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PAPER

High Accuracy Fundamental Matrix Computation and Its
Performance Evaluation

Kenichi KANATANI†a) and Yasuyuki SUGAYA††, Members

SUMMARY We compare the convergence performance of
different numerical schemes for computing the fundamental ma-
trix from point correspondences over two images. First, we state
the problem and the associated KCR lower bound. Then, we de-
scribe the algorithms of three well-known methods: FNS, HEIV,
and renormalization. We also introduce Gauss-Newton iterations
as a new method for fundamental matrix computation. For ini-
tial values, we test random choice, least squares, and Taubin’s
method. Experiments using simulated and real images reveal
different characteristics of each method. Overall, FNS exhibits
the best convergence properties.
key words: fundamental matrix, geometric fitting, KCR lower
bound, maximum likelihood, convergence performance

1. Introduction

Computing the fundamental matrix from point corre-
spondences over two images is the first step of many
vision applications including camera calibration, image
rectification, structure from motion, and new view gen-
eration. Initially, least-squares-based algebraic meth-
ods were widely used, but Kanatani [9] pointed out that
fundamental matrix computation should be regarded
as statistical estimation and that maximum likelihood
(ML) produces an optimal solution.

Since then, many numerical schemes have been
proposed for computing ML: the best known are FNS
[3] and HEIV [13], which attain a theoretical accu-
racy bound (KCR lower bound) expect for higher order
terms in noise [2], [9]. Kanatani’s renormalization [9]
also computes a solution nearly equivalent to them [10].
In this paper, we newly introduce a fourth method: di-
rectly computing ML by Gauss-Newton iterations.

All these are iterative methods with different con-
vergence properties, which also depend on the choice
of initial values. Chernov [1] and Kanatani [11] inves-
tigated the convergence behavior of these schemes for
ellipse fitting. The purpose of this paper is to examine
their convergence performance for fundamental matrix
computation.

Section 2 states the problem and the KCR lower
bound. Section 3 describes FNS, HEIV, renormaliza-
tion, and Gauss-Newton iterations. In Sect. 4, we intro-
duce three types of initialization: random choice, least
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squares, and Taubin’s method. Section 5 shows numer-
ical examples using simulated and real images, together
with discussions about the origins of the performance
difference among them. In Sect. 6, we conclude that
overall FNS has the best convergence properties.

2. Fundamental Matrix Computation

If point (x, y) corresponds to point (x′, y′) over two im-
ages of the same scene taken from different positions,
the following epipolar equation holds [7]:

((
x
y
f0

)
,

(
F11 F12 F13

F21 F22 F23

F31 F32 F33

)(
x′

y′

f0

))
= 0. (1)

Here, F = (Fij) is called the fundamental matrix , which
depends on the relative positions and orientations of the
two cameras and their intrinsic parameters (e.g., their
focal lengths) but not on the scene or the choice of the
corresponding points. Throughout this paper, the in-
ner product of vectors a and b is denoted by (a, b). In
Eq. (1), f0 is an appropriate scale constant for stabiliz-
ing numerical computation [6].

If we define

u = (F11, F12, F13, F21, F22, F23, F31, F32, F33)>,

ξ = (xx′, xy′, xf0, yx′, yy′, yf0, f0x
′, f0y

′, f2
0 )>, (2)

Eq. (1) is written as

(u, ξ) = 0. (3)

Since the absolute scale of the vector u is indetermi-
nate, we adopt normalization ‖u‖ = 1.

Fundamental matrix computation thus reduces to
fitting a hyperplane of the form of Eq. (3) to noisy vec-
tor data {ξα} in R9. Let us write ξα = ξ̄α + ∆ξα,
where ξ̄α is the noiseless value, and ∆ξα the noise
term. We define the covariance matrix of ξα by V [ξα]
= E[∆ξα∆ξ>

α ], where E[ · ] denotes expectation for the
noise distribution.

If each image coordinate of matching points is per-
turbed by independent random noise of mean 0 and
standard deviation σ, the covariance matrix V [ξα] has
the form σ2V0[ξα] up to O(σ4), where
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. (4)

Here, (x̄α, ȳα) is the true position of (xα, yα). It is
replaced by (xα, yα) in actual computation†.

