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PAPER

Geometric BIC

Kenichi KANATANI†a), Member

SUMMARY The “geometric AIC” and the “geometric
MDL” have been proposed as model selection criteria for geo-
metric fitting problems. These correspond to Akaike’s “AIC”
and Rissanen’s “BIC” well known in the statistical estimation
framework. Another well known criterion is Schwarz’ “BIC”, but
its counterpart for geometric fitting has not been known. This
paper introduces the corresponding criterion, which we call the
“geometric BIC”, and shows that it is of the same form as the
geometric MDL. Our result gives a justification to the geometric
MDL from the Bayesian principle.
key words: geometric model selection, AIC, BIC, MDL,
Bayesian estimation, degeneracy detection

1. Introduction

The basic principle of computer vision is to assume a
certain structure, or a model , in the observed scene,
such as certain objects being there, and to do inference
by extracting characteristics of the assumed structure
from observed images, estimating such properties of the
scene as categories, numbers, sizes, shapes, positions,
and orientations. However, we sometimes do not know
what the model should be. In such a case, selecting
an appropriate model from multiple candidates, called
model selection, is necessary.

For models having a form of standard statistical
estimation, such as regression, various types of (statis-
tical) model selection criteria have been proposed. The
best known are Akaike’s AIC (Akaike Information Cri-
terion) [1], Schwarz’ BIC (Bayesian Information Crite-
rion) [19], and Rissanen’s MDL (Minimum Description
Length) [18].

However, geometric inference for computer vision,
typically structure from motion, does not have the stan-
dard form of statistical estimation [4], [11], [12]. For
this, the geometric AIC [4], [8] and the geometric MDL
[11] have been introduced, corresponding to Akaike’s
AIC and Rissanen’s MDL.
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The main motivation of traditional statistical esti-
mation is the ability to make precise inference using a
large but limited number of data, while the main goal
of geometric inference for computer vision is to do pre-
cise but robust estimation that can tolerate noise [4],
[11], [12]. This is a sort of “dual” relationship. Hence,
while the AIC and the MDL are derived from asymp-
totic analysis with respect to the number N of data,
the geometric AIC and the geometric MDL are derived
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from perturbation analysis with respect to the noise
level ε [4], [11], [12].

Then, a question arises. What corresponds to
Schwarz’ BIC? The BIC is also derived from asymp-
totic analysis with respect to the number N of data.
What criterion results if we do perturbation analysis
with respect to the noise level ε? It has already been
conjectured [11] that because the BIC and the MDL
have the same form up to higher-order terms in 1/

√
N ,

the geometric AIC and the “geometric BIC” will have
the same form up to higher-order terms in ε. However,
the concrete form has not yet been shown.

In this paper, we present a rigorous derivation of
the geometric BIC based on Schwarz’ BIC principle and
confirm that it indeed has the same form as the geomet-
ric MDL. This has the following implications. First, our
derivation illuminates the Bayesian logic of model selec-
tion for geometric estimation. The fact that we arrive
at the same form as the geometric MDL is no surprise
but rather is a reassuring evidence that the underlying
logic and the derivation are correct. At the same time,
it also justifies the geometric MDL, whose axiomatic
origin has some arbitrariness, from the Bayesian stand-
point. Today, the Bayesian principle is thought to be
more fundamental that the MDL principle [3].

We begin with a overview of Akaike’s AIC,
Schwarz’ BIC, and Rissanen’s MDL (Sect. 2) and a
summary of the geometric AIC and the geometric MDL
(Sect. 3). Then, we describe the mathematical frame-
work of geometric fitting (Sect. 4). The central part
of this paper is Sect. 5, where we derive the geometric
BIC. We discuss its applications (Sect. 6) and conclude
(Sect. 7).

2. AIC, BIC, and MDL

We first give a brief summary of the AIC, the BIC, and
the MDL. A probability density p(x|θ) parameterized
by unknown θ is called a (statistical) model . The goal
of statistical estimation is to estimate θ from multiple
data x1, ..., xN assumed to be independently sampled
from p(x|θ). Maximum likelihood (ML) is to find the
value of θ that maximizes the likelihood

∏N
α=1 p(xα|θ).

When we have multiple candidate models∗ p1(x|θ), ...,
pM (x|θ), (statistical) model selection is to find the most
appropriate one from among them. The best known
criteria are

∗The same symbol θ is used for the convenience of de-
scription, but it may have a different dimension from model
to model.
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AIC=−2
N∑

α=1

log p(xα|θ̂) + 2k, (1)

BIC=−
N∑

α=1

log p(xα|θ̂) +
k

2
log N, (2)

MDL=−
N∑

α=1

log p(xα|θ̂) +
k

2
log N, (3)

where k is the degree of freedom of the model (= the
dimension of θ) and θ̂ is the ML estimator of θ obtained
by assuming that model. These criteria are computed
for each candidate model, and the one that has the
smallest value is adopted as the most appropriate.

