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Abstract

We present a new form of least squares (LS), called
“hyperLS”, for geometric problems that frequently ap-
pear in computer vision applications. Doing rigorous
error analysis, we maximize the accuracy by introduc-
ing a normalization that eliminates statistical bias up
to second order noise terms. Our method yields a so-
lution comparable to maximum likelihood (ML) without
iterations, even in large noise situations where ML com-
putation fails.

1 Introduction

A fundamental problem in computer vision is the ex-
traction of 2-D/3-D geometric information from noisy
observations, for which the maximum likelihood (ML)
estimator is known to provide a highly accurate solution
[3, 4]. Unfortunately, ML computation is usually itera-
tive and may not converge for high noise levels. It also
requires an appropriate initial guess. The least squares
(LS) estimator is a noniterative alternative to ML but is
plagued by limited accuracy in the presence of noise.
Doing rigorous error analysis, this paper presents a new
LS estimator called “hyperLS” with accuracy compara-
ble to ML. The improved accuracy results from intro-
duction of a normalization that eliminates the statistical
bias up to second order noise terms.

2  Geometric Fitting

Suppose noisy observations @1, ..., 5 are perturba-

tions in the true values Z1, ..., v that satisfy implicit
geometric constraints of the form
F®)(2;0) =0, k=1,.. L. 1)

The unknown parameter @ allows us to infer the
2-D/3-D shape and motion of the observed objects [3].

Problems of this type are called geometric fitting [4].
In many important applications, we can reparameterize
the problem to make the functions F(*)(z; §) linear in
6 (but nonlinear in x) so that we can write Eq. (1) as
€™ (x),0) =0, k=1,..L, (2

where and hereafter (a, b) denotes the inner product of

vectors @ and b. The vector § (k)(m) represents a non-
linear mapping of .

Example 1. Given a point sequence (4, Yo ), @ =1, ...,
N, we wish to fit an ellipse of the form
Az? +2Bxy + Cy* +2(Dx + By) + F =0. (3)

If we let
€=(2*2zyy*222y1)', =(ABCDEF)",
“4)
Eq. (3) has the form of Eq. (2) for L = 1.
Example 2. Corresponding points (z,y) and (z/,y’)
between two images of the same 3-D scene taken from
different positions satisfy the epipolar equation [3]
(x,Fz') =0, z=(zyl)", 2’ =@'y1)", 5)
where F is called the fundamental matrix, from which

we can compute the camera positions and the 3-D struc-
ture of the scene [3, 4]. If we let

&= (za'ay wyx'yy' ya'y'1)7,
0 = (F11 Fio Fi3 Foy Fao Fo3 Fyy F3o F3)", (6)

Eq. (5) has the form of Eq. (2) with L = 1.
Example 3. Two images of a planar or infinitely far

away scene are related by a homography of the form
' ~Hx, x=(zyl)", ' ="y 1)", @)

where H is a nonsingular matrix, and ~ denotes equal-
ity up to nonzero multiplier [3, 4]. Equation (7) can
alternatively be expressed as



' x Hx = 0. (®)

If we let

¢V =000-z—y—1ayyy'y)"

€ = (zy1000 —za’ —ya’ —a')",

£ = (—zy —yy —y ax’ya’ 2’ 000)7,

0 = (Hyy Hyo Hy3 Hoy Hoy Hoz H3y Hzo Haz)', (9)

The three component equations of Eq. (8) have the form
of Eq. (2) for L =3.

3 Algebraic Distance Minimization

For the sake of brevity, we abbreviate £ (x,) as

5&"‘). Algebraic methods refer to those minimizing the
algebraic distance

1 L 1 N L
k Te(k k)T,
J:N;g £, 0)? fﬁgge ¢PeMo
=(6,M9), (10)

where we define
N L
Z > ePedT. (1)
a=1k=1

Equation(10) is trivially minimized by € = O unless
scale normalization is imposed on . The most com-
mon normalization is ||@|| = 1; we call this the standard
LS. The crucial fact is that the solution depends on the
normalization. The aim of this paper is to find a nor-
malization that maximizes the accuracy of the solution.
This issue has been raised by Al-Sharadqah and Cher-
nov [1] and Rangarajan and Kanatani [9] for circle fit-
ting, by Kanatani and Rangarajan [7] for ellipse fitting,
and by Niitsuma et al. [8] for homography estimation.
In this work, we generalize their results to an arbitrary
number of constraints in Eq. (2). Following [1, 7, 8, 9],
we consider the class of normalizations

