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Abstract—We overview techniques for optimal geometric esti-
mation from noisy observations for computer vision applications.
We first describe techniques based on minimization of a given
cost function: least squares (LS), maximum likelihood (ML), and
Sampson error minimization. We then summarize techniques
not based on minimization: one solves a given matrix equation.
Different choices of the matrices in it result in different methods:
LS, iterative reweight, the Taubin method, renormalization,
HyperLS, and hyper-renormalization. Doing statistical analysis
and conducting numerical examples, we conclude that hyper-
renormalization is the best method in terms of accuracy and
efficiency.

I. INTRODUCTION

One of the most important tasks of computer vision is
to compute the 2-D and 3-D shapes of objects exploiting
geometric constraints, by which we mean properties that can
be described by relatively simple equations such as the objects
being lines or planes, their being parallel or orthogonal, and
the camera imaging geometry being perspective projection. We
call such an inference geometric estimation. In the presence of
noise, the assumed constraints do not exactly hold. This paper
summarizes techniques for optimal geometric estimation in the
presence of noise and reports the latest results.

II. PRELIMINARIES

A. Definition of Geometric Estimation

The geometric estimation problem we consider here is
defined as follows. We observe some quantity x (a vector),
which is assumed to satisfy in the absence of noise an equation

F (x; θ) = 0, (1)

parameterized by unknown vector θ. This equation is called
the geometric constraint. Our task is to estimate the parameter
θ from noisy instances xα, α = 1, ..., N , of x. In many vision
applications, we can reparameterize the problem so that the
constraint is liner in the parameter θ (but generally nonlinear
in the data x). Then, Eq. (1) has the form

(ξ(x),θ) = 0, (2)

where ξ(x) is a vector-valued nonlinear function of x. In this
paper, we denote the inner product of vectors a and b by (a, b).
Equation (2) implies that θ in (2) has scale indeterminacy, so
we normalize it to unit norm: ‖θ‖ = 1.

Example 1: (Line fitting) To a given point sequence
(xα, yα), α = 1, ..., N , we want to fit a line

Ax + By + C = 0. (3)

(Fig. 1(a).) If we define

ξ(x, y) ≡ (x, y, 1)>, θ ≡ (A, B, C)>, (4)

the line equation is written as

(ξ(x, y), θ) = 0. (5)

Example 2: (Ellipse fitting) To a given point sequence
(xα, yα), α = 1, ..., N , we want to fit an ellipse

Ax2 + 2Bxy + Cy2 + 2(Dx + Ey) + F = 0. (6)

(Fig. 1(b).) If we define

ξ(x, y) ≡ (x2, 2xy, y2, 2x, 2y, 1)>,

θ ≡ (A, B, C, D, E, F )>, (7)

the ellipse equation is written as

(ξ(x, y), θ) = 0. (8)

Example 3: (Fundamental matrix computation) Corre-
sponding points (x, y) and (x′, y′) in two images of the same
3-D scene taken from different positions satisfy the epipolar
equation [6]
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)
) = 0, (9)

where F is called the fundamental matrix, from which we
can compute the camera positions and the 3-D structure of the
scene [6] (Fig. 1(c)). If we define

ξ(x, y, x′, y′) ≡ (xx′, xy′, x, yx′, yy′, y, x′, y′, 1)>, (10)
θ ≡ (F11, F12, F13, F21, F22, F23, F31, F32, F33)>, (11)

the epipolar equation is written as

(ξ(x, y, x′, y′), θ) = 0. (12)

B. Modeling of Noise

In the context of image analysis, “noise” means uncertainty
of image processing operations, rather than random fluctua-
tions over time or space as commonly understood in physics
and communications. Standard image processing operations
such as feature extraction and edge detection are not perfect
and do not necessarily output exactly what we are looking for.
We model this uncertainty in statistical terms: the observed
value xα is regarded as a perturbation from its true value x̄α

by an independent random Gaussian variable ∆xα of mean 0
and covariance matrix V [xα]. Furthermore, V [xα] is assumed
to be known up to scale. Namely, we write it as

V [xα] = σ2V0[xα] (13)
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Fig. 1. (a) Line fitting. (b) Ellipse fitting. (c) Fundamental matrix computation.

for some unknown constant σ, which we call the noise level.
The matrix V0[xα], which we call the normalized covariance
matrix, describes the orientation dependence of uncertainty in
relative terms and is assumed to be known.