AIC. Akaike’s AIC principle is to choose the model
that is the closest to the true model measured in the
Kullback-Leibler (KL) distance (or divergence) [1]. We
hypothesize that the true model is given by p(x|θ)
with some unknown θ, to which the ML estimator θ̂
is plugged in. This is justified when the number N of
data is large (consistency of ML). The KL distance is
defined via expectation with respect to the true model.
Since it is unknown, the expectation is approximated
by summation over the data, which is justified when
N is large (the law of large numbers). However, if the
same data are used for computing the ML estimator
θ̂ and approximating the expectation, mutual correc-
tion gives rise to statistical bias. Akaike [1] estimated
the bias by doing asymptotic expansion, assuming that
N is large and omitting high order terms in 1/

√
N .

Subtracting the estimated bias from the KL distance
estimate, he obtained his AIC in the form of Eq. (1) up
to model-independent terms.

BIC. Schwarz’ BIC principle is to assume an a prior
probability of the model, evaluate the a posteriori prob-
ability using the Bayes theorem, and choose the model
that has the largest value of it. Schwarz [19] assumed
equal priors for the candidate models and analyzed
asymptotic expansion of the (logarithmic) posterior
(the Laplace expansion), noting that the distribution of
θ concentrates on a small neighborhood of the ML es-
timator θ̂ when N is large (the central limit theorem).
Omitting higher-order terms in 1/

√
N and excluding

model-independent terms, he obtained his BIC in the
form of Eq. (2) independent of the a priori probability
of θ.

MDL. Rissanen’s MDL principle is to choose the model
that gives the shortest description when it is optimally
encoded along with the data [18]. According to infor-
mation theory, the data {xα} are optimally encoded
using its occurrence probability p(x|θ), but since the
true value of θ is unknown, the ML estimator θ̂ is sub-
stituted. However, the data {xα} and the ML estima-
tor θ̂ are both real numbers, which require an infinite
description length. So, they are quantized into discrete
values, and the quantization width is determined so
that the resulting code length is the shortest. As the
model is better approximated (i.e., θ̂ is approximated
to higher accuracy), the code length of the data {xα}

becomes shorter and approaches the information theo-
retical limit (Shannon’s theorem). At the same time,
good description of the model (i.e., high accuracy ap-
proximation of θ̂) requires a larger code length. Rissa-
nen [18] evaluated their optimal balance, analyzed its
asymptotic expansion, omitting higher-order terms in
1/

√
N , and obtained his MDL in the form of Eq. (3)

up to model-independent terms†.

3. Geometric AIC and Geometric MDL

Next, we briefly summarize the geometric AIC and the
geometric MDL. Given N data {xα}, geometric fitting
is the problem of estimating the law (or the constraint)
that governs their true values {x̄α} in the form of an
“implicit” equation

F (x; u) = 0, (4)

parameterized by unknown u. This equation is called
the (geometric) model . Many computer vision prob-
lems fall in this category. For example, we may want
to fit a parametric curve to a point sequence (xα, yα),
α = 1, ..., N . Or we may want to compute the fun-
damental matrix or the homography from point corre-
spondences (xα, yα), (x′

α, y′
α), α = 1, ..., N , over two

views [2]. By estimating the parameter u (e.g., coeffi-
cients of the curve equations, the fundamental matrix,
or the homography) so that Eq. (4) fits the data {xα}
well, the structure of the scene or its motion can be
inferred [2].

When we have multiple candidate models††
F 1(x, u) = 0, ..., F M (x, u) = 0, (geometric) model se-
lection is to find the most appropriate one from among
them. For this, the following geometric AIC and the
geometric MDL have been proposed [4], [8], [11]:

G-AIC=Ĵ + 2(Nd + p)ε2, (5)

G-MDL=Ĵ − (Nd + p)ε2 log ε2. (6)

Here, Ĵ is the residual (the sum of squares of the Ma-
halanobis distances) of the fitted model from the data
{xα}, d is the dimension of the manifold defined by the
model, p is the degree of freedom of the model (= the
dimension of u), and ε is the noise level (their precise
definitions are given later).

Geometric AIC. The geometric AIC is derived from
Akaike’s AIC principle by assuming Gaussian noise and
minimizing the KL distance of the candidate model
from the true model. Since the true model is unknown,
we replace the true values {x̄α} and the unknown u
by their ML estimators {x̂α} and û. We then evalu-
ate the bias and subtract it. The difference from the
AIC is that while the AIC is based on the asymptotic
expansion in 1/

√
N , the geometric AIC is obtained by

perturbation expansion in the noise level ε. The inte-
gration for evaluating the KL distance is approximated

†Equation (3) is a crude approximation. A more detailed
form involves the Fisher information matrix I(θ) [18].

