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PAPER

Extending Interrupted Feature Point Tracking
for 3-D Affine Reconstruction

Yasuyuki SUGAYA†a) and Kenichi KANATANI†, Members

SUMMARY Feature point tracking over a video sequence
fails when the points go out of the field of view or behind other
objects. In this paper, we extend such interrupted tracking by
imposing the constraint that under the affine camera model all
feature trajectories should be in an affine space. Our method con-
sists of iterations for optimally extending the trajectories and for
optimally estimating the affine space, coupled with an outlier re-
moval process. Using real video images, we demonstrate that our
method can restore a sufficient number of trajectories for detailed
3-D reconstruction.
key words: feature tracking, missing data estimation, outlier
removal, factorization, 3-D reconstruction

1. Introduction

The factorization method of Tomasi and Kanade [15]
can reconstruct the 3-D shape of a scene from feature
point trajectories tracked over a video sequence. The
computation is very efficient, requiring only linear op-
erations. The solution is sufficiently accurate for many
practical purposes and can be used as an initial value for
iterations of a more sophisticated reconstruction proce-
dure [3].

However, the feature point tracking fails when the
points go out of the field of view or behind other objects.
In order to obtain a sufficient number of feature trajec-
tories for detailed 3-D reconstruction, we need to extend
such interrupted tracking to the final frame. There have
been several such attempts in the past.

Tomasi and Kanade [15] reconstructed the 3-D posi-
tions of partly visible feature points from their visible
image positions and reprojected them onto the frames
in which they are invisible. The camera positions were
estimated from other visible feature points.

Saito and Kamijima [12] projectively reconstructed
tentative 3-D positions of the missing points by sampling
two frames in which they are visible and then repro-
jected them onto the frames in which they are invisible.
The camera positions were computed up to projectivity.

Using the knowledge that all trajectories of feature
points should be in a 4-dimensional subspace of the data
space, Jacobs [5] randomly sampled four trajectories,
constructed a high-dimensional subspace by letting the
missing data have free values, and computed its orthogo-
nal complement. He repeated this many times and com-
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puted by least squares a 4-dimensional subspace approx-
imately orthogonal to the resulting orthogonal comple-
ments∗. Partial trajectories were extended so that they
were compatible with the estimated subspace. A similar
method was also used by Kahl and Heyden [6].

Brandt [1] reconstructed tentative 3-D positions of
the missing points using a tentative camera model and
reprojected them onto all frames. From the visible
and reprojected feature points, he estimated the camera
model. Iterating these, he optimized both the camera
model and the feature positions.

For all these methods, we should note the following:

• We need not reconstruct a tentative 3-D shape. 3-D
reconstruction is made possible by some geometric
constraints over multiple frames. One can directly
map 2-D point positions to other frames if such con-
straints∗∗ are used.

• If a minimum number of frames are sampled for ten-
tative 3-D reconstruction, the accuracy of compu-
tation depends on the sampled frames. Rather, one
should make full use of all information contained in
all frames.

• The observed trajectories are not necessarily cor-
rect, but existing methods treat outlier removal and
trajectory extension separately.

In this paper, we present a new scheme for extend-
ing partial trajectories based on the constraint that un-
der the affine camera model all trajectories should be in
a 3-dimensional affine space, which we call the “affine
space constraint”. Our method consists of iterations for
optimally extending the trajectories and for optimally
estimating the affine space.

If the motion were pure rotation, one could do ex-
act maximal likelihood estimation, e.g., by using the
method of Shum et al. [13], but it cannot be applied to
translational motions. Here, we simplify the optimiza-
tion procedure by introducing to each partial trajectory
a weight that reflects its length.

Also, we incorporate outlier removal and trajectory
extension into a single process, testing in every step of
the optimization if each trajectory, extended or not, is
reliable and removing unreliable ones as outliers.

