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Abstract
Reformulating the Costeira-Kanade algorithm as a pure

mathematical theorem independent of the Tomasi-Kanade
factorization, we present a robust segmentation algorithm
by incorporating such techniques as dimension correction,
model selection using the geometric AIC, and least-median
fitting. Doing numerical simulations, we demonstrate that
our algorithm dramatically outperforms existing methods. It
does not involve any parameters which need to be adjusted
empirically.

1. Introduction

Segmenting individual objects from backgrounds is
one of the most important of computer vision tasks.
An important clue is provided by motion; humans can
easily discern independently moving objects by simply
seeing their motions without knowing their identities.
Costeira and Kanade [1] presented an algorithm for seg-
mentation from image point motions captured by fea-
ture tracking. They associated their method with the
Tomasi-Kanade factorization [11], but a close exami-
nation reveals that the underlying principle is a simple
fact of linear algebra, as pointed out by Gear [2], who
also presented an alternative method.

In this paper, we first state the principle as subspace
separation with the intention of applying it to a wider
range of problems not limited to motion segmentation
or even to computer vision. In fact, Maki and Wiles
[6] have pointed out that the same principle applies to
separating illumination sources by observing multiple
images.

The biggest drawback of the Costeira-Kanade algo-
rithm [1], and the essentially equivalent method of Gear
[2] as well, is that the performance severely deteriorates
in the presence of noise. This is because segmentation
is based on the decision if particular elements of a ma-
trix computed from the data are zero. In the presence
of noise, a small error in one datum can affect all the
elements of the matrix in a complicated manner, and
finding a suitable threshold is difficult even if the noise
is known to be Gaussian with a known variance.

To avoid this difficulty, one needs to analyze the
original data rather than a matrix derived from them.
In this paper, we present a robust segmentation algo-
rithm by working in the original data space, where we
incorporate the geometric AIC [4, 5] and least-median
fitting [7, 10]. Doing numerical simulation, we demon-

strate that our method dramatically outperforms exist-
ing methods. We also derive a bound on the accuracy,
with which our method is compared. Our algorithm
has a notable feature that no parameters need to be
adjusted empirically .

2. Motion Subspaces

Suppose we track N rigidly moving feature points
over M images. Let (xκα, yκα) be the image coordi-
nates of the αth point in the κth frame. If we stack
the image coordinates over the M frames vertically into
a 2M -dimensional vector in the form

pα =
(
x1α y1α x2α y2α · · · yMα

)>
, (1)

the image motion of the αth point is represented by a
single point pα in a 2M -dimensional space.

We regard the XY Z camera coordinate system as
the world coordinate system with the Z-axis along the
optical axis. We fix an arbitrary object coordinate sys-
tem to the object and let tκ and {iκ, jκ, kκ} be, re-
spectively, its origin and orthonormal basis in the κth
frame. Let (aα, bα, cα) be the coordinates of the αth
point with respect to the object coordinate system. Its
position in the κth frame with respect to the world
coordinate system is given by

rκα = tκ + aαiκ + bαjκ + cαkκ. (2)

If we assume orthographic projection, we have
(

xκα

yκα

)
= t̃κ + aαĩκ + bαj̃κ + cαk̃κ, (3)

where t̃κ, ĩκ, j̃κ, and k̃κ are the 2-dimensional vec-
tors obtained from tκ, iκ, jκ, and kκ, respectively, by
chopping the third components.

If we stack the vectors t̃κ, ĩκ, j̃κ, and k̃κ over the M
frames vertically into 2M -dimensional vectors m0, m1,
m2, and m3, respectively, in the same way as eq. (1),
the vector pα has the form

pα = m0 + aαm1 + bαm2 + cαm3. (4)

Thus, the N points {pα} belong to the 4-dimensional
subspace spanned by the vectors {m0, m1, m2, m3}.
This fact holds for all affine camera models including
weak perspective and paraperspective [9].



If the motion is planar, i.e., if the object translates
only in the X and Y directions and rotates only around
the Z-axis, the vector k̃κ vanishes if we take iκ, jκ, and
kκ to be in the X, Y , and Z directions, respectively.
This means that the N points {pα} belong to the 3-
dimensional subspace spanned by {m0, m1, m2}.

It follows that the motions of the feature points
are segmented into independently moving objects by
grouping the N points in Rn (n = 2M) into distinct 4-
dimensional subspaces for general motions and distinct
3-dimensional subspaces for planar motions.