††As before, the same symbol u is used for convenience,
but it may have a different dimension from model to model.
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by summation over data. This is justified because the
true values {x̄α} are very close to their ML estimators
{x̂α} when ε is small. Omitting higher-order terms in ε
and excluding model-independent terms, we obtain the
geometric AIC in the form of Eq. (5) [4], [8].

Geometric MDL. The geometric MDL is derived
from Rissanen’s MDL principle by assuming Gaussian
noise and minimizing the description length of both the
data and the model when optimally encoded. The data
{xα} and the ML estimators {x̂α} and û are quan-
tized, and the quantization width is determined so that
the resulting code length is the shortest. The difference
from the MDL is that while the MDL is based on the
asymptotic expansion in 1/

√
N , the geometric MDL is

obtained by perturbation expansion in the noise level ε.
Omitting higher-order terms in ε and excluding model-
independent terms, we obtain the geometric MDL in
the form of Eq. (3) [11].

4. Geometric Fitting

We now describe the mathematical framework in which
the geometric BIC is to be derived.

4.1 Noise Modeling

Let {xα}, α = 1, ..., N , be m-dimensional vector data†,
which are assumed to be purturbed from their true val-
ues {x̄α} by independent Gaussian noise of mean 0 and
covariance matrix

V [xα] = ε2V0[xα], (7)

where ε, which we call the noise level , is an average un-
certainty of data observation independent of individual
xα. The matrix V0[xα], which we call the normalized
covariance matrix , describes the relative uncertainty of
observing that particular xα. The goal of geometric
fitting is to find a method whose accuracy qickly in-
creases as ε → 0, because such a method can torelate
larger uncertainty than others.

Note that we mean by “noise” the uncertainty of
detecting xα, say using an image processing operator
[11], [12]. The uncertainty is not “random” in the usual
sense††; it is merely unknown. Also note that V0[xα]
is not a “function” of xα. It is the uncertainty of the
“observation process” for finding xα; it does not depend
on what actual value we find for xα.

The important thing is that ε and V0[xα] are prop-
erties of our data observation process independent of
which model we assume. If ε and V0[xα] are unknown,
they need to be estimated from some general knowledge
that apply to all the candidate models. This is one of
the differences from the traditional statistical estima-
tion process.

4.2 Maximum Likelihood

Suppose Eq. (4) is an r-dimensional equation. We write
it componentwise as

F (k)(x; u) = 0, k = 1, ..., r. (8)

xα
S

xα

Fig. 1 Fitting a manifold Ŝ closest to xα measured in the Ma-
halanobis distance. The point x̂α on it closest to xα in the
Mahalanobis distance is its ML estimator. The ellipsoids repre-
sent equal probability surfaces (xα − x̂α, V0[xα]−1(xα − x̂α)) =
constant.

For a given u, these r equations define a manifold (an
algebraic variety) S in the m-dimensional space X of
the variable x, which we call the data space. If the r
equations in Eq. (8) are algebraically independent†††,
the manifold S has dimension d = m − r. Geometric
fitting is regarded as the problem of adjusting u so that
S becomes close to the data {xα}.

From our Gaussian noise assumption, the proba-
bility density of the data {xα} given their true values
{x̄α} and the parameter u is

p({xα}|{x̄α}, u) =
e−J/2ε2√

(2π)Nmε2Nm|V0[xα]|N
, (9)

where we define

J =
N∑

α=1

(xα − x̄α, V0[xα]−1(xα − x̄α)). (10)

Throughout this paper, we denote the inner product of
vectors a and b by (a, b). If regarded as a function of
{x̄α} and u, Eq. (9) is the likelihood of the data {xα}.
The values {x̄α} and u that maximize Eq. (9) are their
ML estimators; they are the minimizer of the function
J in Eq. (10) subject to

F (k)(x̄α; u) = 0, k = 1, ..., r, α = 1, ..., N. (11)

Let Ĵ be the resulting minimum of J .
Geometrically, ML is to adjust u so that the mani-

fold S associated with the model is closest to points xα
in the data space measured in the sum of the square
Mahalanobis distances in Eq. (10) (Fig. 1). The result-
ing value û is the ML estimator of u, and the points
x̂α on the fitted manifold Ŝ closest to xα measured in
Eq. (10) are their ML estimators.

†The following argument holds if each xα is constrained
to have a smaller degree m′ (< m) of freedom, e.g., being
a unit vector. We only need to introduce degenerate co-
variance matrices, pseudoinverse, and projection on to the
constrained space [4]. Here, for simplicity, we assume that
no such intrinsic constraints exist.

††For example, if we repeat the observation, we always
find the same value. This is the fundamental difference from
the traditional statistical estimation [11], [12].