Let û be an estimate of u. We define its covariance
matrix V [û] by

V [û] = E[(P uû)(P uû)>], (5)

where P u is the following projection matrix (I denotes
the unit matrix):

P u = I − uu>. (6)

Since u is normalized to unit norm, its domain is the
unit sphere S8 in R9. Equation (5) means that the error
is evaluated after projected onto the tangent space to
S8 at u, assuming that the noise is sufficiently small.

It has been shown by Kanatani [9] that if ξα is
identified with an independent Gaussian random vari-
able of mean ξ̄α and covariance matrix V [ξα], the co-
variance matrix V [û] of any unbiased estimator satisfies

V [û] Â σ2
( N∑

α=1

ξ̄αξ̄
>
α

(u, V0[ξα]u)

)−

8
, (7)

where the relation Â means that the left-hand side mi-
nus the right is positive semidefinite, and ( · )−r denotes
pseudoinverse of rank r.

Chernov and Lesort [2] called the right-hand side of
Eq. (7) the KCR (Kanatani-Cramer-Rao) lower bound
and showed that this holds except for O(σ4) even if û
is not unbiased; it is sufficient that û is “consistent” in
the sense that û → u as σ → 0.

The fundamental matrix F should also satisfy the
constraint that detF = 0 [7]. If this constraint is taken
into account, the KCR lower bound involves the corre-
sponding projection operation [9], [12].

3. Maximum Likelihood (ML)

If ξα is regarded as an independent Gaussian random
variable of mean ξ̄α and covariance matrix V [ξα], max-
imum likelihood (ML) is to minimize the sum of the

square Mahalanobis distances of the data points ξα
from the hyperplane to be fitted in R9, i.e.,

J =
1
2

N∑
α=1

(ξα − ξ̄α, V0[ξα]−4 (ξα − ξ̄α)), (8)

subject to the constraint (u, ξ̄α) = 0, α = 1, ..., N ,
where we can use V0[ξα] instead of V [ξα] because the
solution is unchanged if V0[ξα] is multiplied by a pos-
itive constant††. Introducing Lagrange multipliers for
the constraint (u, ξ̄α) = 0, we can reduce the problem
to unconstrained minimization of the following function
[3], [9], [13]:

J =
1
2

N∑
α=1

(u, ξα)2

(u, V0[ξα]u)
. (9)

The solution is obtained by solving

∇uJ =
N∑

α=1

(u, ξα)ξα

(u, V0[ξα]u)
−

N∑
α=1

(u, ξα)2V0[ξα]u
(u, V0[ξα]u)2

= (M − L)u = 0, (10)

where we define

M =
N∑

α=1

ξαξ>
α

(u,V0[ξα]u)
, L=

N∑
α=1

(u, ξα)2V0[ξα]
(u,V0[ξα]u)2

. (11)

We need not consider the normalization constraint ‖u‖
= 1, because Eq. (9) is a homogeneous expression of
degree 0 in u. In fact, multiplication of u by a nonzero
constant does not affect the value of J , and hence the
gradient ∇uJ is always orthogonal to u. It can be
shown that the covariance matrix of the solution û co-
incides with the right-hand side of Eq. (7) (the KCR
lower bound) except for O(σ4) [2], [9], [10].

We further need to impose the constraint detF =
0. However, once the solution û of Eq. (10) is obtained,
it can be easily corrected so as to satisfy det F = 0 in
such a way that the accuracy is equivalent to the con-
strained minimization of Eq. (9) subject to det F = 0
except for higher order terms in σ [12] (see Appendix A
for the procedure). Since this is common to all meth-
ods for solving Eq. (10), we compare in the following the
performance difference among different methods before
imposing the constraint detF = 0.

3.1 Fundamental Numerical Scheme (FNS)

The procedure called FNS (fundamental numerical
scheme) of Chojnacki et al. [3] for solving Eq. (10) is
described as follows:

1. Initialize u.
2. Compute the matrices M and L in Eqs. (11).

†It has been confirmed by simulation that this replace-
ment or omission of terms O(σ4) does not produce any sig-
nificant changes.