(6, N@) = constant. (12)

Traditionally, the matrix IN is assumed to be positive
definite, but here we allow nondefinite (i.e., neither pos-
itive nor negative definite) matrices and search for NV
that maximizes the accuracy. If such an IN is obtained,
Eq. (10) is minimized subject to Eq. (12) by solving the
generalized eigenvalue problem

M6 = ANG. (13)

Evidently, A = 0 in the absence of noise. If IV is pos-
itive definite, the parameter 0 is estimated as the gen-
eralized eigenvector for the smallest eigenvalue A, but
in other cases for the smallest absolute value |A|. Since
the solution € of Eq. (13) has scale indeterminacy, we
normalized it to ||@]| = 1 rather than Eq. (12).

4 Error Analysis

Assuming that the noise Ax, in x, is indepen-
dent and Gaussian with mean O and covariance matrix
V2], we expand each £) in the form

e =& + 2l + 2P+ (1

where Eff) is the noiseless value, and Aié’ff) is the ith
order term in Ax,,. The first order term is written as
6™ (x)

AP =T®Ag, TH =
ox

5)

T=Tq

We define the covariance of & ,(lk), k=1,...,
(E[-] denotes expectation):

L, as follows

VIDLE,] = BIagOMEr ]
=TWE Az Az TV = T® V]2 TOT (16)

Substituting Eq. (14) into Eq. (11), we obtain

M =M+A M + AyM + - -, (17)
where
M= lﬁ: ig(k)g(kﬁ
Na:l k=1 : : ’

N L
1 - _
MM = YOS EV AT A EPENT),

(18)

We also expand the solution 6 and A of Eq. (13) in the
form -
O=0+A10+ 030+ - A= X+A MDA N+ -+, (19)

Substituting Egs. (17) and (19) into Eq. (13), we have
(M+ATM+AsM+--)(0+2A10+A20 + - --)

=(AFAAFA N+ )N (0+A10+2204+---). (20)
Equating terms of the same order, we obtain

M@0 = \NB, 21

MA0+A MO =IANAO+AANO, (22)

MA2O + A\ MA,0 + Ay M0
= ANA0 + A ANA O+ AANO  (23)

We have MO = 0 for the true values, so A = 0. The
second of Eqgs. (18) implies (8, A; M8) = 0. Comput-
ing the inner product of Eq. (22) and € on both sides,
we see that A; A = 0. Multiplying Eq. (22) by the pseu-
doinverse M~ of M from left, we obtain



A0 =—M A MB. (24)

Note that since M@ = 0, the matrix M M (= Pp)
is the projection operator in the direction orthogonal to
0. Also, equating the first order terms in the expansion
[|0+A1604+A20+ - -||? =1 shows (6, A10) =0 [6], hence
P3A,0 = A,0. Substituting Eq. (24) into Eq. (23) and
computing its inner product with @ on both sides, we
obtain

oy (B.85MB) — (0.0, MM " A,MD)
’ (6,N6)
_ (6.79)
= 0.Nb)’ (@)

where we put
T=AM—-A MM A M. (26)

Next, we consider the second order error As6. Since 0
is normalized to have unit norm, we are interested in the
error component orthogonal to 8. So, we consider

Ay = PyAy0 (= M MA,0). 27)

Multiplying Eq. (23) by M~ from left and substituting
Eq. (24), we obtain

Ay =AM NO+M AMM A, M6
(6, T6)

—M Ay MO =
2 (6, N6)

2T NTNO - MTTE. (28)

5 Covariance and Bias

The important observation is that the first order error
A10 in Eq. (24) does not contain the matrix IN. This
means that the leading term of the covariance matrix
V[0) = E[A10A10 "] + - - - does not contain N. Thus,
all algebraic methods have the same covariance matrix
in the leading order. This leads us to focus on the bias.
Equation (24) implies the first order bias E[A;6)] is 0,
so the leading bias is £[Ag0)]. To evaluate this, we first
consider E[T']. From the third of Egs. (18), we see that
E[AyM]is

where we have used Eq. (16) and defined
et = B[], (30)

The operator S[-] denotes symmetrization (S[A] =
(A+A")/2). The expectation E[A; MM~ A, M] has

the following form (the derivation is omitted; a similar
computation appears in [6]):

N L
MMM AM) =55 3 (v vO0le el

a=1k,l=1

+EL FTTEN VO e |28V g 1M ENEN ).

