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PAPER

Uncalibrated Factorization Using a Variable Symmetric
Affine Camera

Kenichi KANATANI†a), Yasuyuki SUGAYA††, Members,
and Hanno ACKERMANN†, Nonmember

SUMMARY In order to reconstruct 3-D Euclidean shape by
the Tomasi-Kanade factorization, one needs to specify an affine
camera model such as orthographic, weak perspective, and para-
perspective. We present a new method that does not require
any such specific models. We show that a minimal requirement
for an affine camera to mimic perspective projection leads to a
unique camera model, called symmetric affine camera, which has
two free functions. We determine their values from input images
by linear computation and demonstrate by experiments that an
appropriate camera model is automatically selected.
key words: factorization, structure from motion, affine camera,
self-calibration, video image analysis

1. Introduction

One of the best known techniques for 3-D reconstruc-
tion from feature point tracking through a video stream
is the Tomasi-Kanade factorization [17], which com-
putes the 3-D shape of the scene by approximating
the camera imaging by an affine transformation. The
computation consists of linear calculus alone without
involving iterations (see [8] for the computational de-
tails). The solution is sufficiently accurate for many
practical purposes and is also used as an initial solu-
tion for iterative reconstruction based on perspective
projection [3].

If the camera model is not specified, other than
being affine, the 3-D shape is computed only up to
an affine transformation, known as affine reconstruc-
tion. For computing the correct shape (Euclid recon-
struction), we need to specify the camera model. For
this, orthographic, weak perspective, and paraperspec-
tive projections have been used [10]. However, the re-
construction accuracy does not necessarily follow that
order [2]. To find the best camera models in a particular
circumstance, one needs to choose the best one a poste-
riori . Is there any method for automatically selecting
an appropriate camera model? This is the motivation
of this paper.

Basri [1] pointed out that any affine camera can be
regarded as paraperspective projection if the scene and
the reference point are appropriately transformed, and
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Sugimoto [16] exploited this fact for object recognition
from a single image based on affine invariants. Shapiro
et al. [12] described the epipolar geometry for affine
cameras and 3-D reconstruction methods based on it.
Quan [11] showed that a generic affine camera has three
intrinsic parameters and that they can be determined
by self-calibration if the same camera is moved (i.e., the
three intrinsic parameters are unchanged).

This paper extends Quan’s result to variable intrin-
sic parameters. However, they cannot be determined if
the camera is completely arbitrary from frame to frame.
The situation is similar to the dual absolute quadric
constraint [3] for upgrading projective reconstruction
to Euclidean, which cannot be imposed unless some-
thing is known about the camera (e.g., zero skew).

In this paper, we show that minimal requirements
for the general affine camera to mimic perspective pro-
jection leads to a unique camera model, which we call
symmetric affine camera, having two free functions of
motion parameters; their specific choices result in the
orthographic, weak perspective, and paraperspective
models.

Here, however, we do not specify such function
forms. We determine their values directly from input
images. All the computation is linear just as in the case
of the traditional factorization method, and an appro-
priate model is automatically selected.

Section 2 summarizes fundamentals of affine cam-
eras, and Sect. 3 summarizes the metric constraint. In
Sect. 4, we derive our symmetric affine camera model.
Section 5 describes the procedure for 3-D reconstruc-
tion using our model. Section 6 shows experiments,
and Sect. 7 concludes this paper.

2. Affine Cameras

Consider a camera-based XY Z coordinate system with
the origin O at the projection center and the Z axis
along the optical axis. Perspective projection maps a
point (X, Y, Z) in the scene onto a point in the image
with coordinates (x, y) such that

x = f
X

Z
, y = f

Y

Z
, (1)

where f is a constant called the focal length (Fig. 1(a)).
Consider a world coordinate system fixed to the

scene, and let t and {i, j, k} be its origin and the
orthonormal basis vectors with respect to the camera
coordinate system. For convenience (with some risk
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Fig. 1 Camera models.

of confusion), we call t the translation, the matrix R
=

(
i j k

)
having {i, j, k} as columns the rotation,

and {t, R} the motion parameters. Unlike the tradi-
tional formulation [10], [17], all the subsequent descrip-
tions are based on the camera coordinate system.