If the observation xα is regarded as a random variable, its
nonlinear mapping ξ(xα), which we write ξα for short, is also
a random variable. Its covariance matrix V [ξα] = σ2V0[ξα] is
evaluated to a first approximation in terms of the Jacobi matrix
∂ξ/∂x of the mapping ξ(x) as follows:

V0[ξα] =
∂ξ

∂x

∣∣∣∣
x=x̄α

V0[xα]
∂ξ

∂x

∣∣∣∣>
x=x̄α

. (14)

This expression contains the true value x̄α, which is replaced
by the observation xα in actual computation. It has been
confirmed by experiments that this replacement does not
practically affect the final result. It has also been confirmed
that upgrading the first approximation to higher orders does
not have any practical effect.

C. Geometric Models for Geometric Estimation

One of the most prominent distinctions of the geometric
estimation from the traditional statistical estimation is that the
starting equation, Eq. (1) (or Eq. (2)), which we call the geo-
metric model, only specifies the necessary constraint and does
not explain the mechanism as to how the data xα are generated.
Hence, we cannot express xα in terms of the parameter θ as an
explicit function. In spite of this differences, two approaches
exist in both statistical and geometric estimation domains:

Minimization approach

We choose the value θ that minimizes a specified cost
function. This is regarded as the standard for computer vision
applications.

Non-minimization approach

We compute the value θ by solving a set of equations,
called estimating equations [4]; the solution does not nec-
essarily minimize any cost function. In traditional statistical
estimation domains, this approach is regarded as more general
and more flexible with a possibility of yielding better solutions
than the minimization approach. However, this is not so widely
recognized in computer vision research.

D. KCR Lower Bound

For minimization or non-minimization approaches, there
exists a theoretical accuracy limit. If θ is estimated from noisy

observation {ξα}Nα=1 by some means, the resulting estimate θ̂
is as a function θ̂({ξα}Nα=1), called an estimator of θ. Let ∆θ
be its error in θ̂. The covariance matrix of θ̂ is defined by

V [θ̂] = E[∆θ∆θ>], (15)

where E[ · ] denotes expectation over data uncertainty. If we
can assume that

1) each ξα is perturbed from its true value ξ̄α by in-
dependent Gaussian noise of mean 0 and covariance
matrix V [ξα] = σ2V0[ξα], and

2) the function θ̂({ξα}Nα=1) is an unbiased estimator,
i.e., E[θ̂] = θ identically holds for all θ,

then the following inequality holds [2], [9], [10], [12].

V [θ̂] � σ2

N

( 1
N

N∑
α=1

ξ̄αξ̄
>
α

(θ, V0[ξα]θ)

)−
. (16)

Here, A � B means that A − B is a positive semidefinite
symmetric matrix, and ( · )− denotes the pseudo inverse. Cher-
nov and Lesort [2] called the right side Eq. (16) the KCR
(Kanatani-Cramer-Rao) lower bound.

III. MINIMIZATION APPROACH

First, we overview some popular techniques based on
minimization.

A. Least Squares (LS)

Since the true values ξ̄α of the observations ξα satisfy
(ξ̄α,θ) = 0, we choose the value θ that minimizes

J =
1
N

N∑
α=1

(ξα, θ)2 (17)

for noisy observations ξα subject to the constraint ‖θ‖ = 1.
This can also be viewed as minimizing

∑N
α=1(ξα, θ)2/‖θ‖2.

Equation (17) can be rewritten in the form

J =
1
N

N∑
α=1

(ξα, θ)2 =
1
N

N∑
α=1

θ>ξαξ>
α θ

= (θ,
1
N

N∑
α=1

ξαξ>
α︸ ︷︷ ︸

≡M

θ) = (θ, Mθ). (18)

Thee unit vector θ that minimizes this quadratic form is given
by the unit eigenvector of M for the smallest eigenvalue.
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Fig. 2. Fitting a hypersurface (ξ(x), θ) = 0 to points xα in the data space.

