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Abstract

A very compact algorithm is presented for fitting an
ellipse to points in images by maximum likelihood (ML)
in the strict sense. Although our algorithm produces the
same solution as existing ML-based methods, it is prob-
ably the simplest and the smallest of all. By numerical
experiments, we show that the strict ML solution prac-
tically coincides with the Sampson solution.

1. Introduction
Circular objects in the scene are projected onto el-

lipses on the image plane, and their 3-D shapes and po-
sitions can be computed from their images [11]. For this
reason, fitting an ellipse to a point sequence is one of
the first steps of various vision applications. Although
how to select pixels that form an elliptic arc is an im-
portant issue in practice (see, e.g., [13]), we focus here
on fitting an ellipse equation to pixels on an elliptic arc,
assuming that such pixels are already selected.

Most of the methods presented in early days were
based on heuristics combining voting and least squares
in many different forms [1, 3, 16, 19, 21]. Later, the
problem was formulated as statistical estimation in the
presence of noise [4, 5, 10, 12, 22]. If the noise is inde-
pendent isotropic Gaussian, maximum likelihood (ML)
is to minimize the sum of squares of the orthogonal dis-
tances of points to the fitted ellipse, called the reprojec-
tion error [10].
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If the noise is small, the problem reduces to min-
imization of an expression called the Sampson error
[10], for which many numerical schemes exist includ-
ing FNS [6], HEIV [17, 18], and the projective Gauss-
Newton iterations [14]. There are also attempts to
minimize the reprojection error directly for obtaining
the strict ML solution [2, 8, 9, 20], searching a high-
dimensional parameter space or solving a high-degree
polynomial. However, not much is known as to how the
strict ML solution differs from the Sampson solution.

In this paper, we present a new algorithm for com-
puting the strict ML solution. Although there is no ac-
curacy gain, since all ML-based methods minimize the
same function, our algorithm is far more compact than
any of existing methods. The reason why the existing
strictly ML algorithms [2, 8, 9, 20] are not widely used
is probably for fear of coding a complicated program
and uneasiness at relying on “download”. Our algo-
rithm is simple enough to code oneself1.

We describe our algorithm in Sec. 2 and give a
derivation in Sec. 3. In Sec. 4, we compare the strict
ML solution with the Sampson solution. We conclude
in Sec. 5.

2. Strictly ML Ellipse Fitting
We want to fit an ellipse to N points {(xα, yα)}N

α=1.
An ellipse is represented by

Ax2 +2Bxy+Cy2 +2f0(Dx+Ey)+Ff2
0 = 0, (1)

where f0 is an arbitrary scaling constant (we set f0 =
600 pixels in our experiments). If we define the 3-D
vector x and the 3 × 3 symmetric matrix

x =

 x/f0

y/f0

1

 , Q =

 A B D
B C E
D E F

 , (2)

the ellipse equation (1) is written as (x, Qx) = 0;
throughout this paper, we denote the inner product of
vectors a and b by (a, b). Hereafter, the point repre-
sented by vector x is referred to simply as “point x”.

Let {xα}N
α=1 be points supposedly on an elliptic arc.

If they are assumed to be displaced from their true posi-
tions {x̄α}N

α=1 by independent and identical Gaussian
noise in their x- and y-coordinates, maximum likeli-
hood (ML) is equivalent to minimizing the reprojection
error

1But one can try ours if one wishes:
http://www.iim.ics.tut.ac.jp/~sugaya/public-e.html

1



E =
N∑

α=1

‖xα − x̄α‖2, (3)

with respect to x̄α and Q subject to

(x̄α, Qx̄α) = 0, α = 1, ..., N. (4)

Geometrically, we are minimizing the sum of the or-
thogonal distances of the points to the fitted ellipse.

Equation (1) does not necessarily describe an ellipse.
Even if the points {xα}N

α=1 are sampled from an el-
lipse, the fitted equation may define a hyperbola in the
presence of large noise, and a technique for preventing
this has also been proposed [7]. Here, we do not impose
any constraints, regarding a fitted curve as a solution.

We now present a dramatically compact fitting algo-
rithm. Write the matrix Q in (2) as the 6-D vector

u =
(
A B C D E F

)>
. (5)

Since the absolute scale of Q is indeterminate, we nor-
malize u to ‖u‖ = 1. We use the notation N [ · ] to de-
notes normalization to unit norm.