Thus, the contribution of this paper is as follows:
∗In actual computation, he interchanged the roles of

points and frames: he sampled two frames, i.e., two lists
of x coordinates and two lists of y coordinates. The mathe-
matical structure is the same.
∗∗The projective reconstruction of Saito and Kamijima

[12] is equivalent to the use of the trilinear constraint [3].
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1. We present a succinct mathematical formulation
for extending interrupted trajectories based on the
affine space constraint without referring to any par-
ticular camera model such as orthography. Our
constraint is stronger than that used by Jacobs [5].
No reprojection of tentative 3-D reconstruction is
necessary.

2. We present a procedure that integrates reliabil-
ity evaluation of perfect and imperfect trajectories,
outlier removal, and optimization of the affine space
into a single process.

Section 2 summarizes our affine space constraint. Sec-
tion 3 describes our initial outlier removal procedure.
Section 4 describes how we extend partial trajectories
and test their reliability. In Sec. 5, we show real video
examples and demonstrate that our method can restore
a sufficient number of trajectories for detailed 3-D re-
construction. Section 6 presents our conclusion.

In Appendix, the factorization algorithm for 3-D re-
construction based on our affine space constraint is con-
cisely described. This description is slightly different
from that in the literature: no matrix factorization by
SVD (singular value decomposition) is involved.

2. Affine Space Constraint

We first summarize the geometric constraints on which
our method is based. The same constraints have already
been used in our previous studies [7]–[9], [14]. We reit-
erate them here, because they play a fundamental role
in our trajectory extension method.

2.1 Trajectory of Feature Points

Suppose we track N feature points over M frames. Let
(xκα, yκα) be the coordinates of the αth point in the
κth frame. We stack all the coordinates vertically and
represent the entire trajectory by the following 2M -
dimensional trajectory vector :

pα =
(
x1α y1α x2α y2α · · · xMα yMα

)>
. (1)

For convenience, we identify the frame number κ with
“time” and refer to the κth frame as “time κ”.

We regard the XY Z camera coordinate system as the
world frame, relative to which the scene is moving. Con-
sider a 3-D coordinate system fixed to the scene, and let
tκ and {iκ, jκ,kκ} be, respectively, its origin and ba-
sis vectors at time κ. If the αth point has coordinates
(aα, bα, cα) with respect to this coordinate system, the
position with respect to the world frame at time κ is

rκα = tκ + aαiκ + bαjκ + cαkκ. (2)

2.2 Affine Camera Model

If an affine camera model (generalizing orthographic,
weak perspective, and paraperspective projections [10])

is assumed, the image position of rκα is
(

xκα

yκα

)
= Aκrκα + bκ, (3)

where Aκ and bκ are, respectively, a 2 × 3 matrix and
a 2-dimensional vector determined by the position and
orientation of the camera and its internal parameters at
time κ. Substituting Eq. (2), we have

(
xκα

yκα

)
= m̃0κ + aαm̃1κ + bαm̃2κ + cαm̃3κ, (4)

where m̃0κ, m̃1κ, m̃2κ, and m̃3κ are 2-dimensional vec-
tors determined by the position and orientation of the
camera and its internal parameters at time κ. From
Eq. (4), the trajectory vector pα in Eq. (1) can be writ-
ten in the form

pα = m0 + aαm1 + bαm2 + cαm3, (5)

where m0, m1, m2, and m3 are the 2M -dimensional
vectors obtained by stacking m̃0κ, m̃1κ, m̃2κ, and m̃3κ

vertically over the M frames, respectively.

2.3 Affine Space Constraint

Equation (5) implies that all the trajectories are con-
strained to be in the 4-dimensional subspace spanned
by {m0,m1, m2, m3} in R2M . This is called the sub-
space constraint [7], [8], on which the method of Jacobs
[5] is based.

In addition, the coefficient of m0 in Eq. (5) is identi-
cally 1 for all α. This means that the trajectories are in
the 3-dimensional affine space within that 4-dimensional
subspace. This is called the affine space constraint [9].