This method is called least squares (LS) or algebraic dis-
tance minimization. Because the solution is directly obtained
without any search, LS is widely used in many applications.
However, it has been observed that the solution has a large
statistical bias. For ellipse fitting in Example 2, for instance,
the fitted ellipse is almost always smaller than the true shape.

B. Maximum Likelihood (ML)

If the noise in each xα is an independent Gaussian variable
of mean 0 and covariance matrix V [xα] = σ2V0[xα], the
Mahalanobis distance of the observations {xα} from their true
values {x̄α} is

J =
1
N

N∑
α=1

(xα − x̄α, V0[xα]−1(xα − x̄α)), (19)

and maximum likelihood (ML) minimizes this subject

(ξ(x̄α),θ) = 0. (20)

Geometrically, ML can be interpreted to be fitting to N
points xα in the data space the parameterized hypersurface
(ξ(x),θ) = 0 by adjusting θ (Fig. 2), where the discrepancy
of the points from the surface is measured not by the Euclid
distance but by the Mahalanobis distance of Eq. (19) inversely
weighted by the covariances, thereby imposing heavier penal-
ties on the points with higher certainty.

If the noise is homogeneous (i.e., independent of α) and
isotropic (i.e., independent of orientation), we can write V0[xα]
= I (the identity), which reduces Eq. (19) to the geometric
distance

J =
1
N

N∑
α=1

‖xα − x̄α‖2. (21)

Minimizing this subject to Eq. (20) is called geometric distance
minimization or total least squares (TLS). It is also called
reprojection error minimization for 3-D reconstruction, where
x̄α represents the projection of the assumed 3-D structure onto
the image plane and xα is its actually observed positions. For
computer vision applications, this approach is widely regarded
as the ultimate method and called the Gold Standard [6].
However, this is a highly nonlinear optimization and difficult
to solve by a direct means. The difficulty stems from the fact
that the parameter θ to be optimized is not contained in the
cost function J but only linked to the constraint of Eq. (20),
which cannot be solved for θ.

P(X,Y,Z)
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Fig. 3. 3-D reconstruction by bundle adjustment

C. Bundle Adjustment

The standard technique for minimizing Eq. (19) subject to
Eq. (20) is to introduce a problem-dependent auxiliary variable
to each Xα and express x̄α in terms of Xα and θ in the form

x̄α = x̄α(Xα,θ). (22)

Substituting this into Eq. (19), we minimize

J({Xα}Nα=1, θ)

=
1
N

N∑
α=1

(xα − x̄α(Xα, θ), V0[xα]−1(xα − x̄α(Xα,θ))),

(23)

over the joint parameter space of {Xα}Nα=1 and θ.

A typical example of this approach is 3-D reconstruction
from multiple images (Fig. 3), for which xα has the form
of (xα, yα, x′

α, y′
α, ..., x′′

α, y′′
α), concatenating the projections

(xα, yα), (x′
α, y′

α), ..., (x′′
α, y′′

α) of the αth point in the scene
onto the images. The parameter θ specifies the state of all the
cameras, consisting of the extrinsic and intrinsic parameters.
If we introduce the 3-D position Xα = (Xα, Yα, Zα) of
each point as an auxiliary variable, the true value x̄α of xα

can be explicitly expressed in the form x̄α(Xα, θ), which
describes the image positions of the 3-D point Xα that
should be observed if the cameras have the parameter θ.
Then, the discrepancy of the observed projections xα from the
predicted projections x̄α(Xα, θ), i.e., the “reprojection” error,
is minimized over the joint parameter space of {Xα}Nα=1 and
θ. This process is called bundle adjustment [21], [26]. The
dimension of the parameter space is 3N + (the dimension of
θ), which becomes very large when many points are observed.

The standard numerical search technique is the Levenberg-
Marquardt (LM) method [23], but, depending on the initial
value of the iterations, the search may fall into a local
minimum. Various global optimization techniques have also
been studied [5]. A typical method is branch and bound, which
introduces a function that gives a lower bound of J over a
given region and divides the parameter space into small cells;
those cells which have lower bounds that are above the tested
values are removed, and other cells are recursively subdivided
[5], [7]. However, the evaluation of the lower bound involves a
complicated technique, and searching the entire space requires
a significant amount of computational time.