††Note that V0[ξα] has rank 4: it has only four degrees
of freedom for x̄α, ȳα, x̄′

α, and ȳ′
α.
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3. Solve the eigenvalue problem

(M − L)u′ = λu′, (12)

and compute the unit eigenvector u′ for the eigen-
value λ closest to 0.

4. If u′ ≈ u except for sign, return u′ and stop. Else,
let u ← u′ and go back to Step 2.

Chojnacki et al. [4] also showed how to incorpo-
rate the constraint detF = 0 in the above iterations.
Later, they pointed out that convergence performance
improves if we choose in Step 3 not the eigenvalue clos-
est to 0 but the smallest one [5]. We call the above pro-
cedure the original FNS and the one using the smallest
eigenvalue the modified FNS .

Whichever eigenvalue is chosen for λ, we have λ =
0 after convergence. In fact, convergence means

(M − L)u = λu (13)

for some u. Computing the inner product of both sides
with u, we have

(u, Mu) − (u, Lu) = λ. (14)

On the other hand, Eqs. (11) imply that (u, Mu) =
(u, Lu) identically, meaning λ = 0.

3.2 Heteroscedastic Errors in Variables (HEIV)

Equation (10) can be rewritten as

Mu = Lu. (15)

The HEIV (heteroscedastic errors-in-variables) method
of Leedan and Meer [13] is to iteratively solve the gen-
eralized eigenvalue problem Mu = λLu. However, we
cannot directly solve this, because L is not positive def-
inite. So, we write

ξα =
(

zα

f2
0

)
, u =

(
v

F33

)
,

V0[ξα] =
(

V0[zα] 0
0> 0

)
, (16)

and define 8 × 8 matrices M̃ and L̃ by

M̃ =
N∑

α=1

z̃αz̃>
α

(v,V0[zα]v)
, L̃=

N∑
α=1

(v,z̃α)2V0[zα]
(v,V0[zα]v)2

, (17)

where we put

z̃α = zα − z̄,

z̄ =
N∑

α=1

zα

(v, V0[zα]v)

/
N∑

β=1

1
(v, V0[zβ ]v)

. (18)

Then, Eq. (15) splits into the following two equations
[5], [13]:

M̃v = L̃v, (v, z̄) + f2
0 F33 = 0. (19)

Thus, if an 8-dimensional unit vector v that satisfies the
first equation is computed, the second equation gives

F33, and we obtain

u = N
[(

v
F33

)]
, (20)

where N [ · ] denotes normalization to unit norm. The
vector u that satisfies the first of Eqs. (19) is computed
by the following iterations [5], [13]:

1. Initialize v.
2. Compute the matrices M̃ and L̃ in Eqs. (17).
3. Solve the generalized eigenvalue problem (cf. Ap-

pendix B)

M̃v′ = λL̃v′, (21)

and compute the unit generalized eigenvector v′

for the generalized eigenvalue λ closest to 1.
4. If v′ ≈ v except for sign, return v′ and stop. Else,

let v ← v′ and go back to Step 2.

However, Leedan and Meer [13] observed that
choosing in Step 3 not the generalized eigenvalue clos-
est to 1 but the smallest one improves the convergence
performance. Here, we call the above procedure the
original HEIV and the one using the smallest general-
ized eigenvalue the modified HEIV .

Whichever generalized eigenvalue is chosen for λ,
we have λ = 1 after convergence. In fact, convergence
means

M̃v = λL̃v (22)

for some v. Computing the inner product of both sides
with v, we have

(v,M̃v) = λ(v, L̃v). (23)

On the other hand, Eqs. (17) imply that (v, M̃v) =
(v, L̃v) identically, meaning λ = 1.

3.3 Renormalization

The renormalization of Kanatani [9] is to approximate
the matrix L in Eqs. (11) in the form

L ≈ cN , N =
N∑

α=1

V0[ξα]
(u, V0[ξα]u)

. (24)

The constant c is determined so that M−cN has eigen-
value 0. This is done by the following iterations [9]:

1. Initialize u and let c = 0.
2. Compute the matrix M in Eqs. (11) and the ma-

trix N in Eqs. (24).
3. Solve the eigenvalue problem

(M − cN)u′ = λu′, (25)

and compute the unit eigenvector u′ for the eigen-
value λ closest to 0.