As is well known, the imaging can be approximated
by an affine camera [12] in the form

(
x
y

)
=

(
Π11 Π12 Π13

Π21 Π22 Π23

) 


X
Y
Z


 +

(
π1

π2

)
, (2)

if (i) the object of our interest is localized around the
world coordinate origin t, and (ii) the size of that object
is small as compared with ‖t‖. We call the 2×3 matrix
Π = (Πij) and the 2-D vector π = (πi) the projection
matrix and the projection vector , respectively; their el-
ements are “functions” of the motion parameters {t,
R}. Unlike Quan [11], we do not separate “intrinsic”
parameters from the motion parameters (or “extrinsic”
parameters); the intrinsic parameters are implicitly de-
fined via the functional forms of {Π, π} on {t, R}.
Typical examples are:

Orthographic projection (Fig. 1(b))

Π =
(

1 0 0
0 1 0

)
, π =

(
0
0

)
. (3)

Weak perspective projection (Fig. 1(c))

Π =
(

f/tz 0 0
0 f/tz 0

)
, π =

(
0
0

)
. (4)
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Fig. 2 Camera-based description of the world coordinate sys-
tem.

Paraperspective projection (Fig. 1(d)†)

Π =
(

f/tz 0 −ftx/t2z
0 f/tz−ftx/t2z

)
,π =

(
ftx/tz
fty/tz

)
. (5)

We say that the affine camera is uncalibrated if {Π, π}
contain unknown parameters.

Suppose we track N feature points over M frames.
Identifying the frame number κ with “time”, let tκ and
{iκ, jκ, kκ} be the origin and the basis vectors of the
world coordinate system at time κ (Fig. 2). The 3-D
position of the αth point at time κ has the form

rκα = tκ + aαiκ + bαjκ + cαkκ. (6)

Under the affine camera of Eq. (2), its image coordi-
nates (xκα, yκα) are given by

(
xκα

yκα

)
= t̃κ + aαĩκ + bαj̃κ + cαk̃κ, (7)

where t̃κ, ĩκ, j̃κ, and k̃κ are 2-D vectors defined by

t̃κ = Πκtκ + πκ, ĩκ = Πκiκ,

j̃κ = Πκjκ, k̃κ = Πκkκ. (8)

Here, Πκ and πκ are the projection matrix and the
projective vector, respectively, at time κ. The motion
history of the αth point is represented by a vector

pα =
(
x1α y1α x2α y2α . . . xMα yMα

)>
, (9)

which we simply call the trajectory of that point. Using
Eq. (7), we can write

pα = m0 + aαm1 + bαm2 + cαm3, (10)

where m0, m1, m2, and m3 are the following 2M -D
vectors, respectively:




t̃1
t̃2
...

t̃M


 ,




ĩ1
ĩ2
...

ĩM


 ,




j̃1

j̃2
...

j̃M


 ,




k̃1

k̃2

...
k̃M


 . (11)

†Some authors arbitrarily locate on the plane Z = tz

a “reference point”, with respect to which paraperspective
projection is defined (e.g., [1]). In this paper, the reference
point is always at the world coordinate origin. See Sect. 3
and 4 for this reason.
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Fig. 3 Affine space constraint.

Thus, all the trajectories {pα} are constrained to be
in the 3-D affine space A in R2M passing through m0

and spanned by m1, m2, and m3 (Fig. 3). This fact
is known as the affine space constraint [7], which plays
a central role in many applications including outlier
removal [13], missing data recovery [14], and multibody
motion segmentation [6], [15].

3. Metric Constraint

In order to approximate perspective projection by an
affine camera, we place the origin of the world coor-
dinate system at the centroid of the N feature points.
They should concentrate in a small region around the
world coordinate origin for the affine camera modeling
to be valid†. We assume this hereafter.

By the definition of the world coordinate origin,
we have

∑N
α=1 aα =

∑N
α=1 bα =

∑N
α=1 cα = 0, so we

have from Eq. (10)

1
N

N∑
α=1

pα = m0, (12)

i.e., m0 is the centroid of the trajectories {pα} in R2M .
It follows that the deviation p′α of pα from the centroid
m0 is written as††

p′α = pα −m0 = aαm1 + bαm2 + cαm3, (13)

which means that {p′α} are constrained to be in the 3-D
subspace L in R2M . Hence, the matrix

C =
N∑

α=1

p′αp′α
> (14)

has rank 3, having three nonzero eigenvalues. The cor-
responding unit eigenvectors {u1, u2, u3} constitute
an orthonormal basis of the subspace L, and m1, m2,
and m3 are expressed as a linear combination of them
in the form

mi =
3∑

j=1

Ajiuj . (15)