3. Subspace Separation Theorem

Let {pα} be N points that belong to an r-
dimensional subspace L ⊂ Rn. Define an N × N G
= (Gαβ) by

Gαβ = (pα, pβ), (5)

where (a, b) denotes the inner product of vectors a and
b. This matrix gives the information about the lengths
of the vectors {pα} and their mutual angles, so we call
it the metric matrix .

Let λ1 ≥ · · · ≥ λN be its eigenvalues, and {v1,
..., vN} the orthonormal system of the corresponding
eigenvectors. Define the N × N interaction matrix Q
= (Qαβ) by

Q =
r∑

i=1

viv
>
i . (6)

Divide the index set I = {1, ..., N} into m disjoint
subsets Ii, i = 1, ..., m, and let ri be the dimension
of the subspace Li defined by the ith set {pα}, α ∈
Ii. If the m subspaces Li, i = 1, ..., m, are linearly
independent, we have

Theorem 1 The (αβ) element of Q is zero if the αth
and βth points belong to different subspaces:

Qαβ = 0, α ∈ Ii, β ∈ Ij , i 6= j. (7)

This theorem is the essence of the principle on which
the Costeira-Kanade algorithm [1] relies. Costeira
and Kanade described this result in reference to the
Tomasi-Kanade factorization [11], but it can be proved
purely mathematically as follows. For N (> n) vectors
{pα}, there exist infinitely many sets of numbers {c1,
..., cN}, not all zero, such that

∑N
α=1 cαpα = 0, but

if the points {pα} belong to two subspaces L1 and L2

such that L1 ⊕L2 = Rn, the set of such “annihilating
coefficients” {cα} (“null space” to be precise) is gener-
ated by those for which

∑
pα∈L1

cαpα = 0 and those
for which

∑
pα∈L2

cαpα = 0. A formal proof is given

in the Appendix.

4. Separation Procedure

4.1 Greedy algorithm

In the presence of noise, all the elements of Q
= (Qαβ) are nonzero in general. A straightforward
method is to successively group points pα and pβ for
which |Qαβ | is large. If we progressively interchange
the corresponding rows and columns of Q, it ends up
with an approximate block-diagonal matrix [1]. For-
mally, we define the similarity measure between the
ith subspace Li and the jth subspace Lj by sij =
maxpα∈Li,pβ∈Lj |Qαβ | and repeatedly merge two sub-
spaces for which sij is large.

Costeira and Kanade [1] adopted this type of strat-
egy, known as the greedy algorithm. They used∑

pα∈Li,pβ∈Lj
|Qαβ |2, but according to our experience

the choice of the measure does not affect the result
very much. Since noise exists in the data {pα}, not
in the elements of Q, and no information is available
about the magnitude of the nonzero elements of Q, it
is difficult to obtain an appropriate criterion.

Gear [2] formulated the same problem as graph
matching, which he solved by a greedy algorithm, but
it is difficult to weigh the graph edges appropriately.
Gear [2] did a complicated statistical analysis for this,
but the result does not seem very successful. Ichimura
[3] applied the discrimination criterion of Otsu [8] for
thresholding.

4.2 Dimension correction

Theorem 1 is based on the existence of “locally
closed annihilating coefficients”. In the presence of
noise, no such coefficients exist, so we create them.
Let d be the dimension of the subspaces to be sepa-
rated (d = 4 for general motions and d = 3 for planar
motions). As soon as more than d points are grouped
together, we optimally fit a d-dimensional subspace to
them, replace the points with their projections onto the
fitted subspace, and recompute the interaction matrix
Q. This effectively reduces the noise in the data if the
local grouping is correct. Continuing this process, we
end up with an exact block-diagonal matrix Q.

4.3 Model selection

The fundamental criterion in the data space is the
residual J , i.e., the sum of the square distances of the
data points to the fitted subspace. It is reasonable not
to merge two groups of points if the resulting residual
would be large compared with the sum of the residuals
of separately fitting two subspaces to them. But how
large should the residual be for this judgment? In gen-
eral, the residual always increases after two groups of
points are merged, because a single subspace has fewer
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degrees of freedom to adjust than two subspaces. It
follows that we must balance the increase of the resid-
ual against the decrease of the degree of freedom. For
this purpose, we use the geometric AIC [4, 5]. A simi-
lar idea was used for motion segmentation by Torr [12]
though his approach is different from ours.

Let Li and Lj be candidate subspaces of dimension d
to merge, and let Ni and Nj be the respective numbers
of points in them. The corresponding residuals Ĵi and
Ĵj are computed in the course of the dimension correc-
tion. We assume that each point is perturbed from its
true position by independent Gaussian noise of mean
zero and standard deviation ε, which is referred to as
the noise level .