From Egs. (29) and (31), the expectation of T" is

N

BIT)= 5 2 3 (Vi) 25 elT))

N a=1k
N L
Z Py (erinr v [e e PEDT

L@ g €al+25IV (e, 10T EPEDT)).

(32)
6 HyperLS

We propose to let N = E[T].
Eq. (28) that

E[A;e]:M‘(

It follows from

(6, E[T)6) a_
WNfE[T])OfO. 33)

Since the right-hand side of Eq. (32) contains the true
values &, and M, we replace Z, in their definition
by the observation x,. This does not affect the re-
sult, since the odd order noise terms have expectation 0
and hence the resulting error in E[A3 ] is of 4th oder.
Thus, the second order bias is exactly 0. We call this
scheme hyper least squares', or hyperLsS for short, after
Al-Sharadqah and Chernov [1].

Note that IN has scale indeterminacy: If N is mul-
tiplied by ¢ (£ 0), Eq. (13) has the same solution 8;
only A\ is divided by c¢. Thus, the noise characteris-
tics V*D[¢_] in Eq. (16) and hence V[x,] need to be
known only up to scale; we need not know the absolute
magnitude of the noise.

Standard linear algebra routines for solving the gen-
eralized eigenvalue problem of Eq. (13) assume that N
is positive definite, but here N is nondefinite. We cir-
cumvent this problem by rewriting (13) in the form

N = %MH. (34)

The matrix M in Eq. (11) is positive definite except in
the absence of noise, in which case the smallest eigen-
value is 0. For large N, the second term —(1/N2)(--+)
on the right-hand side of Eq. (32) has a smaller norm
than the first term (1/N)(---), so it may be omitted.
We call this the Taubin approximation from its similar-
ity to the method due to Taubin [10].

IThe origin of this term is Kanatani [5], who called his method
“hyperaccurate”, meaning it surpasses ML.
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Figure 1. (a) 31 points on an ellipse. (b) Two views of a curved grid. (c) Two views of a planar grid.
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Figure 2. RMS error vs. the standard deviation o of noise added to each point. 1. standard LS, 2. hyperLS, 3. Taubin ap-
proximation, 4. ML. The dotted lines indicate the KCR lower bound. (a) Ellipse fitting. (b) Fundamental matrix computation.

(c) Homography computation.

Example 4. We fit an ellipse to the point sequence
shown in Fig. 1(a), compute the fundamental matrix
between the two images shown in Fig. 1(b), and com-
pute the homography relating the two images shown in
Fig. 1(c). Independent Gaussian noise of mean 0 and
standard deviation ¢ is added to the coordinates of each
point. Figure 2 plots the RMS error of the computed
parameter 8. The dotted lines indicate the theoretical
accuracy limit called the KCR lower bound [4, 6]. In all
examples, the standard LS performs poorly, while ML
provides the highest accuracy (we used the method of
Chojnacki et al. [2]). Note that ML computation fails
in the presence of large noise (the plots interrupted in
Fig. 2(a),(c)). In contrast, hyperLS can produce a solu-
tion close to ML in any noise level. For ellipse fitting,
hyperLS is clearly superior to the Taubin approxima-
tion, while they are almost equivalent for fundamen-
tal matrices and homographies. This reflects that fact
that while & is quadratic in x and y for ellipses (see
Egs. (4)), the corresponding &€ and & (%) are bilinear in
z,y, ', and y' for fundamental matrices (see Egs. (6))
and homographies (see Egs. (9)), so e&k) in Eq. (30) is
0.

7 Concluding Remarks

We presented a new form of least squares (LS),
which we call “hyperLS”, for geometric problems that
frequently appear in computer vision applications. Do-
ing rigorous error analysis, we maximized the accuracy
by introducing a normalization that eliminates statisti-
cal bias up to second order noise terms. Numerical ex-
periments of computing ellipses, fundamental matrices,
and homographies show that our method yields a solu-

tion comparable to ML without iterations, even in large
noise situations where ML computation fails.
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