Let M and U be the 2M × 3 matrices consisting of
{m1, m2, m3} and {u1, u2, u3} as columns:

M =
(
m1 m2 m3

)
, U =

(
u1 u2 u3

)
. (16)

From Eq. (15), M and U are related by the matrix A
= (Aij) in the form†††:

M = UA. (17)

The rectifying matrix A = (Aij) is determined so

that m1, m2 and m3 in Eq. (11) are projections of the
orthonormal basis vectors {iκ, jκ, kκ} in the form of
Eqs. (8). From Eqs. (8), we obtain

(
ĩκ j̃κ k̃κ

)
= Πκ

(
iκ jκ kκ

)
= ΠκRκ, (18)

where Rκ is the rotation at time κ. Let m†
κ(a) be the

(2(κ − 1) + a)th column of the transpose M> of the
matrix M in Eqs. (16), κ = 1, ..., M , a = 1, 2. The
transpose on both sides of Eq. (18) yields

R>
κ Π>

κ =
(
m†

κ(1) m†
κ(2)

)
. (19)

Equation (17) implies M> = A>U>, so if we let u†κ(a)

be the (2(κ− 1) + a)th column of the transpose U> of
the matrix U in Eqs. (16), we obtain

m†
κ(a) = A>u†κ(a). (20)

Substituting this, we can rewrite Eq. (19) as

R>
κ Π>

κ = A>
(
u†κ(1) u†κ(2)

)
. (21)

Let U †
κ be the 3 × 2 matrix having u†κ(1) and u†κ(2) as

columns:

U †
κ =

(
u†κ(1) u†κ(2)

)
. (22)

From Eq. (21), we have U †>
κ AA>U †

κ = ΠκRκR>
κ Π>

κ .
Since Rκ is a rotation matrix, we have

U †>
κ TU †

κ = ΠκΠ>
κ , (23)

where we define the metric matrix T as follows:

T = AA>. (24)

given by Quan [11]. If we take out the elements on both
sides, we have the following three expressions:

(u†κ(1), Tu†κ(1)) =
3∑

i=1

Π2
1iκ,

(u†κ(2), Tu†κ(2)) =
3∑

i=1

Π2
2iκ,

(u†κ(1), Tu†κ(2)) =
3∑

i=1

Π1iκΠ2iκ. (25)

aFor this reason, we do not allow arbitrary rigid motions
of the scene as in [1].

bIn the traditional formulation [10], [17], vectors {p′α}
are combined into the measurement (or observation) ma-

trix , W =
(
p′1 . . . p′N

)
, and the object coordinates

{(aα, bα, cα)} are combined into the shape matrix , S =(
a1 . . . aN
b1 . . . bN
c1 . . . cN

)
. Then, Eq. (13) is written as W = MS,

where M , the motion matrix , is defined by the first of
Eqs. (16).

cIn the traditional formulation [10], [17], the measure-
ment matrix W is decomposed by the singular value de-
composition into W = UΛV >, and the motion and the
shape matrices M and S are set to M = UA an S =
A−1ΛV > via a nonsingular matrix A.
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If we let, instead of Eq. (15), simply mi = ui, i =
1, 2, 3, we can still reconstruct the 3-D shape, but it is
a deformation of the true shape by some affine trans-
formation, known as affine reconstruction†. In order
to restore the true shape (Euclidean reconstruction††),
one needs to rectify the basis {u1, u2, u3} of the sub-
space L by some linear transformation A, and Eq. (23)
gives the constraint on it. In this sense, Eq. (23) cor-
responds to the dual absolute quadric constraint [3] on
the homography that rectifies the basis of projective
reconstruction to Euclidean.

We now show that (i) we can restrict the camera
model so that it has two free functions and that (ii)
they can be linearly estimated.

4. Symmetric Affine Cameras

We impose minimal requirements that Eq. (2) mimic
perspective projection.

Requirement 1. The camera imaging does not de-
pend on R.

Requirement 2. The camera imaging is symmetric
around the Z-axis.

Requirement 3. The frontal parallel plane passing
through the world coordinate origin is projected
as if by perspective projection.