Let Ĵi⊕j be the residual that would result after fit-
ting a single d-dimensional subspace to the Ni + Nj

points. Since a d-dimensional subspace has d(n − d)
degrees of freedom1, the geometric AIC has the follow-
ing form [4, 5]:

G-AICi⊕j = Ĵi⊕j + 2d
(
Ni + Nj + n− d

)
ε2. (8)

If two d-dimensional subspaces are fitted to the Ni

points and the Nj points separately, the degree of
freedom is the sum of those for individual subspaces.
Hence, the geometric AIC is as follows [4, 5]:

G-AICi,j = Ĵi + Ĵj + 2d
(
Ni + Nj + 2(n− d)

)
ε2. (9)

Merging Li and Lj is reasonable if G-AICi⊕j <
G-AICi,j . However, this criterion can work only for
Ni +Nj > d. Also, the information provided by the in-
teraction matrix Q will be ignored. Here, we mix these
two criteria together and define the following similarity
measure between the subspaces Li and Lj :

sij =
G-AICi,j

G-AICi⊕j
max

pα∈Li,pβ∈Lj

|Qαβ |. (10)

Two subspaces with the largest similarity are merged
successively until the number of subspaces becomes a
specified number m. However, some of the resulting
subspaces may contain less than d elements, which vi-
olates our assumption. To prevent this, we take sub-
spaces with less than d elements as first candidates to
be merged as long as they exist.

For evaluating the geometric AIC, we need to es-
timate the noise level ε. This can be done if we note
that the vectors {pα} should be constrained to be in an
r-dimensional subspace of Rn in the absence of noise
(r = md). Let Ĵr be the residual after fitting an r-
dimensional subspace to {pα}. Then, Ĵr/ε2 is subject

1It is specified by d points in Rn, but they can move within
that subspace into d directions. So, the degree of freedom is
dn− d2.

to a χ2 distribution with (n − r)(N − r) degrees of
freedom [4]. Hence, we obtain the following unbiased
estimator of ε2:

ε̂2 =
Ĵr

(n− r)(N − r)
. (11)

4.4 Robust fitting

Once a point is misclassified in the course of the
merging process, it never leaves that class. We now
attempt to remove outliers from the m resulting classes
L1, ..., Lm.

Points near the origin may be easily misclassified,
so we select from each class Li half (but not less than
d) of the elements that have large norms. We fit d-
dimensional subspaces L′1, ..., L′m to them again and
select from each class Li half (but not less than d) of the
elements whose distances to the closest subspace L′j , j
6= i, are large. We fit d-dimensional subspaces L′′1 , ...,
L′′m to them again and allocate each data point to the
closest one. Finally, we fit d-dimensional subspaces L′′′1 ,
..., L′′′m to the resulting point sets by the least-median
(to be precise, least median-of-squares) method [7, 10].
Each data point is reallocated to the closest one.

4.5 Accuracy bound

Whatever method we use, we cannot reach 100%
accuracy as long as noise exists in the data. For ob-
jective evaluation of an algorithm, we should compare
its performance with an ideal method. Suppose we
know by an “oracle” the true subspaces L̄1, ..., L̄m,
from which the observed data were perturbed by in-
dependent and identically distributed Gaussian noise.
Evidently, each point should be grouped into the clos-
est subspace from it. Of course we cannot do this using
real data, but we can do simulations, for which the true
solution is known, and regard the performance of this
oracle method as a bound on the accuracy.

5. Examples

Fig. 1 shows five consecutive images of 20 points in
the background and 9 points in an object. The back-
ground and the object are independently moving in 2
dimensions; the object is given a wireframe for the ease
of visualization. We added Gaussian noise of mean
0 and standard deviation ε to the coordinates of the
29 points independently and classified them into two
groups.

Fig. 2(a) plots the average error ratio over 500
independent trials for different ε: we compared (1)
the method using the greedy algorithm only, (2) the
method with dimension correction added, (3) the
method with model selection in addition, and (4) the
method with robust fitting further added. We can see
that each added technique reduces the error further.
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Figure 1: An image sequence of points in planar motion.
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Figure 2: Error ratio for segmenting the planar motion of Fig. 1. (a) 1. Greedy algorithm. 2. With dimension correction.
3. With model selection. 4. With robust fitting. (b) 1. Greedy algorithm. 2. Ichimura’s method. 3. Our method. 4. Lower
bound.