If all the feature points are tracked to the final frame,
we can define the coordinate origin at the centroid of
their trajectory vectors {pα}, thereby regarding them as
defining a 3-dimensional subspace in R2M . The Tomasi-
Kanade factorization [15] is based on this representa-
tion, and Brandt [1] tried to find this representation by
iterations. In this paper, we directly use the affine space
constraint without searching for the centroid.

Unlike existing studies, we describe our trajectory ex-
tension scheme without referring to any particular cam-
era model, such as orthographic, weak perspective, or
paraperspective projection, except that it is affine. Of
course, existing methods described with respect to a par-
ticular camera model can automatically be generalized
to all affine cameras, but our formulation makes this fact
more explicit.

3. Outlier Removal

Before extending partial trajectories, we must remove
incorrectly tracked trajectories, or “outliers”, from
among observed complete trajectories.

This problem was studied by Huynh and Heyden [4],
who fitted a 4-dimensional subspace to the observed tra-
jectories by LMedS [11], removing those trajectories suf-
ficiently apart from it. However, their distance measure
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was introduced merely for mathematical convenience
without giving much consideration to the statistical be-
havior of image noise.

Sugaya and Kanatani [14] fitted a 4-dimensional sub-
space to the observed trajectories by RANSAC [2], [3]
and removed outliers using a χ2 criterion derived from
the error behavior of actual video tracking. Here, we
modify their method specifically for the affine space con-
straint. Our method is a direct consequence of the prin-
ciple given in [14], but we describe it here, because it
plays a crucial role for our optimization procedure we
introduce later.

3.1 Procedure

Let n = 2M , where M is the number of frames, and let
{pα}, α = 1, ..., N , be the observed complete trajectory
vectors. Our outlier removal procedure is as follows:

1. Randomly choose four vectors q1, q2, q3, and q4

from among {pα}.
2. Compute the n× n moment matrix

M3 =
4∑

i=1

(qi − qC)(qi − qC)>, (6)

where qC is the centroid of {q1, q2, q3, q4}.
3. Let λ1 ≥ λ2 ≥ λ3 be the three eigenvalues of the

matrix M3, and {u1, u2, u3} the orthonormal sys-
tem of corresponding eigenvectors.

4. Compute the n× n projection matrix

P n−3 = I −
3∑

i=1

uiu
>
i . (7)

5. Let S be the number of points pα that satisfy

‖P n−3(pα − qC)‖2 < (n− 3)σ2, (8)

where σ is an estimate of the noise standard devia-
tion.

6. Repeat the above procedure a sufficient number of
times†, and determine the projection matrix P n−3

that maximizes S.
7. Remove those pα that satisfy

‖P n−3(pα − qC)‖2 ≥ σ2χ2
n−3;99, (9)

where χ2
r;a is the ath percentile of the χ2 distribu-

tion with r degrees of freedom.

The term ‖P n−3(pα−qC)‖2, which we call the resid-
ual , is the squared distance of point pα from the fitted
3-dimensional affine space. If the noise in the coordi-
nates of the feature points is an independent Gaussian
random variable of mean 0 and standard deviation σ,
the residual ‖P n−3(pα−qC)‖2 divided by σ2 should be
subject to a χ2 distribution with n − 3 degrees of free-
dom. Hence, its expectation is (n−3)σ2. The above pro-
cedure effectively fits a 3-dimensional affine space that
maximizes the number of the trajectories whose resid-
uals are smaller than (n − 3)σ2. After fitting such an

O

Fig. 1 Removing outliers by fitting a 3-dimensional affine space.

affine space, we remove those trajectories which cannot
be regarded as inliers with significance level 1% (Fig. 1).
We have confirmed that the value σ = 0.5 can work well
for all image sequences we tested [14].

3.2 Final Affine Space Fitting

After removing outlier trajectories, we optimally fit a 3-
dimensional affine space to the resulting inlier trajecto-
ries. Let {pα}, α = 1, ..., N , be their trajectory vectors.
We first compute their centroid

pC =
1
N

N∑
α=1

pα. (10)

Then, we compute the n× n moment matrix

M =
N∑

α=1

(pα − pC)(pα − pC)>. (11)

Let λ1 ≥ λ2 ≥ λ3 be the largest three eigenvalues of
the matrix M , and {u1,u2,u3} the orthonormal system
of corresponding eigenvectors. The optimally fitted 3-
dimensional affine space is spanned by the three vectors
of u1, u2, and u3 starting from pC .