D. Gaussian Approximation of Noise in the ξ-Space

If the noise in the observation xα is Gaussian, the noise
in its nonlinear transformation ξα = ξ(xα) is not strictly
Gaussian, although it is expected to be Gaussian-like for small
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Fig. 4. Fitting a hyperplane (ξ, θ) = 0 to points ξα in the ξ-space.

noise. If it is approximated to be Gaussian, the optimization
computation becomes much simpler. Suppose ξα has noise of
mean 0 with the covariance matrix V [ξα] = σ2V0[ξα] evaluated
by Eq. (14). Then, the ML computation reduces to minimizing
the Mahalanobis distance

J =
1
N

N∑
α=1

(ξα − ξ̄α, V0[ξα]−1(ξα − ξ̄α)) (24)

in the ξ-space subject to the linear constraint

(ξ̄α, θ) = 0. (25)

Geometrically, this is interpreted to be fitting to N points ξα
in the ξ-space the parameterized “hyperplane” (ξ, θ) = 0 by
adjusting θ, where the discrepancy of the points from the plane
is measured by the Mahalanobis distance of Eq. (24) inversely
weighted by the covariances of the data in the ξ-space (Fig. 4).

The constraint of Eq. (25) can be eliminated using La-
grange multipliers, leading to unconstrained minimization of

J =
1
N

N∑
α=1

(ξα, θ)2

(θ, V0[ξα]θ)
, (26)

which is known as the Sampson error [6].

E. Sampson Error Minimization

Various numerical techniques have been proposed for min-
imizing the Sampson error of Eq. (26). The best known is the
FNS (Fundamental Numerical Scheme) of Chojnacki et al. [3],
which goes as follows:

1) Let Wα = 1, α = 1, ..., N , and θ0 = 0.
2) Comput the matrices

M =
1
N

N∑
α=1

Wαξαξ>
α ,

L =
1
N

N∑
α=1

W 2
α(θ0, ξα)2V0[ξα]. (27)

3) Solve the eigenvalue problem (M − L)θ = λθ,
and compute the unit eigenvector θ for the smallest
eigenvalue λ.

4) If θ ≈ θ0 up to sign, return θ and stop. Else, let

Wα ←
1

(θ, V0[ξα]θ)
, θ0 ← θ, (28)

and go back to Step 2.

Other methods exist, including the HEIV (Heteroscedastic
Errors-in-Variables) of Leedan and Meer [20] and Matei and
Meer [22], and the projective Gauss-Newton iterations of
Kanatani and Sugaya [16].

F. Computation of the Exact ML Solution

Since the Sampson error of Eq. (26) is obtained by ap-
proximating the non-Gaussian noise distribution in the ξ-space
by a Gaussian distribution, the solution does not necessarily
coincide with the ML solution that minimizes the Mahalanobis
distance of Eq. (19). However, once we have obtained the
solution θ that minimizes Eq. (26), we can iteratively modify
Eq. (26) by using that θ so that Eq. (26) coincides with Eq. (19)
in the end, meaning that we obtain the exact ML solution. The
procedure goes as follows [19]:

1) Let J∗
0 = ∞ (a sufficiently large number), x̂α = xα,

and x̃α = 0, α = 1, ..., N .
2) Evaluate the normalized covariance matrices V0[ξ̂α]

by replacing xα by x̂α in their definition.
3) Compute the following ξ∗

α:

ξ∗
α = ξα +

∂ξ

∂x

∣∣∣∣
x=xα

x̃α. (29)

4) Compute the value θ that minimizes the modified
Sampson error

J∗ =
1
N

N∑
α=1

(ξ∗
α,θ)2

(θ, V0[ξ̂α]θ)
. (30)

5) Update x̃α and x̂α as follows:

x̃α ←
(ξ∗

α, θ)V0[xα]

(θ, V0[ξ̂α]θ)

∂ξ

∂x

∣∣∣∣>
x=xα

θ, x̂α ← xα − x̃α.