4. If λ ≈ 0, return u′ and stop. Else, let

c ← c +
λ

(u′,Nu′)
, u ← u′ (26)

and go back to Step 2.
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3.4 Gauss-Newton Iterations

Since the gradient ∇uJ is given by Eq. (10), we can
minimize the function J in Eq. (9) by Newton itera-
tions. If we evaluate the Hessian ∇2

uJ , the increment
∆u in u is determined by solving

(∇2
uJ)∆u = −∇uJ. (27)

Since ∇2
uJ is singular (recall that J is constant in the

direction of u), the solution is indeterminate. However,
if we use pseudoinverse and compute

∆u = −(∇2
uJ)−8 ∇uJ, (28)

we obtain a solution orthogonal to u.
Differentiating Eq. (10) and introducing Gauss-

Newton approximation (i.e., ignoring terms that con-
tain (u, ξα)), we see that the Hessian is nothing but
the matrix M in Eqs. (11). We enforce M to have
eigenvalue 0 for u, using the projection matrix P u of
Eq. (6). The iteration procedure goes as follows:

1. Initialize u.
2. Compute

u′ = N [u − (P uMP u)−8 (M − L)u]. (29)

3. If u′ ≈ u, return u′ and stop. Else, let u ← u′

and go back to Step 2.

4. Initialization

We test the following three types of initialization to
examine the dependence of convergence properties on
initial values.

4.1 Random Choice

We generate nine independent Gaussian random num-
bers of mean 0 and standard deviation 1 and normalize
the vector consisting of them into unit norm.

4.2 Least Squares (LS)

Approximating the denominators in Eq. (9) by a con-
stant, we minimize

JLS =
1
2

N∑
α=1

(u, ξα)2 =
1
2
(u, MLSu), (30)

where we define

MLS =
N∑

α=1

ξαξ>
α . (31)

Equation (30) is minimized by the unit eigenvalue u of
MLS for the smallest eigenvalue.

4.3 Taubin’s Method

Replacing the denominators in Eq. (9) by their average,
we minimize the following function† [14]:

JTB =
1
2

∑N
α=1(u, ξα)2∑N

α=1(u, V0[ξα]u)
=

1
2

(u, MLSu)
(u, NTBu)

. (32)

The matrix NTB has the form

NTB =
N∑

α=1

V0[ξα]. (33)

Equation (32) is minimized by solving the generalized
eigenvalue problem

MLSu = λNTBu (34)

for the smallest generalized eigenvalue. However, we
cannot directly solve this, because NTB is not positive
definite. So, we decompose ξα, u, and V0[ξα] in the
form of Eqs. (16) and define 8 × 8 matrices M̃LS and
ÑTB by

M̃LS =
N∑

α=1

z̃αz̃>
α , ÑTB =

N∑
α=1

V0[zα], (35)

where

z̃α = zα − z̄, z̄ =
1
N

N∑
α=1

zα. (36)

Then, Eq. (34) splits into two equations

M̃LSv = λÑTBv, (v, z̄) + f2
0 F33 = 0. (37)

We compute the unit generalized eigenvector v of the
first equation for the smallest generalized eigenvalue λ
(see Appendix B). The second equation gives F33, and
u is given in the form of Eq. (20).

5. Numerical Examples

5.1 Simulated Images

Figure 1 shows two simulated images of two planar
grid planes joined at angle 60◦. The image size is

Fig. 1 Simulated images of planar grid surfaces.

†Taubin [14] did not take the covariance matrix into
account. This is a modification of his method.
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600 × 600 (pixels), and the focal length is 1200 (pix-
els). We added random Gaussian noise of mean 0 and
standard deviation σ (pixels) to the image coordinates
of each grid point independently and computed the fun-
damental matrix by FNS, HEIV, renormalization, and
Gauss-Newton iterations.