Mathematically, this affine space fitting is equivalent
to the factorization operation using SVD (singular value
decomposition) [15]. It follows that no SVD is necessary
for 3-D reconstruction once an affine space is fitted†† (see
Appendix).

4. Trajectory Extension

We now describe our trajectory extension scheme.

4.1 Reliability Test

If the αth feature point can be tracked only over κ of the
M frames, its trajectory vector pα has n − k unknown
components (as before, we put n = 2M and k = 2κ). We

†In our experiment, we stopped if S did not increase for
200 consecutive iterations.

††The statement that the method of Tomasi and Kanade
[15] is based on matrix factorization using SVD is not correct.
It simply means 3-D affine reconstruction based on the affine
camera model. The SVD is merely one of many equivalent
computational tools for it.
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partition the vector pα into the k-dimensional part p
(0)
α

consisting of the k known components and the (n− k)-
dimensional part p

(1)
α consisting of the remaining n −

k unknown components. Similarly, we partition‡† the
centroid pC and the basis vectors {u1, u2, u3} into the
k-dimensional parts p

(0)
C and {u(0)

1 , u
(0)
2 , u

(0)
3 } and the

(n− k)-dimensional parts p
(1)
C and {u(1)

1 , u
(1)
2 , u

(1)
3 } in

accordance with the division of pα.
We test if each of the partial trajectories is sufficiently

reliable. Let pα be a partial trajectory vector. If image
noise does not exist, the deviation of pα from the cen-
troid pC should be expressed as a linear combination of
u1, u2, and u3. Hence, there should be constants c1,
c2, and c3 such that

p(0)
α − p

(0)
C = c1u

(0)
1 + c2u

(0)
2 + c3u

(0) (12)

for the known part. In the presence of image noise, this
equality does not hold. If we let U (0) be the k×3 matrix
consisting of u

(0)
1 , u

(0)
2 , and u

(0)
3 as its columns, Eq. (12)

is replaced by

p(0)
α − p

(0)
C ≈ U (0)c, (13)

where c is the 3-dimensional vector consisting of c1, c2,
and c3. Assuming that k ≥ 3, we estimate the vector c
by least squares in the form

ĉ = U (0)−(p(0)
α − p

(0)
C ), (14)

where U (0)− is the generalized inverse of U (0). It is
computed by

U (0)− = (U (0)>U (0))−1U (0)>. (15)

The residual, i.e., the squared distance of point p
(0)
α

from the 3-dimensional affine space spanned by {u(0)
1 ,

u
(0)
2 , u

(0)
3 } is ‖p(0)

α − p
(0)
C − U (0)ĉ‖2. If the noise in

the coordinates of the feature points is an independent
Gaussian random variable of mean 0 and standard de-
viation σ, the residual ‖p(0)

α − p
(0)
C − U (0)ĉ‖2 divided

by σ2 should be subject to a χ2 distribution with k − 3
degrees of freedom. Hence, we regard those trajectories
that satisfy

‖p(0)
α − p

(0)
C −U (0)ĉ‖2 ≥ σ2χ2

k−3;99 (16)

as outliers with significance level 1%.

4.2 Extension and Optimization of Trajectories

The unknown part p
(1)
α is estimated from the constraint

implied by Eq. (12), namely

p(1)
α − p

(1)
C =c1u

(1)
1 +c2u

(1)
2 +c3u

(1) =U (1)c, (17)

where U (1) is the (n− k)× 3 matrix consisting of u
(1)
1 ,

u
(1)
2 , and u

(1)
3 as its columns. Substituting Eq. (14) for

c, we obtain

p̂(1)
α = p

(1)
C + U (1)U (0)−(p(0)

α − p
(0)
C ). (18)

Evidently, this is an optimal estimate in the presence
of Gaussian noise. However, the underlying affine space
is computed only from a small number of complete tra-
jectories; no information contained in the partial trajec-
tories is used, irrespective of how long they are. So, we
incorporate partial trajectories by iterations.