(31)
6) Evaluate J∗ by

J∗ =
1
N

N∑
α

(x̃α, V0[xα]x̃α). (32)

If J∗ ≈ J0, return θ and stop. Else, let J0 ← J∗ and
go back to Step 2.

Since the modified Sampson error in Eq. (30) has the same
form as the Sampson error in Eq. (26), we can minimize it by
FNS (or other methods). According to numerical experiments,
this modification converges after four or five rounds, yet
in many practical problems the first four or five effective
digits remain unchanged [17], [18]. In this sense, we can
practically identify the Sampson error minimization with the
ML computation.

G. Hyperaccurate Correction of ML

It is known that the ML solution, with which the Sampson
error minimization solution can be identified, has statistical
bias of O(σ2). Hence, the accuracy is further improved by
subtracting the expected bias. This process is called hyperac-
curate correction and goes as follows [11], [12]:
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Fig. 5. If the value θ̂ that minimizes the cost function J(θ) is biased from
the true value θ̄, we correct θ̂ so that it approaches θ̄ in expectation. As a
result, the value of J(θ) increases.

1) Estimate the square noise level σ2 from the ML so-
lution θ̂ and the corresponding matrix M in Eq. (27)
by

σ̂2 =
(θ̂,Mθ̂)

1− (n− 1)/N
, (33)

where n is the dimension of the vector θ̂.
2) Compute the correction term

∆cθ = − σ̂2

N
M−

N∑
α=1

Wα(eα, θ̂)ξα

+
σ̂2

N2
M−

N∑
α=1

W 2
α(ξα, M−V0[ξα]θ̂)ξα,

(34)

where eα is a vector that depends on individual
problems, and M− is the truncated pseudoinverse
(the smallest eigenvalue is replaced by 0 in its spectral
decomposition).

3) Correct θ̂ in the form

θ̂ ← N [θ̂ −∆cθ], (35)

where N [ · ] is the normalization operator into unit
norm (N [a] ≡ a/‖a‖).

The vector eα is 0 for many problems including line fitting
(Example 1) and fundamental matrix computation (Example
3). It is generally 0 if multiple images are involved. A typical
problem of nonzero eα is ellipse fitting (Example 2), for which
eα = (1, 0, 1, 0, 0, 0)>. However, the effect is negligibly small,
and the solution is practically the same if eα is replaced by 0.

However, bias correction is a departure from the mini-
mization principle. Namely, we correct the computed θ̂ that
minimizes the cost function so that it approaches the true
value θ̄ in expectation. As a result, the value of the cost
function increases (Fig. 5). Then, why not directly compute, by
some means, that optimal value from the beginning? This is
the motivation of the “non-minimization approach”, directly
solving some equation rather than minimizing some cost
function.

IV. NON-MINIMIZATION APPROACH

A. Principle

We reiterate our goal: appropriately assuming the statistical
properties of the noise, we infer from noisy observations the
values that would satisfy given constraints in the absence of

noise. This problem could be reduced to minimization of some
cost function J(θ), but we need not necessarily do so.

The minimization approach relies on the knowledge that
the value θ that minimizes J(θ) is expected, either theo-
retically or experimentally, to be close to the true value θ̄.
However, how close it is is determined by the function J(θ)
and is not of our control. In contrast, the non-minimization
approach directly gives a procedure for computing θ, for which
the following three stages are involved:

1) Devise a scheme for computing θ̄ from the data xα,
assuming that they have noiseless values x̄α.

2) Substitute xα = x̄α+∆xα in the scheme and evaluate
the error ∆θ of the computed value θ = θ̄ + ∆θ in
terms of the noise terms ∆xα.

3) Modify the scheme so that ∆θ is minimized in some
sense, e.g., reducing its RMS and/or bias.

The core is Stage 1, which makes the non-minimization
approach possible, because geometry is exact if the observation
is exact. Namely, we can compute the true geometry for
exact data. This is a big contrast to the traditional statistical
domains, such as agriculture, pharmaceutics, and economics, in
which what is going on is uncertain from the beginning, hence
statistical inference is called for. As a result, such concepts as
“exact observation” and “exact solution” do not make sense.

