P⊥. (18)

C. Do the following computation for each trajectory
vector pα , α = 1, ..., N .

1. Compute the conditional likelihood P (α|k), k =
1, ..., m, by Eq. (13).

2. Recompute the weights {W (k)
α }, k = 1, ..., m, by

Eq. (14).
The computation is the same as in Sec. 3.2 except

that 2-dimensional affine spaces with the same orien-
tation are fitted; the common basis vectors u1 and u2

and the common outside noise variance are estimated
in the procedure B.

After the iterations of A, B, and C have converged,
the αth trajectory is classified to the kth class that
maximizes W

(k)
α , k = 1, ..., m.

4.3 Multi-stage learning
In order to start the above learning, we need a good

initial value. Here, we use the affine space separation
using 2-dimensional affine spaces, which effectively as-
sumes planar motions with varying sizes. The resulting
segmentation is then optimized by unsupervised learn-
ing assuming non-rotational motions.

The solution should be very accurate if the mo-
tions are truly degenerate. In reality, however, rota-
tions may be involved to some extent. So, we relax the

constraint and optimize the solution by unsupervised
learning assuming general 3-D motions. In sum, our
scheme consists of the following three stages:

1. Initial segmentation by the affine space separa-
tion using 2-dimensional affine spaces.

2. Unsupervised learning assuming degenerate mo-
tions.

3. Unsupervised learning assuming general 3-D mo-
tions.

This multi-stage learning enables us to not only
separate degenerate motions that we frequently en-
counter with high precision but also preserve the high
performance for general 3-D motions, as we now show.

5. Simulation Experiments
Fig. 2 shows three sequences of five synthetic im-

ages (supposedly of 512×512 pixels) of 14 object points
and 20 background points; the object points are con-
nected by line segments for the ease of visualization.
To simulate real circumstances better, all the points
are perspectively projected onto each frame with 30◦
angle of view, although the underlying theory is based
on the affine camera model without perspective effects.

In all the three sequences, the object moves toward
the viewer in one direction (10◦ from the image plane),
while the background moves away from the viewer in
another direction (10◦ from the image plane). In (a),
the object and the background are simply translating
in different directions. In (b) and (c), they are addi-
tionally given rotations by 2◦ per frame in opposite
senses around different axes; they make 10◦ from the
optical axis in (b) and 60◦ in (b). Thus, all the three
motions are not strictly degenerate (with perspective
effects), but the motion is almost degenerate in (a),
nearly degenerate in (b), and a general 3-D motion in
(c).

We added independent Gaussian random noise of
mean 0 and standard deviation σ to the coordinates
of all the points and segmented them into two groups.
Fig. 3 plots the average misclassification ratio over 500
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Figure 3: Misclassification ratio for the sequences (a), (b), and (c) in Fig. 2: 1) Costeira-Kanade; 2) Ichimura; 3)
optimized subspace separation; 4) optimized affine space separation; 5) multi-stage learning.

trials using different noise for different σ. We compared
1) the Costeira-Kanade method [1], 2) Ichimura’s
method [4], 3) the subspace separation [8, 9] followed
by unsupervised learning (we call this optimized sub-
space separation for short), 4) the affine space separa-
tion [10] followed by unsupervised learning (optimized
affine space separation for short), and 5) our multi-
stage learning.

For the almost degenerate motion in Fig. 2(a), the
optimized subspace separation and the optimized affine
space separation do not work very well. Also, the affine
space separation is not superior to the subspace sep-
aration (Fig. 3(a)). Since our multi-stage learning is
based on this type of degeneracy, it achieves 100% ac-
curacy over all the noise range.

For the nearly degenerate motion in Fig. 2(b), the
optimized subspace separation and the optimized affine
space separation both work fairly well (Fig. 3(b)).
However, our method still attains almost 100% accu-
racy.

For the general 3-D motion in Fig. 2(c), the op-
timized subspace separation and the optimized affine
space separation exhibit relatively high performance
(Fig. 3(c)), but our method performs much better with
nearly 100% accuracy again.

Although the same learning procedure is used in
the end, the multi-stage learning performs better than
the optimal affine space separation, because the former
starts from a better initial value than the latter. This is
the reason why the multi-stage learning achieves high
performance even for considerably non-degenerate mo-
tions.

For all the motions, the Costeira-Kanade method
performs very poorly. The accuracy is not 100% even
in the absence of noise (σ = 0) because of the perspec-
tive effects. Ichimura’s method is not effective, either.
It works to some extent for the general 3-D motion in
Fig. 2(c), but it does not compare with the optimized
subspace or affine space separation, much less with our
multi-stage learning method.