Note that if three components of pα are specified, one
can place it, in general, in any 3-dimensional affine space
by appropriately adjusting the remaining n− 3 compo-
nents. In view of this, we introduce the “weight” of the
trajectory vector pα with k known components in the
form

Wα =
k − 3
n− 3

. (19)

Let N be the number of all trajectories, complete or
partial, inliers or outliers. The optimization goes as fol-
lows:

1. Set the weights Wα of those trajectories, complete
or partial, that are so far judged to be outliers to 0.
All other weights are set to the value in Eq. (19).

2. Fit a 3-dimensional affine space to all the trajecto-
ries. The procedure is the same as described in
Sec. 3.2 except that Eq. (10) is replaced by the
weighted centroid

pC =
∑N

α=1 Wαpα∑N
α=1 Wα

, (20)

and Eq. (11) is replaced by the weighted moment
matrix

M =
N∑

α=1

Wα(pα − pC)(pα − pC)>. (21)

3. Test each trajectory if it is an outlier, using
Eq. (16).

4. Estimate the unknown parts of the inlier partial
trajectory vectors, using Eq. (18).

These four steps are iterated until the fitted affine
space converges. Eq. (18) implies that the estimated
components do not contribute to the residual of the ex-
tended vector pα from the affine space, so the reliability
of extended trajectories is tested only from their known
components using Eq. (16). In the course of this opti-
mization, trajectories once regarded as outliers may be
judged to be inliers later, and vice versa. In the end,
inlier partial trajectories are optimally extended with
respect to the affine space that is optimally fitted to all
the complete and partial inlier trajectories.

However, the resulting solution is not guaranteed to
be globally optimal; its accuracy largely depends on the
quality of the initial guess. The outlier removal proce-
dure of Sec. 3 is incorporated for obtaining as accurate
an initial guess as possible, even though all trajectories
are reexamined later.
†††This is merely for the convenience of description. In

real computation, we treat all data as n-dimensional vectors
after multiplying them by an appropriate diagonal matrix
consisting of 1s and 0s.
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Fig. 2 (a) Five decimated frames from a 50 frame sequence and 11 points correctly

tracked throughout the sequence. (b) The life spans of the detected 871 trajectories. (c)

The 11 complete inlier trajectories. (d) The 560 optimal extensions of the trajectories. (e)

Four trajectories before optimization. The real lines show the original data, and the dotted

lines show the estimated parts. (f) The corresponding optimized trajectories.

The iterations may not converge if the initial guess
is very poor or a large proportion of the trajectories
are incorrect. In that case, we must conclude that the
original feature tracking does not provide meaningful
information. However, this did not happen in any of
our experiments using real video sequences.

We need at least three complete trajectories for guess-
ing the initial affine space. If no such trajectories are
given, we may use the method of Jacobs [5] for an initial
guess. However, it is much more practical to segment
the sequence into overlapping blocks, extending partial
trajectories over each block separately and connecting
all the blocks to find complete trajectories.

5. Experiments

We tested our method using real video sequences. Fig-
ure 2(a) shows five decimated frames from a 50 frame
sequence (320 × 240 pixels) of a static scene taken by
a moving camera. We detected 200 feature points and
tracked them using the Kanade-Lucas-Tomasi algorithm
[16]. When tracking failed at some frame, we restarted

the tracking after adding a new feature point in that
frame. Figure 2(b) shows the life space of the 871 tra-
jectories thus obtained: they are enumerated on the hor-
izontal axis in the order of disappearance and new ap-
pearance; the white part corresponds to missing data.

Among them, 29 are complete trajectories, of which
11 are regarded as inliers by the procedure described in
Sec. 3. The marks 2 in Fig. 2(a) indicate their positions;
Figure 2(c) shows their trajectories.