In order to emphasize the compactness of our algo-
rithm, we state it first and then give its derivation. The
main routine of our algorithm goes as follows:

main

1. Let u0 = 0, and initialize u.

2. Let x̂α = xα, ŷα = yα and x̃α = ỹα = 0.

3. Compute the following 6-D vectors ξα and the 6×
6 matrices V0[ξα]:

ξα =


x̂2

α + 2x̂αx̃α

2(x̂αŷα + ŷαx̃α + x̂αỹα)
ŷ2

α + 2ŷαỹα

2f0(x̂α + x̃α)
2f0(ŷα + ỹα)

f2
0

, (6)

V0[ξα] =


x̂2

α x̂αŷα 0 f0x̂α 0 0
x̂αŷα x̂2

α + ŷ2
α x̂αŷα f0ŷα f0x̂α 0

0 x̂αŷα ŷ2
α 0 f0ŷα 0

f0x̂α f0ŷα 0 f2
0 0 0

0 f0x̂α f0ŷα 0 f2
0 0

0 0 0 0 0 0

.

(7)

4. Call FNS to update u.

5. If u ≈ u0 up to sign, return u and stop. Else,
update x̃α and ỹα by(

x̃α

ỹα

)
← (u, ξα)

2(u,V0[ξα]u)

(
u1 u2 u3

u4 u5 u6

)x̂α

ŷα

f0

 .

(8)

6. Go back to Step 3 after the following update:

u0 ← u, x̂α ← xα − x̃α, ŷα ← yα − ỹα. (9)

The initialization in Step 1 can be done by least
squares or the Taubin method [14]. The FNS routine
in Step 4 goes as follows:

FNS

1. Compute the following 6 × 6 matrix X:

X =
N∑

α=1

ξαξ>
α

(u, V0[ξα]u)
−

N∑
α=1

(u, ξα)2V0[ξα]
(u, V0[ξα]u)2

.

(10)

2. Compute the unit eigenvectors u′ and of X for the
smallest eigenvalues.

3. If u′ ≈ u up to sign, return u′ and stop. Else, let
u ←N [u + u′] and go back to Step 1.

3. Derivation
We want to compute x̄α that minimizes (3) subject to

(4). Suppose we have obtained an approximate solution
x̂α ≈ x̄α (initially, we let x̂α = xα). We write

x̄α = x̂α − ∆x̂α, (11)

and compute the correction term ∆x̂α instead. Substi-
tution of (11) into (3) yields

E =
N∑

α=1

‖x̃α + ∆x̂α‖2, (12)

where we define

x̃α = xα − x̂α. (13)

The ellipse equation (4) now becomes

(x̂α − ∆x̂α, Q(x̂α − ∆x̂α)) = 0. (14)

If x̂α is a good approximation to x̄α, the correction
term ∆x̂α is a small quantity of a high order. Hence,
its quadratic term can be ignored, and we have

(Qx̂α, ∆x̂α) =
1
2
(x̂α, Qx̂α). (15)

Let

k ≡

 0
0
1

 , P k ≡ I − kk>(= diag(1, 1, 0)). (16)
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Introducing Lagrange multipliers to (15) and the con-
straints

(k,∆x̂α) = 0, (17)

we obtain ∆x̂α as follows (see [15] for the derivation):

∆x̂α =

(
(x̂α, Qx̂α) + 2(Qx̂α, x̃α)

)
P kQx̂α

2(Qx̂α, P kQx̂α)
− x̃α.

(18)
On substitution of this, the reprojection error of (12)
now has the following form (see [15] for the derivation):

E =
1
4

N∑
α=1

(
(x̂α, Qx̂α) + 2(Qx̂α, x̃α)

)2

(Qx̂α, P kQx̂α)
. (19)

We compute the matrix Q that minimizes this (we de-
scribe this shortly). Writing it as Q̂ and substituting it
into (18), we obtain from (13) the solution

ˆ̂xα = xα −

(
(x̂α, Q̂x̂α) + 2(Q̂x̂α, x̃α)

)
P kQ̂x̂α

4(Q̂x̂α, P kQ̂x̂α)
.

(20)
The resulting ˆ̂xα are a better approximation to x̄α than
x̂α. Rewriting ˆ̂xα as x̂α, we repeat this until the itera-
tions converge. In the end, ∆x̂α in (15) becomes 0.

The above algorithm is greatly simplified by using
the 6-D vector encoding of (5). Note that the definition
of ξα in (6) and V0[ξα] in (7) implies the identities

(x̂α, Q̂x̂α) + 2(Q̂x̂α, x̃α) =
(u, ξα)

f2
0

, (21)

(Q̂xα,P kQ̂xα) =
(u, V0[ξα]u)

f2
0

. (22)

Since we define x̃α by (13), we obtain from (20) the
update form in (8).