6. Real Video Examples
Fig. 4 shows five decimated frames from three video

sequences A, B, and C (320× 240 pixels). For each se-
quence, we detected feature points in the initial frame
and tracked them using the Kanade-Lucas-Tomasi al-
gorithm [17]. The marks 2 indicate their positions.
From the trajectories tracked throughout the sequence,

we removed outlier trajectories using the method of
Sugaya and Kanatani [16].

Table 1 lists the number of frames, the number
of inlier trajectories, and the computation time for
our multi-stage learning. We reduced the computa-
tion time by compressing the trajectory data into 8-
dimensional vectors [14]. We used Pentium 4 2.4B GHz
for the CPU with 1 Gb main memory and Linux for
the OS.

Table 2 lists the segmentation accuracies for differ-
ent methods (“opt” stands for “optimized”). The accu-
racy is measured by (the number of correctly classified
points)/(the total number of points) in percentage.

As we can see, the Costeira-Kanade method fails to
produce meaningful segmentation. Ichimura’s method
is effective for sequences A and B but not so very ef-
fective for sequence C. For sequence A, the affine space
separation is superior to the subspace separation. For
sequence B, the two methods have almost the same
performance. For sequence C, in contrast, the sub-
space separation is superior to the affine space separa-
tion, strongly suggesting that the motion in sequence
C is nearly degenerate.

The effect of learning is larger for sequence A than
for sequences B and C, for which the accuracy is al-
ready high before the learning. Thus, the effect of un-
supervised learning very much depends on the quality
of the initial segmentation. For all the three sequences,
our multi-stage learning achieves 100% accuracy.

7. Concluding Remarks
In this paper, we have proposed a multi-stage un-

supervised learning scheme first assuming degenerate
motions and then assuming general 3-D motions. Do-
ing simulations and real video experiments, we have
confirmed that our method is superior to all existing
methods in realistic circumstances.

The reason for this superiority is that our method is
tuned to realistic circumstances, where the motions of
objects and backgrounds are almost degenerate, while
existing methods mostly make use of the shape inter-
action matrix of Costeira and Kanade on the assump-
tion that objects and backgrounds undergo general 3-D
motions. As a result, they perform very poorly for
simple motions such as in Fig. 4, while our method4

4The source code is publicly available at:
http://www.suri.it.okayama-u.ac.jp/e-program.html
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A:

B:

C:

Figure 4: Three video sequences and successfully tracked feature points.

Table 1: The computation time for the multi-stage learn-
ing of the sequences in Fig. 4.

A B C

number of frames 30 17 100
number of points 136 63 73
computation time (sec) 2.50 0.51 1.49

Table 2: Segmentation accuracy (%) for the sequences in
Fig. 4.

A B C

Costeira-Kanade 60.3 71.3 58.8
Ichimura 92.6 80.1 68.3
subspace separation 59.3 99.5 98.9
affine space separation 81.8 99.7 67.5

opt. subspace separation 99.0 99.6 99.6
opt. affine space separation 99.0 99.8 69.3
multi-stage learning 100.0 100.0 100.0

has very high performance for degenerate motions, and
the accuracy is preserved even for considerably non-
degenerate motions due to the multi-stage learning.
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cal and Structural Pattern Recognition, Kluwer, Dordrecht,
The Netherlands, 2002.

[14] Y. Sugaya and K. Kanatani, Automatic camera model selec-
tion for multibody motion segmentation, Proc. Workshop
on Science of Computer Vision, Okayama, Japan, pp.31–39,
Sept. 2002.

[15] Y. Sugaya and K. Kanatani, Automatic camera model selec-
tion for multibody motion segmentation, IAPR Workshop
on Machine Vision Applications, Nara, Japan, pp.412–415,
Dec. 2002.

[16] Y. Sugaya and K. Kanatani, Outlier removal for motion
tracking by subspace separation, IEICE Trans. Inf. & Syst.,
vol.E86-D, no.6, pp.1095–1102, June 2003.

[17] C. Tomasi and T. Kanade, Detection and Tracking of Point
Features, CMU Tech. Rep. CMU-CS-91-132, Apr. 1991:
http://vision.stanford.edu/˜birch/klt/

[18] Y. Wu, Z. Zhang, T. S. Huang and J. Y. Lin, Multibody
grouping via orthogonal subspace decomposition, sequences
under affine projection, Proc. IEEE Conf. Computer Vision
Pattern Recog., vol.2, pp.695–701, Kauai, Hawaii, U.S.A.,
Dec. 2001.

118