Using the affine space they define, we extended the
partial trajectories and optimized the affine space and
the extended trajectories. The optimization converged
after 11 iterations, resulting in the 560 inlier trajecto-
ries shown in Fig. 2(d). The computation time for this
optimization was 134 seconds. We used Pentium 4 2.4B
GHz for the CPU with 1 GB main memory and Linux
for the OS.

Figure 2(e),(f) shows four enlarged trajectories that
underwent significant corrections by the optimization:
the trajectories in Fig. 2(e), which appeared to scat-
ter inconsistently, were corrected into those in Fig. 2(f),
which are more consistent with the global motion. The
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(a) (b)

(c) (d) (e)

Fig. 3 (a) The extrapolated texture-mapped image of the 33th frame. (b) The recon-

structed 3-D shape. (c) The patches reconstructed from the 11 initial complete (d) The

patches reconstructed from all extended trajectories without optimization. (e) The corre-

sponding result with optimization.

solid lines indicate the original data; the dashed lines
indicate the estimated parts.

Figure 3(a) is the extrapolated image of the 33th
frame after missing feature positions are restored: us-
ing the 180 feature points visible in the first frame, we
defined triangular patches, to which the texture in the
first frame is mapped.

We reconstructed the 3-D shape by factorization
based on weak perspective projection (see Appendix).
Figure 3(b) is the top view of the texture-mapped shape.
Figure 3(c) shows the patches reconstructed from the 11
initial trajectories in Fig. 2(c). Evidently, a meaningful
3-D shape cannot be reconstructed from such a small
number of feature points. Figure 3(d) shows the patches
reconstructed from extended trajectories without opti-
mization; Figure 3(e) is the corresponding shape after
optimization.

From these results, we can see that a sufficient num-
ber of trajectories can be restored for detailed 3-D re-
construction by extending the partial trajectories and
that incorrect trajectories are removed or corrected by
the optimization process. According to visual inspec-
tion, the reconstructed 3-D shape appears to be better
after the optimization, but the difference is small. This
is probably because the effects of trajectory errors are
suppressed by our factorization algorithm (Appendix),
which optimizes the solution using all the data in all the
frames.

6. Concluding Remarks

We have presented a new method for extending inter-
rupted feature point tracking for 3-D affine reconstruc-
tion. Our method consists of iterations for optimally
extending the trajectories and for optimally estimating

the affine space. In every step, the reliability of the
extended trajectories is tested, and those judged to be
outliers are removed. Using real video images, we have
demonstrated that a sufficient number of trajectories
can be restored for detailed 3-D reconstruction.
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Appendix：3-D Reconstruction Algorithm

Input
• 2M -dimensional trajectory vectors pα, α = 1, ...,

N .
• Focal length fκ for the κth frame, κ = 1, ..., M .
• Average depth Zc.

Output
• 3-D positions {r̂α} and {r̂′α} (mutually mirror im-

ages) of the N feature points.

Algorithm
1. Let pC be the centroid of {pα}, and U the

2M × 3 matrix consisting of the orthonomal ba-
sis {u1,u2, u3} of the fitted 3-D affine space (cf.
Sec. 3.2).

2. Let u†κ(a) (κ = 1, ..., M , a = 1, 2) be the (2(κ −
1) + a)th column of U>.

3. (Metric condition) Compute the 3×3 matrix T that
minimizes the following function (the procedure is
described later):

K=
M∑

κ=1

[(
(u†κ(1), Tu†κ(1))−(u†κ(2), Tu†κ(2))

)2

+(u†κ(1), Tu†κ(2))
2
]
. (A· 1)

4. Compute the Z coordinate of the translation tκ by

tzκ = fκ

√
2

(u†κ(1), Tu†κ(1)) + (u†κ(2),Tu†κ(2))
.