In Fig. 2(b), the greedy algorithm, our method with
all the techniques combined, and Ichimura’s method [3]
that uses the discrimination criterion of Otsu [8] are
compared with the bound given by the oracle method.
We can observe that Ichimura’s method is slightly
better than the greedy algorithm but inferior to our
method. This is because the Otsu criterion classifies
elements in the least-squares sense and hence nonzero
elements |Qαβ | that are close to zero are judged to be
zero in the presence of noise.

Fig. 3 shows five consecutive images of 20 points
in the background and 14 points in an object. The
background and the object are independently moving
in 3 dimensions. Fig. 4 shows the classification results
corresponding to Fig. 2. Again, we can see that our
method dramatically improves the classification accu-
racy.

Fig. 5 shows a sequence of perspectively projected
images (above) and manually selected feature points
from them (below). For this data set, we could cor-
rectly separate an independent 3-D motion from the
background motion by the greedy algorithm and our
method, whereas Ichimura’s method failed. We added
independent Gaussian noise of mean 0 and standard
deviation ε = 0, 1, 2, 3, ... (pixels) to the coordinates
of the feature points and applied our method 10 times
for each ε, using different noise each time. The greedy
algorithm and Ichimura’s method caused misclassifica-
tions, but our method was always correct up to ε = 5
(pixels)

This image sequence captures a 3-D motion, but if
we regard it as a planar motion, the greedy algorithm

and our method can detect the correct motion, but
Ichimura’s method fails. However, the greedy algo-
rithm fails if random noise of ε = 1 is added, while
our method works up to ε = 3 (pixels).

6. Concluding Remarks

We have reformulated the Costeira-Kanade method
as a pure mathematical theorem independent of the
Tomasi-Kanade factorization and presented a robust
segmentation algorithm by incorporating such tech-
niques as dimension correction, model selection using
the geometric AIC, and least-median fitting. We did
numerical simulations and compared the performance
of our method with a bound on the accuracy. Real
image examples were also shown. We conclude that
our algorithm dramatically improves the classification
accuracy over existing methods.

For practical segmentation, we should incorporate
multiple features such as brightness, color, texture, and
shape as well as motion. Since our algorithm is based
solely on feature point motion, it alone may not be
sufficient. But for the same reason it is more funda-
mental, and it elucidates the mathematical structure
of the segmentation problem.

Our algorithm does not involve any parameters
which need to be adjusted empirically. This is a no-
table feature in a stark contrast to many of today’s
“intelligent” systems for which a lot of parameter must
be tuned.
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Figure 3: An image sequence of points in 3-D motion.
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Figure 4: Error ratio for segmenting the 3-D motion of Fig. 3. (a) 1. Greedy algorithm. 2. With dimension correction.
3. With model selection. 4. With robust fitting (b) 1. Greedy algorithm. 2. Ichimura’s method. 3. Our method. 4. Lower
bound.
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Appendix: Proof of Theorem 1

Let Ni be the number of elements of the set Ii. It
is sufficient to prove the theorem for m = 2 (the proof

is the same for m > 2). Suppose {pα} are aligned , i.e.,
p1, ..., pN1

∈ L1 and pN1+1, ..., pN ∈ L2.
Since the subspace L1 has dimension r1, the n ×

N1 matrix W 1 =
(
p1 · · · pN1

)
has rank r1. Hence,

W 1 defines a linear mapping of rank r1 from an N1-
dimensional space RN1 to an n-dimensional space Rn;
its null space N1 has dimension ν1 = N1 − r1. Let
{n1, ..., nν1} be an arbitrary orthonormal basis of N1,
each ni being an N1-dimensional vector. Similarly, the
n × N2 matrix W 2 =

(
pN1

· · · pN

)
defines a linear

mapping of rank r2 from RN2 to Rn; its null space
N2 has dimension ν2 = N − r2. Let {n′1, ..., n′ν2

} be
an arbitrary orthonormal basis of N2, each ni being
N2-dimensional vector.

Let {ñi}, i = 1,.., ν1, and {ñ′i}, i = 1,.., ν2, be the
N -dimensional vectors defined by padding {ni} and
{n′i} with zero elements as follows:

ñi =
(

ni

0

)
, ñ′i =

(
0
n′i

)
. (12)

As a result, the N−r vectors {ñ1, ..., ñν1 , ñ′1, ..., ñ′ν2
}

are an orthonormal system of RN belonging to the null
space N of the n×N observation matrix

W =
(
p1 · · · pN

)
. (13)

Since the matrix W has rank r1 + r2 (= r) by assump-
tion, its null space N has dimension ν = N−r. Hence,
{ñ1, ..., ñν1 , ñ′1, ..., ñ′ν2

} are an orthonormal basis of
the null space N .