Figure 2 plots for each σ the root-mean-squares
of ‖P uû‖ over 1000 independent trials. We compared
LS, Taubin’s method, and the four iterative methods
starting from the Taubin solution and confirmed that
for each method the final solution does not depend on
the initial value as long as the iterations converge. The
dotted line indicates the KCR lower bound implied by
Eq. (7).

We see that Taubin’s method is considerably bet-
ter†than LS. The four iterative methods indeed improve
the Taubin solution, but the improvement is rather
small. All the solutions nearly agree with the KCR
lower bound when noise is small and gradually devi-
ate from it as noise increases. Since FNS, HEIV, and
Gauss-Newton minimize the same function, the result-
ing solution is virtually the same. The renormalization
solution is nearly equivalent to them.

Figure 3 shows the average number of iterations
of each method for 1000 trials. We stopped when the
increment in u was less than 10−6 in norm (the sign of
the eigenvector was chosen so that the orientation aligns
with the previous solution). Figure 3(a) is for random
initialization. The original FNS did not converge for
about 99% of the trials after 100 iterations; the original
HEIV about 40%. We stopped after 100 iterations and
set the iteration count to 100.

 0
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 0  1  2  3  4  5  6  7  8  9σ
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least squares
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Fig. 2 Root-mean-squares error vs. noise level.
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(a) Random initialization. (b) LS initialization. (c) Taubin initialization.

Fig.3 Average number of iterations vs. noise level.

Figure 3(a) shows that the modified FNS/HEIV
converge much more quickly than the original
FNS/HEIV. This can be explained as follows. If the
computed u′ is close to the true value u, the matrix
L in Eqs. (11) and the matrix L̃ in Eqs. (17) are both
close to O. Initially, however, they may be very differ-
ent from O when the initial value is randomly chosen.
Equations (12) and (21) are written, respectively, as

(M − L − λI)u′ = 0, (M̃ − λL̃)v′ = 0. (38)

Note that L and L̃ are both positive definite. In or-
der to cancel their effects, we need to choose λ to be
negative in the first equation and smaller than 1 in the
second.

As predicted from this explanation, the differ-
ence between the original FNS/HEIV and the modified
FNS/HEIV shrinks as we use better initial values, as
seen from Fig. 3(b), (c). We also see that the (origi-
nal or modified) FNS is more efficient than (original or
modified) HEIV.

Another finding is that, for random initialization,
renormalization is the most efficient. This is because
we start solving Eq. (25) with c = 0, canceling the
effect of N whatever it is, and the resulting u′ is close
to the LS solution. In contrast, FNS and HEIV may
produce a solution very different from the true value
when initially the matrices L and L̃ are very different
from O.

As Fig. 3(b), (c) shows, however, the convergence
performance of FNS and HEIV improves as we use bet-
ter initial values. Naturally, Gauss-Newton iterations
converge faster when started from better initial values.
In contrast, renormalization behaves almost indepen-
dently of initialization, confirming the above explana-
tion. Overall, Taubin-initialized (original or modified)
FNS shows the best convergence performance.

5.2 Real Images

Figure 4 shows two images of the same scene. We man-
ually chose corresponding 100 points as marked there
and computed the fundamental matrix by six different

†The mechanism of the superiority of Taubin’s method over

LS is analyzed in detail in [10].
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Fig. 4 Corresponding points in real images and computed
epipolar lines.

Table 1 Number of iterations and the computation time (sec-
onds) of the original/modified FNS/HEIV, renormalization and
Gauss-Newton iterations for random initialization, LS initializa-
tion and Taubin initialization.

random LS Taubin
original FNS 94.3 .168s 5 .009s 5 .012s
modified FNS 12.0 .030s 5 .010s 5 .013s
original HEIV 74.6 .264s 7 .019s 7 .025s
modified HEIV 9.1 .037s 7 .020s 7 .026s
renormalization 7.0 .022s 7 .013s 7 .017s
Gauss-Newton 10.3 .038s 5 .009s 6 .017s

methods. The solution is the same whichever is used,
and the computed epipolar lines are drawn in the im-
ages.