Requirement 1 is a logical consequence of the fact
that the orientation of the world coordinate system can
be defined arbitrarily, since such indeterminate parame-
terization should not affect the actual observation. Re-
quirement 2 states that if the scene is rotated around
the optical axis by an angle θ, the resulting image
should also rotate around the image origin by the same
angle θ, a very natural requirement. Requirement 3 is a
minimal requirement that the image look like perspec-
tive within the affine camera framework.

A point on the plane Z = tz is written as (X, Y, tz),
so Requirement 3 implies
(

φX/tz
φY/tz

)
=

(
Π11 Π12

Π21 Π22

)(
X
Y

)
+ tz

(
Π13

Π23

)
+

(
π1

π2

)
, (26)

for some φ, which is a function of t due to Requirement
1. Since this should hold for arbitrary X and Y , we
obtain

Π11 = Π22 =
φ

tz
, Π12 = Π21 = 0,

tzΠ13 + π1 = 0, tzΠ23 + π2 = 0, (27)

which reduces Eq. (2) to
(

x
y

)
=

φ

tz

(
X
Y

)
− (tz − Z)

(
Π13

Π23

)
, (28)

where Π13 and Π23 are some functions of t.
Let R(θ) be the 2-D rotation matrix by angle θ:

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
. (29)

Requirement 2 is written as

R(θ)
(

x
y

)
=

φ′

tz
R(θ)

(
X
Y

)
−(tz−Z)

(
Π′13
Π′23

)
, (30)

where φ′, Π′13, and Π′23 are the values of the functions φ,
Π13, and Π23, respectively, obtained by replacing tx and
ty by tx cos θ−ty sin θ and tx sin θ+ty cos θ, respectively.
Multiplying Eq. (28) by R(θ) on both sides, we obtain

R(θ)
(
x
y

)
=

φ

tz
R(θ)

(
X
Y

)
−(tz−Z)R(θ)

(
Π13

Π23

)
. (31)

Comparing Eqs. (30) and (31), we conclude that the
equalities

φ′ = φ,

(
Π′13
Π′23

)
= R(θ)

(
Π13

Π23

)
(32)

should hold identically for an arbitrary θ. According
to the theory of invariants [4], this implies that φ is a
function of t2x + t2y and tz only and that

(
Π13

Π23

)
= c

(
tx
ty

)
, (33)

where c is an arbitrary function of t2x + t2y and tz.
Now, if we define

ζ =
tz
φ

, β = −ctz
φ

, (34)

Eq. (28) is written as
(

x
y

)
=

1
ζ

((
X
Y

)
+ β(tz − Z)

(
tx
ty

))
. (35)

The corresponding projection matrix Π and the pro-
jection vector π are

Π=
(

1/ζ 0 −βtx/ζ
0 1/ζ −βty/ζ

)
, π=

(
βtxtz/ζ
βtytz/ζ

)
. (36)

Since c and φ are arbitrary functions of t2x + t2y and tz,
so are ζ and β. We observe:

• Equation (35) reduces to the paraperspective pro-
jection of Eqs. (5) if we choose

ζ =
tz
f

, β =
1
tz

. (37)

• Equation (35) reduces to the weak perspective pro-
jection of Eqs. (4) if we choose

ζ =
tz
f

, β = 0. (38)

†We are assuming an affine camera model. If we use
perspective images, the resulting shape may not be affine
reconstruction, of course.

††Strictly, this should be called “similarity reconstruc-
tion”, since the absolute scale is indeterminate. However,
this term is widely used.
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• Equation (35) reduces to the orthographic projec-
tion of Eqs. (3) if we choose

ζ = 1, β = 0. (39)

Thus, Eq. (35) includes the traditional affine camera
models as special instances and is the only possible form
that satisfies Requirements 1, 2, and 3.

However, we need not define the functions ζ and
β in any particular form; we can regard them as time
varying unknowns and determine their values by self-
calibration. This is made possible by the fact that
at most two time varying unknowns can be eliminated
from the metric constraint of Eqs. (25).

5. Procedure for 3-D Reconstruction

3-D Euclidean reconstruction using Eq. (35) goes just
as using the traditional camera models (see [9] for the
details):

1. We fit a 3-D affine space A to the trajectories {pα}
by least squares. Namely, we compute the centroid
m0 by Eq. (12) and compute the unit eigenvectors
{u1, u2, u3} of the matrix C in Eq. (14) for the
largest three eigenvalues†.