Stage 2 can be done by the well kwon perturbation anal-
ysis, also called “error propagation”, because we know the
underlying exact geometry, although usually tedious and messy
calculus is required. The perturbation analysis is done by
expanding quantities in the noise level σ and omitting higher
order terms in σ. This is justified because we are focusing on
the uncertainty behavior in a small noise range.

Stage 3 is not obvious and is the most difficult part; we
need to introduce ingenious and clever tricks. For example, if
the scheme contains a constant that does not affect the final
result if all the data are exact yet influences the computation
in the presence of noise, its value is optimally chosen so that
the highest accuracy is achieved.

One side effect is this non-minimization formalism based
on error analysis is that when the final computational procedure
is presented, it is often difficult to grasp its intuitive meaning,
as we will see in the following. Perhaps, this is the main reason
that this approach has been not so popular or widely accepted
in the domain of computer vision.

B. Estimating equation

Existing geometric estimation methods without minimizing
any cost function have different motivations and derivations.
Yet, all have a similarity: they solve a matrix equation in the
form

Mθ = λNθ (36)

where M and N are matrices defined in terms of the observa-
tions ξα and the parameter θ. Equation (36) plays the role of
the estimating equation, and different choices of the matrices
M and N result in different techniques:



Least Squares (LS)

M =
1
N

N∑
α=1

ξαξ>
α , N = I. (37)

Taubin method [25]

M =
1
N

N∑
α=1

ξαξ>
α , N =

∑
1

NV0[ξα]. (38)

HyperLS [14], [15], [24]

M =
1
N

N∑
α=1

ξαξ>
α .

N =
1
N

N∑
α=1

(
V0[ξα] + 2S[ξαe>

α ]
)

− 1
N2

N∑
α=1

(
(ξα, M−ξα)V0[ξα] + 2S[V0[ξα]M−ξαξ>

α ]
)
.

(39)

Iterative reweight

M =
1
N

N∑
α=1

ξαξ>
α

(θ, V0[ξα]θ)
, N = I. (40)

Renormalization [8], [9]

M =
1
N

N∑
α=1

ξαξ>
α

(θ, V0[ξα]θ)
, N =

1
N

N∑
1

V0[ξα]
(θ.V0[ξα]θ)

.

(41)
Hyper-renormalization [13]

M =
1
N

N∑
α=1

ξαξ>
α

(θ, V0[ξα]]θ)
,

N =
1
N

N∑
α=1

V0[ξα] + 2S[ξαe>
α ]

(θ, V0[ξα]θ)

− 1
N2

N∑
α=1

(ξα, M−ξα)V0[ξα] + 2S[V0[ξα]M−ξαξ>
α ]

(θ, V0[ξα]θ)2
.

(42)

C. Algebraic solution

Since the matrices M and N do not contain θ for LS, the
Taubin method, and HyperLS, the solution θ is immediately
obtained by solving the generalized eigenvalue problem of
Eq. (36), computing the unit eigenvector θ for the smallest
absolute eigenvalue λ. Standard numerical tools assume that
N is positive definite, but this is not necessarily the case for
the above forms of N . This causes no trouble, because Eq. (36)
can be rewritten as

Nθ =
1
λ

Mθ. (43)

The matrix M is positive definite for noisy data, so we can
use a standard tool to compute the unit eigenvector θ for the
lagest absolute eigenvalue 1/λ. If the matrix M happens to
have eigenvalue 0, it indicates that the data are all exact, so
the corresponding eigenvector is the exact solution.

θ
θ

θ
θ

(a) (b)

Fig. 6. (a) The matrix M determines the covariance of the solution. (b) The
matrix N controls the bias of the solution.

D. Iterative procedure

For iterative reweight, renormalization, and hyper-
renormalization, the matrices M and N contain the unknown
θ. We can solve Eq. (36) by the following iterative procedure:

1) Let θ0 = 0 and compute the matrices M and N ,
where (θ, V0[ξα]θ) is replaced by 1.

2) Solve the generalized eigenvalue problem of Eq. (36)
and compute the unit eigenvector θ for the smallest
absolute eigenvalue λ.