Table 1 lists the number of iterations and the com-
putation time (seconds) of each method. For random
initialization, we computed the average over 100 inde-
pendent trials. We used Pentium 4 3.4GHz for the CPU
with 2GB main memory and Linux for the OS.

We observe that for whichever initialization, FNS
is always better than HEIV. For both, the choice of the
eigenvalue is irrelevant if the iterations are initialized
by LS or Taubin’ method; for random initialization,
the original FNS/HEIV do not converge in most of the
trials (recall that 100 means nonconvergence). As pre-
dicted, the number of iterations of renormalization does
not depend on initialization.

The difference in computation time between LS
and Taubin initializations is due to the initialization
computation: 0.0009s for LS vs. 0.0015s for Taubin.
Overall, LS initialized (original or modified) FNS shows
the best convergence performance.

6. Conclusions

We have compared the convergence performance of dif-
ferent numerical schemes for computing the fundamen-
tal matrix from point correspondences over two images.
First, we stated the problem and the associated KCR
lower bound. Then, we described FNS, HEIV, and
renormalization. We also introduced Gauss-Newton it-
erations as a new method for fundamental matrix com-
putation. For initial values, we tested random choice,
LS, and Taubin’s method. Experiments using simu-
lated and real images revealed different characteristics
of each method. Overall, FNS exhibited the best con-
vergence performance.
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Appendix A. Rank Constraint Optimization

The computed fundamental matrix F can be optimally
corrected so as to satisfy det F = 0 as follows [9], [12].

Let û be the 9-dimensional vector representation
of the ML estimate F̂ of the fundamental matrix F
computed without the constraint detF = 0. Compute

M̃ =
N∑

α=1

P ûξαξ>
α P û

(û, V0[ξα]û)
, (A· 1)
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where P û is the projection matrix in Eq. (6) defined
for û. Let λ1 ≥ λ2 ≥ · · · ≥ λ9 (= 0) be the eigenvalues
of M̃ , and u1, u2, ..., u9 (= û) the corresponding
orthonormal system of eigenvectors. The covariance
matrix V [û] of û is estimated to be σ̂2V0[û], where σ̂ is
an estimate of the noise standard deviation and V0[û]
has the following form† [9]:

V0[û] =
u1u

>
1

λ1
+ · · · + u8u

>
8

λ8
. (A· 2)

We update û and V0[û] iteratively until they converge
as follows:

û ← N
[
û − (detF )V0[û]û†

(û†, V0[û]û†)

]
, (A· 3)

V0[û] ← P ûV0[û]P û. (A· 4)

Here, û† is the vector representation of the transposed
cofactor matrix F̂ †>:

û† =



û5û9 − û8û6

û6û7 − û9û4

û4û8 − û7û5

û8û3 − û2û6

û9û1 − û3û7

û7û2 − û1û8

û2û6 − û5û3

û3û4 − û6û1

û1û5 − û4û2


. (A· 5)

Appendix B. Generalized Eigenvalue Problem

Given a positive definite symmetric matrix G and a
symmetric matrix A, we want to compute a real num-
ber λ and a vector w such that

Aw = λGw. (A· 6)

In n dimensions, there exist n such real numbers (al-
lowing multiplicity) λ1, ..., λn, called generalized eigen-
values, and corresponding vectors w1, ..., wn, called
the generalized eigenvectors. If G is the unit matrix I,
Eq. (A· 6) reduces to the usual eigenvalue problem.

Equation (A· 6) is solved as follows [9]. Let µ1, ...,
µn be the eigenvalues of G, and g1, ..., gn the corre-
sponding orthonormal system of eigenvectors. Define

T =
g1g

>
1√

µ1
+

g2g
>
2√

µ2
+ · · · + gng>

n√
µn

. (A· 7)

Let λ1, ..., λn be the eigenvalues of Ã = TAT , and
u1, ..., un the corresponding orthonormal system of
eigenvectors. Then, the generalized eigenvalues of A
with respect to W are λ1, ..., λn, and the corresponding
generalized eigenvectors are w1 = Tu1, ..., wn = Tun.

†For numerical computation, we multiply this expression
by λ8 to make it O(1) to prevent numerical instability.
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