2. We eliminate time varying unknowns from the the
metric constraint of Eqs. (25) and solve for the
metric matrix T by least squares. To be specific,
substitution of Eqs. (36) into Eqs. (25) yields

(u†κ(1),Tu†κ(1)) =
1
ζ2
κ

+ β2
κt̃2xκ,

(u†κ(2),Tu†κ(2)) =
1
ζ2
κ

+ β2
κt̃2yκ

(u†κ(1),Tu†κ(2)) = β2
κt̃xκt̃yκ, (40)

where t̃xκ and t̃yκ are, respectively, the (2(κ−1)+
1)th and the (2(κ − 1) + 2)th components of the
centroid m0. Eliminating ζκ and βκ, we obtain

Aκ(u†κ(1),Tu†κ(1))− Cκ(u†κ(1), Tu†κ(2))

−Aκ(u†κ(2),Tu†κ(2)) = 0, (41)

where Aκ = t̃xκt̃yκ and Cκ = t̃2xκ − t̃2yκ. This is a
linear constraint on T , so we can determine T by
least squares. Then, we can determine 1/ζ2

κ and
β2

κ from Eqs. (40) by least squares.
3. We decompose the metric matrix T into the recti-

fying matrix A in the form of Eq. (24), and com-
pute the vectors m1, m2, and m3 from Eq. (15).

4. We compute the motion parameters {tκ, Rκ}. The
translation components txκ and tyκ are given by
the first of Eqs. (8) in the form of txκ = ζκt̃xκ

and tyκ = ζκt̃yκ. The three rows rκ(1), rκ(2), and
rκ(3) of the rotation Rκ are given by solving the
following linear equations:

rκ(1) − βκtxκrκ(3) = ζκm†
κ(1),

rκ(2) − βκtyκrκ(3) = ζκm†
κ(2),

βκtxκrκ(1)+βκtyκrκ(2)+rκ(3) =ζ2
κm†

κ(1)×m†
κ(2).

(42)
The resulting matrix

(
rκ(1) rκ(2) rκ(3)

)
may not

be strictly orthogonal, so we compute its singu-
lar value decomposition V κΛκU>

κ and let Rκ =
UκV >

κ [5].
5. We recompute the vectors m1, m2, and m3 in the

form of Eqs. (11) using the computed rotations Rκ

=
(
iκ jκ kκ

)
.

6. We compute the object coordinates (aα, bβ , cβ) of
each point by least-squares expansion of p′α in the
form of Eq. (13). The solution is given by M−pα,
using the pseudoinverse M− of M .

However, the following indeterminacy remains:
1. Another solution is obtained by multiplying all
{tκ} and {(aα, bα, cα)} by a common constant.

2. Another solution is obtained by multiplying all
{Rκ} by a common rotation. The object coor-
dinates {(aα, bα, cα)} are rotated accordingly.

3. Each solution has its mirror image solution. The
mirror image rotation R′

κ is the rotation Rκ fol-
lowed by a rotation around axis (βκtxκ, βκtyκ, 1)
by angle 2π. The object coordinates {(aα, bα, cα)}
change their signs.

4. The absolute depth tz of the world coordinate origin
is indeterminate.
Item 1 is the fundamental ambiguity of 3-D recon-

struction from images, meaning that a large motion of
a large object in the distance is indistinguishable from
a small motion of a small object nearby. Item 2 re-
flects the fact that the orientation of the world coordi-
nate system can be arbitrarily chosen. Item 3 is due to
Eq. (24), which can be written as T = (±AQ)(±AQ)>
for an arbitrary rotation Q, and is inherent of all affine
cameras [11], [12].

Item 4 is due to the fact that Eq. (35) involves only
the relative depth of individual point from the world
coordinate origin tκ. The absolute depth tz is deter-
mined only if ζ and β are given as specific functions
of tz, as in the case of the traditional camera models.
If we assume the weak perspective model (Eq. (4)) or
the paraperspective model (Eq. (5)), for example, tz is
obtained because the parameter††f is known. However,
our model does not specify their functional forms; we
directly determine their values by self-calibration and
leave tz unspecified.

6. Experiments

Figure 4 shows four simulated image sequences of 600×
600 pixels perspectively projected with focal length f
= 600 pixels. Each consists of 11 frames; six decimated
frames are shown here. We added Gaussian random

†This corresponds to the singular value decomposition
W = UΛV > of the measurement matrix W in the tradi-
tional formulation [10], [17].