(A· 2)

5. Let t̃xκ and t̃yκ be, respectively, the (2(κ−1)+1)th
and (2(κ−1)+2)th components of the centroid pC .

6. Compute the X and Y coordinates of the transla-
tion tκ by

txκ =
tzκ

fκ
t̃xκ, tyκ =

tzκ

fκ
t̃yκ. (A· 3)

7. Let λ1, λ2, and λ3 be the eigenvalues of the ma-
trix T , and {v1, v2, v3} the orthonormal system of
corresponding eigenvectors.

8. Compute the 2M -dimensional vector

mi =
√

λi




(u†1(1),vi)
(u†1(2),vi)
(u†2(1),vi)

...
(u†M(2), vi)




(A· 4)

for i = 1, 2, 3.
9. Let M be the 2M×3 matrix consisting of m1, m2,

and m3 as its columns.
10. Let m†

κ(a) (κ = 1, ..., M , a = 1, 2) be the (2(κ −
1) + a)th column of M>.

11. Compute the following SVD:

tzκ

fκ

(
m†

κ(1) m†
κ(2) 0

)
= V ΛU>. (A· 5)

12. Compute the rotation matrices {Rκ} as follows:

Rκ = Udiag(1, 1, det(V U>))V >. (A· 6)

13. Recompute the matrix M by

M =
M∑

κ=1

Π>κ Rκ, (A· 7)

where Πκ = (Πκ(ij)) is a 3×2M matrix with element
Πκ(ij) = fκ/tzκ for (i, j) = (2, 2κ − 1), (2, 2κ) and
0 otherwise.

14. Compute the 3-D shape vectors

sα = (M>M)−1M>(pα − pC). (A· 8)

15. Compute {s′α} and R′
1 as follows:

s′α = −sα, R′
1 = diag(−1,−1, 1)R1. (A· 9)

16. Compute {r̂α} and {r̂′α} as follows:

r̂α =
Zc

tz1
(R1sα + t1),

r̂′α =
Zc

tz1
(R′

1s
′
α + t1). (A· 10)

Metric condition (Step 3 in the above algorithm)
1. Define the 3× 3× 3× 3 tensor A = (Aijkl) by

Aijkl =
M∑

κ=1

[
(u†κ(1))i(u

†
κ(1))j(u

†
κ(1))k(u†κ(1))l
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−(u†κ(1))i(u
†
κ(1))j(u

†
κ(2))k(u†κ(2))l

−(u†κ(2))i(u
†
κ(2))j(u

†
κ(1))k(u†κ(1))l

+(u†κ(2))i(u
†
κ(2))j(u

†
κ(2))k(u†κ(2))l

+
1
4

(
(u†κ(1))i(u

†
κ(2))j(u

†
κ(1))k(u†κ(2))l

+(u†κ(2))i(u
†
κ(1))j(u

†
κ(1))k(u†κ(2))l

+(u†κ(1))i(u
†
κ(2))j(u

†
κ(2))k(u†κ(1))l

+(u†κ(2))i(u
†
κ(1))j(u

†
κ(2))k(u†κ(1))l

)]
,

(A· 11)

where (u†κ(a))i is the ith component of u†κ(a).
2. Define the 6× 6 matrix

A =




A1111 A1122 A1133

A2211 A2222 A2233

A3311 A3322 A3333√
2A2311

√
2A2322

√
2A2333√

2A3111

√
2A3122

√
2A3133√

2A1211

√
2A1222

√
2A1233√

2A1123

√
2A1131

√
2A1112√

2A2223

√
2A2231

√
2A2212√

2A3323

√
2A3331

√
2A3312

2A2323 2A2331 2A2312

2A3123 2A3131 2A3112

2A1223 2A1231 2A1212




. (A· 12)

3. Compute the 6-dimensional eigenvector τ for the
smallest eigenvalue of the matrix A.

4. Let T be the 3× 3 matrix

T =




τ1 τ6/
√

2 τ5/
√

2
τ6/
√

2 τ2 τ4/
√

2
τ5/
√

2 τ4/
√

2 τ3


 . (A· 13)

5. If det T < 0, then let T ← −T .
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