3) If θ ≈ θ0 up to sign, return θ and stop. Else,
recompute M and N using the computed θ, let θ0

← θ, and go back to Step 2.

We can use standard numerical tools by converging the gen-
eralized eigenvalue problem in the form of Eq. (43).

E. Analysis of Covariance and Bias

Since we regard the observations ξα, α = 1, ..., N as ran-
dom variables, the matrices M and N in Eq. (36) constructed
using them are random variables, too. Hence, the computed θ
is also a random variable, so it has a probability distribution
p(θ). We can apply the perturbation technique of Kanatani
[12] to analyze the statistical properties of the compute θ. It
turns out that:

• The matrix M determines the covariance of the com-
puted θ (Fig. 6(a)).

• The matrix N controls the bias of the computed θ
(Fig. 6(b)).

Detailed analysis reveals the following facts [1], [12], [13]:

• For iterative reweight, renormalization, and hyper-
renormalization, the first order covariance matrix V [θ]
reaches the KCR lower bound of Eq. (16) up to O(σ4).

• For LS, iterative reweight, the Taubin method, and
renormalization, the solution has bias of O(σ2).

• The solution of HyperLS and hyper-renormalization
has no bias up to O(σ4).

Thus, we conclude that

• Hyper-renormalization is optimal in terms of both
covariance and bias. Its covariance matrix achieves the
KCR lower bound up to O(σ4) and has no bias up to
O(σ4).
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Fig. 7. (a) Thirty points on an ellipse. (b), (c) Fitted ellipses (σ = 0.5
pixels). 1) LS, 2) iterative reweight, 3) Taubin, 4) renormalization, 5) HyperLS,
6) hyper-renormalization, 7) ML, 8) ML with hyperaccurate correction. The
dotted lines indicate the true shape. The table lists the number of iterations for
methods 2, 4, 6, and 7/8 (methods 1, 3, and 5 are noniterative, and methods
7 and 8 have the same complexity).

V. NUMERICAL EXAMPLES

We define 30 equidistant points on the ellipse shown in
Fig. 7(a). The major and minor axis are set to 100 and 50
pixels, respectively. We added random Gaussian noise of mean
0 and standard deviation σ to the x and y coordinates of
each point independently and fit an ellipse, using: 1) LS, 2)
iterative reweight, 3) the Taubin method, 4) renormalization,
5) HyperLS, 6) hyper-renormalization, 7) ML, and 8) ML with
hyperaccurate correction.

Fig. 7(b), (c) show fitted ellipses for σ = 0.5 pixels;
although the noise magnitude is the same, the resulting ellipses
are different for different noise. The true shape is indicated
by dotted lines. We can see that LS and iterative reweight
have large bias, producing much smaller ellipses than the true
shape. The closest ellipse is given by hyper-renormalization in
Fig. 7(b) and by ML with hyperaccurate correction in Fig. 7(c).

The number of iterations for each method is also shown
there. We see that ML (we used FNS) with/without hyper-
accurate correction requires about twice as many iterations
for convergence as iterative reweight, renormalization, and
hyper-renormalization; Taubin and HyperLS are noniterative
algebraic methods, while hyperaccurate correction is an analyt-
ical procedure after ML has converged. The fast convergence
of hyper-renormalization is a result of its initialization by
HyperLS, while FNS for ML starts from LS.

Note that all the ellipses in Fig. 7(b),(c) fit fairly well to
the data points, meaning that not much difference exists among
their geometric errors, i.e., the sums of the square distances of
the data points from the fitted ellipse. However, the deviation is
large in the part where no data points exist. Since θ expresses
the coefficients of the ellipse equation, the error ∆θ evaluates
how the “ellipse equation”, i.e., the ellipse itself, differs. This
implies that the geometric error is not a good measure of ellipse
fitting; we need to evaluate the error in θ.