††The parameter f in Eqs. (4) and (5) should not be iden-
tified with the “focal length” f for perspective projection in
Eq. (1).
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(a)

(b)

(c)

(d)

Fig. 4 Simulated image sequences (six decimated frames for each).
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Fig. 5 3-D reconstruction accuracy for the image sequences of Fig. 4(a)∼(d). The hor-
izontal axis is scaled in proportion to 1/f . Three models are compared: weak perspective
(dashed lines), paraperspective (thin solid lines), and our generic model (thick solid lines).

noise of mean 0 and standard deviation 1 pixel inde-
pendently to the x and y coordinates of the feature
points and reconstructed their 3-D shape (the frames
in Fig. 4(a), (b) are merely for visual ease).

From the resulting two mirror image shapes, we
choose the correct one by comparing the depths of two
points that are known be close to the camera. Since the
absolute depth and scale are indeterminate, we trans-
late the true and the reconstructed shapes so that their
centroids are at the coordinate origin and scaled their
sizes so that the root-mean-square distance of the fea-
ture points from the origin is 1. Then, we rotate the
reconstructed shape so that the root-mean-square dis-
tances between the corresponding points of the two
shapes is minimized. We adopt the resulting residual
as the measure of reconstruction accuracy.

We compared three camera models: the weak per-
spective, the paraperspective, and our symmetric affine
camera models. The orthographic model is omitted,
since evidently good results cannot be obtained when
the object moves in the depth direction. For using the
weak perspective and paraperspective models, we need

to specify the parameter f (see Eqs. (4) and (5)). If
the size of the reconstructed shape is normalized as de-
scribed earlier, the choice of f is irrelevant for the weak
perspective model, because it only affects the object
size as a whole. However, the paraperspective model
depends on the value of f we use.

Figure 5 plots the reconstruction accuracy vs. the
value f we used; the horizontal axis is scaled in propor-
tion to 1/f . The dashed line is for weak perspective,
the thin solid line is for paraperspective, and the thick
solid line is for our model. We observe that the parap-
erspective model does not necessarily give the highest
accuracy when f coincides with the focal length (600
pixels) of the perspective images. The error is indeed
minimum around f = 600 for Fig. 5(a), (d), but the
error decreases as f increases for Fig. 5(b) and as f
decreases for Fig. 5(c).

We conclude that our model achieves the accuracy
comparable to paraperspective projection given an ap-
propriate value of f , which is unknown in advance. This
means that our model automatically chooses appropri-
ate parameter values without any knowledge about f .
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However, the difference is very small as seen from Fig. 5.
We conducted real video experiments, using the

KLT† for tracking feature points. We observed that
our method can reconstruct 3-D shapes very similar
to those obtained by the traditional models; the dif-
ferences are difficult to see visually. The computation
time is almost the same whichever model is used.

It is to be noted that sometimes degeneracy oc-
curs; the matrix A becomes rank deficient so that
the resulting vectors {mi} are linearly dependent (see
Eq. (15)). As a result, the reconstructed shape is “flat”
(see Eq. (13)). This occurs when the smallest eigen-
value of T computed by least squares is negative. In
such a case, we replaced the negative eigenvalue by zero,
resulting in degeneracy. This type of degeneracy occurs
whichever affine model we use.

In principle, we could avoid degeneracy by parame-
terizing T so that it is guaranteed to be positive definite
[11]. However, this would require nonlinear optimiza-
tion, and the merit of the factorization approach (i.e.,
linear computation only) would be lost. Moreover, if we
look at the images that cause degeneracy, they really
look as if a planar object is moving. Since the informa-
tion is insufficient in the first place, any methods may
not be able to solve such degeneracy.

7. Conclusions

We showed that minimal requirements for an affine
camera to mimic perspective projection leads to a
unique camera model, which we call “symmetric affine
camera”, having two free functions, whose specific
choices would result in the traditional camera models.
We regarded them as time varying parameters and de-
termined their values by self-calibration, using linear
computation alone, so that an appropriate model is au-
tomatically selected. We demonstrated by simulation
that the reconstruction accuracy is comparable to the
paraperspective model given an appropriate value of
the parameter f .

Overall, however, the difference is very small. In
practical applications, the weak perspective model, for
which the value of f does not affect the result, is suffi-
cient; for higher accuracy, we need to do iterative non-
linear computations based on perspective projection [3].
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