We now show how to minimize (19). Using the iden-
tities in (21) and (22), we can rewrite (19) as

E =
1
f2
0

N∑
α=1

(u, ξα)2

(u, V0[ξα]u)
, (23)

which is, aside from the constant 1/f2
0 , the same as the

function studied by Chojnacki et al. [6], who derived
this as an approximation to the strict ML, also known as
the Sampson error [10]. The only difference is that here
the vector ξα is defined by (6); the Sampson error is
obtained if we let x̂α = xα, ŷα = yα, and x̃α = ỹα = 0 in
(6). Nevertheless, we can apply the FNS of Chojnacki
et al. [6], since the function form is identical. This is the
core finding of this paper.

The slight difference between the original FNS and
ours is that we replace the current u not by u′ but by the

(a) (b)

Figure 1. (a) 10 points on an elliptic arc.
(b) 10 samples of ellipse fitted by strict ML
(σ = 0.05 pixels). The true ellipse is shown
in dotted line.
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Figure 2. (a) Root-mean-square error. (b)
Average reprojection error. The dashed
lines are for the Sampson solution in
both. The dotted lines show the KCR
lower bound in (a) and the theoretical ex-
pectation in (b).

“midpoint” (u′ +u)/2, which is normalized to N [u′ +
u]. We have confirmed that this greatly improves the
convergence of FNS, which sometimes oscillates in the
presence of very large noise.

Here, we adopt the FNS for minimizing (23) for
simplicity, but we could alternatively use the HEIV
[17, 18], and the projective Gauss-Newton iterations
[14], which can also minimize the Sampson error. Our
contribution here is the finding that the method for min-
imizing the Sampson error can be used for strict ML
if we introduce the new intermediate variables ξα and
V0[ξα] as in (6) and (7).

4. Performance Confirmation
Figure 1(a) shows 10 points on an elliptic arc. The

major and minor axes of this ellipse are set to 100 and
50 pixels, respectively. We added independent Gaus-
sian noise of mean 0 and standard deviation σ (pixels)
to the x- and y-coordinates of the points and fitted an
ellipse. We terminate the iterations when the change in
the computed u is less than 10−6 in norm.

This is an extremely ill-conditioned example in the
sense that even small noise will cause a large variation
of the fitted ellipse. To visualize this, Fig. 1(b) shows
10 samples of the ellipse fitted by strict ML for σ = 0.05
pixels. The true ellipse is drawn in dotted line. This
much deviations are inevitable even if the computation
is done by strict ML.
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Figure 2(a) plots, for each σ pixels, the following
root-mean-square error of the fitted ellipse over 10,000
independent trials:

D =

√√√√ 1
10000

10000∑
a=1

‖P uû(a)‖2, P u ≡ I − uu>.

(24)
Here, û(a) represents the fitted ellipse in the (a)th trial,
and u is its true value. Since u and û(a) are normal-
ized to unit norm, we measure the the displacement
‖P uû(a)‖ of û(a) orthogonal to u. The dotted line
is the theoretical accuracy limit called the KCR lower
bound [5, 14]. We see that the solid lines (strict ML)
and the dashed lines (Sampson) completely overlap in
the graph (they differ only in the non-significant digits).

Figure 2(b) plots, for each σ (pixels), the reprojec-
tion error

E =
N∑

α=1

‖xα − x̂α‖2 (25)

averaged over 10,000 random trials. The reprojection
error E is given by

∑N
α=1 ‖x̃α‖2 when the iterations in

the main routine have converged. The reprojection error
of the Sampson solution can also be computed, using
the main routine, because it can compute the orthogonal
distances of the data points to a given ellipse if Step 4
is skipped.

The dotted line in Fig. 2(b) show the theoretical ex-
pectation f2

0 E/σ2: Since f2
0 E/σ2 is subject to a χ2

distribution with N −5 degrees of freedom to a first ap-
proximation [12], E has expectation (N − 5)σ2/f2

0 to
a first approximation. As we see, the Sampson and the
strict ML solutions have practically the same reprojec-
tion error, and both almost coincides with the theoreti-
cal expectation, evidencing that the reprojection error is
minimized indeed.

5. Concluding Remarks
We have presented a new algorithm for fitting an el-

lipse to a sequence of points based on the strict ML
principle. We omitted the details here, but we also im-
plemented alternative methods following existing strict
ML principles [2, 8, 9, 20] and confirmed that our
method indeed produces identical results. Although
there is no accuracy gain, our algorithm is probably the
simplest and the smallest. By numerical experiments,
we have shown that the strict ML solution is practically
identical to the Sampson solution, implying that strict
ML solution also minimizes the Sampson error.
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