We evaluated the accuracy of θ in statical terms. Since
the computed θ and its true value θ̄ are both unit vectors,
we measure the discrepancy between them by the orthogonal
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Fig. 8. The bias (a) and the RMS error (b) of the fitted ellipse for the
standard deviation σ of the added noise over 10000 independent trials. 1) LS,
2) iterative reweight, 3) the Taubin method, 4) renormalization, 5) HyperLS, 6)
hyper-renormalization, 7) ML, 8) hyperaccurate correction of ML. The dotted
line in (c) indicates the KCR lower bound.

component ∆⊥θ = P θ̄θ, where P θ̄ (≡ I − θ̄θ̄
>) is the

projection matrix along θ̄. We generated 10000 independent
noise instances and evaluated the bias B (Fig. 8(b)) and the
RMS (root-mean-square) error D (Fig. 8(c)) defined by

B =
∥∥∥ 1

10000

10000∑
a=1

∆⊥θ(a)
∥∥∥,

D =

√√√√ 1
10000

10000∑
a=1

‖∆⊥θ(a)‖2, (44)

where θ(a) is the solution in the ath trial. The dotted line in
Fig. 8(c) indicates the KCR lower bound.

The interrupted plots in Fig. 8(a) for iterative reweight
and ML (we used FNS) with/without hyperaccurate correction
indicate that the iterations did not converge beyond that noise
level. Our convergence criterion is ‖θ − θ0‖ < 10−6 for the
current value θ and the value θ0 in the preceding iteration;
their signs are adjusted before subtraction. If this criterion is
not satisfied after 100 iterations, we stopped. For each σ, we
regarded the iterations as not convergent if any among the
10000 trials does not converge.

We can see from Fig. 8(a) that LS and iterative reweight
have very large bias, in contrast to which the bias is very
small for the Taubin method and renormalization. The bias of
HyperLS and hyper-renormalization is still smaller and even
smaller than ML. Note that the RMS error D of Eq. (44) is
a measure of the distance from the true value θ̄, while the
first order covariance matrix V [θ] measure the “width” of the
bell-shaped distribution from its center (see Fig. 6(a)), which
is common to iterative reweight, renormalization, and hyper-
renormalization. Hence, the difference in the RMS error in
Fig. 8(b) is a direct consequence of the bias difference shown
in Fig. 8(a).

Since the hyper-renormalization solution does not have bias
up to O(σ4), a close examination of the small σ part reveals
that hyper-renormalization outperforms ML. The highest accu-
racy is achieved, although the difference is very small, by ML
with hyperaccurate correction. However, it first requires the
ML solution, and the FNS iterations for its computation may
not converge above a certain noise level, as shown in Figs. 8(a),
(b). On the other hand, hyper-renormalization is not so sensi-
tive to noise. This is because the first iteration step coincides
with HyperLS. We conclude that hyper-renormalization is the
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Fig. 9. (a) An edge image of a scene with a circular object. An ellipse is
fitted to the 160 edge points indicated. (b) Fitted ellipses superimposed on
the original image. The occluded part is artificially composed for visual ease.
1) LS, 2) iterative reweight, 3) Taubin, 4) renormalization, 5) HyperLS, 6)
hyper-renormalization, 7) ML, 8) ML with hyperaccurate correction.

best method in terms of accuracy and efficiency for practical
computation.

Figure 9(a) is an edge image of a scene with a circular
object. We fitted an ellipse to the 160 edge points indicated
there, using various methods. Figure 9(b) shows the fitted el-
lipses superimposed on the original image, where the occluded
part is artificially composed for visual ease. We can see that LS
and iterative reweight produce much smaller ellipses than the
true shape as in Fig. 7(b),(c). All other fits are very close to
the true ellipse, and ML gives the best fit in this particular
instance. The number of iterations before convergence for
each method is also shown in Fig. 9. Again, FNS for ML
with/without hyperaccurate correction required about twice as
many iterations as other methods.

VI. CONCLUDING REMARKS

We have overviewed techniques for optimal geometric
estimation from noisy observations for computer vision appli-
cations. We first described approaches based on minimization:
LS, ML, and Sampson error minimization. We then sum-
marized the non-minimization approach of solving a matrix
equation. Different choices of the matrices in it result in
different methods: LS, iterative reweight, the Taubin method,
renormalization, HyperLS, and hyper-renormalization. Doing
statistical analysis and conducting numerical examples, we
conclude that hyper-renormalization is the best method in
terms of accuracy and efficiency.
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