Since eq. (5) is equivalent to G = W>W , we see
that {ñ1, ..., ñν1 , ñ′1, ..., ñ′ν2

} are an orthonormal
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Figure 5: Real images of moving objects (above) and the selected feature points (below).

system of the eigenvectors of G for eigenvalue 0. If we
let {vr+1, ..., vN} be an arbitrary orthonormal system
of the eigenvectors of G for eigenvalue 0, there exists
a ν × ν orthogonal matrix C such that these two are
related by

(
vr+1 · · · vN

)
=

(
ñ1 · · · ñν1 ñ′1 · · · ñ′ν2

)
C. (14)

Consider the N ×N matrix whose (αβ) element is the
inner product of the αth and βth rows of the N × ν
matrix

(
vr+1 · · · vN

)
. We observe that

(
vr+1 · · · vN

) (
vr+1 · · · vN

)>

=
(
ñ1 · · · ñν1 ñ′1 · · · ñ′ν2

)
CC>

(
ñ1 · · · ñν1 ñ′1 · · · ñ′ν2

)>

=
(
ñ1 · · · ñν1 ñ′1 · · · ñ′ν2

) (
ñ1 · · · ñν1 ñ′1 · · · ñ′ν2

)>

=
(

n1 · · · nν1 0 · · · 0
0 · · · 0 n′1 · · · n′ν2

)




n>1 0>
...

...
n>ν1

0>

0> n′1
>

...
...

0> n′ν2
>




=
( ∗ O

O †
)

, (15)

where ( ∗ ) and ( † ) are N1 × N1 and N2 × N2 sub-
matrices, respectively. This implies that the αth and
βth rows of the matrix

(
vr+1 · · · vN

)
are mutually

orthogonal if pα and pβ belong to different subspaces.
Let {v1, ..., vr} be an arbitrary orthonormal sys-

tem of the eigenvectors of the matrix G for nonzero
eigenvalues. Combining these with {vr+1, ..., vN}, we
obtain an orthonormal system of the eigenvectors of
the matrix G for all the eigenvalues. It follows that
the N ×N matrix

V =
(
v1 · · · vr vr+1 · · · vN

)
(16)

is orthogonal. Hence, its N rows are pair-wise orthog-
onal. If we let vαi be the αth element of vector vi, the

αth and βth rows of the matrix V are (vα1, ..., vαN )
and (vβ1, ..., vβN ), respectively. It follows that for α 6=
β we have

vα1vβ1 + · · ·+ vαrvβr

+ vα(r+1)vβj(r+1) + · · ·+ vαNvβN = 0. (17)

We have already shown that vα(r+1)vβ(r+1) + · · · +
vαNvβN = 0 if pα and pβ belong to different subspaces.
This means that if pα and pβ belong to different sub-
spaces, we have

vα1vβ1 + · · ·+ vαrvβr = 0. (18)

This implies that if pα and pβ belong to different sub-
spaces, the αth and βth rows of the N × r matrix

V r =
(
v1 · · · vr

)
(19)

are mutually orthogonal. The N × N matrix whose
(αβ) element is the inner product of the αth and βth
rows of the matrix V r is given by

V rV
>
r =

(
v1 · · · vr

) (
v1 · · · vr

)> =
r∑

i=1

viv
>
i = Q.

(20)
Hence, the (αβ) element of the interaction matrix Q is
zero if pα and pβ belong to different subspaces.

We have so far assumed that p1, ..., pN1
∈ L1 and

pN1+1, ..., pN ∈ L2. It is easy to see that the theorem
holds if we arbitrarily permute p1, ..., pN . If pα and
pβ are interchanged, the αth and βth rows and the αth
and βth columns of the matrix G are simultaneously
interchanged. As a result, its αth and βth eigenvectors
are interchanged, and hence the αth and βth columns
of the matrix V =

(
v1 · · · vr

)
are interchanged. It

follows that the αth and βth rows and the αth and
βth columns of the interaction matrix Q are simulta-
neously interchanged. Since any permutation of p1,
..., pN can be generated by pair-wise interchanges, the
theorem holds for an arbitrary permutation. The the-
orem can be straightforwardly extended to more than
two subspaces. 2
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