†††The following argument holds if the r equations in
Eq. (8) has redundancies with only r′ (< r) being indepen-
dent, as long as the r equations define hypersurfaces with
nonsingular (or transversal) intersections. [4]. We only need
to introduce pseudoinverse and projection operation opera-
tors [4]. Here, for simplicity, we assume that the r equations
are independent.
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4.3 Two-Stage Estimation

We compute ML in two stages. First, we fix u and mini-
mize Eq. (10) with respect to {x̄α} subject to Eq. (11).
Let {x̃α(u)} be the solution, and J̃(u) the resulting
minimum of Eq. (10). Next, we minimize

J̃(u)=
N∑

α=1

(xα − x̃α(u), V0[xα]−1(xα − x̃α(u))), (12)

with respect to u; we no longer need to consider
Eq. (11), which is identically satisfied by {x̃α(u)}. The
value û that minimizes Eq. (12) is the ML estimator of
u. The corresponding {x̃α(û)} are the ML estimators
of {x̄α}, and J̃(û) equals the minimum Ĵ of J .

4.4 A Posteriori Covariance Matrices

Since {x̃α(u)} identically satisfy Eq. (11), they are con-
strained to be in the d-dimensional manifold S in the
data space X . Hence, although the original data {xα}
have m degrees of freedom, the points {x̃α(u)} have
only d degrees of freedom. They are projections of
{xα} onto S through the Mahalanobis distance min-
imization. The normalized covariance matrix V0[x̃α] of
x̃α(u) is defined by the associated projection of xα(u)
onto the tangent space Tx̃α(S) to S at x̃α and has the
following form†[4], [8]:

V0[x̃α] = V0[xα]

−
r∑

k,l=1

W (kl)
α (V0[xα]∇xF (k)

α )(V0[xα]∇xF (l)
α )>. (13)

Here, ∇xF (k) denotes the gradient of F (k) with respect
to x. The subscript α means its evaluation at x = xα,
and W

(kl)
α is the (kl) element of the inverse of the r× r

matrix whose (kl) element is (∇xF
(k)
α , V0[xα]∇xF

(l)
α ):

symbolically, we write(
W (kl)

α

)
=

(
(∇xF (k)

α , V0[xα]∇xF (l)
α )

)−1

. (14)

Note that V0[x̃α] in Eq. (13) is an m × m matrix but
has rank d (< m), because it is the projection of V0[xα]
onto the d-dimensional tangent space Tx̃α(S) to S.

The posterior covariance matrix of the ML estima-
tor û of u is evaluated as follows [4], [8]:

V [û] = ε2M̂
−1

+ O(ε4), (15)

M̂ =
N∑

α=1

r∑
k,l=1

Ŵ (kl)
α ∇uF̂ (k)

α ∇uF̂ (l)>
α . (16)

Here, ∇uF (k) denotes the gradient of F (k) with respect
to u, and the subscript α means evaluation at x = xα.
The hats on W

(kl)
α and F

(k)
α mean substitution of û for

u.
If xα and û in the expression of M̂ in Eq. (16) are

replaced by their true values x̄α and u, respectively,
the first term on the right-hand side of Eq. (15) gives
the KCR lower bound on the covariance matrix of any
unbiased estimator of u [4], [9], [12].

5. Geometric BIC

The above mathematical framework is the same as that
used to derive the geometric AIC and the geometric
MDL [4], [8], [11]. We newly derive the geometric BIC
in the same framework.

5.1 A Priori and A Posteriori Probabilities

Suppose we have M models M1, ..., MM . Let p(Mi)
be the a priori probability for the model Mi, p(u|Mi)
the a priori probability density of its parameter u, and
p({x̄α}|u,Mi) the a priori probability density†† of the
true values {x̄α} given u.

The likelihood p({xα}|{x̄α}, u,Mi) of the data
{xα} given the parameter u and the true values {x̄α}
for model Mi is Eq. (9). According to the Bayes theo-
rem, the a posteriori probability p(Mi|{xα}) of model
Mi given the data {xα} is

p(Mi|{xα})=
∫∫

· · ·
∫

p({xα}|{x̄α}, u,Mi)

×p({x̄α}|u,Mi)p(u|Mi)dx̄1 · · · dx̄Ndu p(Mi)/ M∑
i=1

p({xα},Mi), (17)

where p({xα},Mi) in the denominator is the expres-
sion in the numerator. Following Schwarz [19], we as-
sume that each model has the same a priori probability
and choose the model that maximizes Eq. (17). Since
the denominator in Eq. (17) does not depend on indi-
vidual models, we choose the model that maximizes

L =
∫

e−Jp({x̄α}|u)p(u)dx̄Ndu, (18)

where and hereafter we denote
∫ ∫

· · ·
∫

dx̄1 · · · dx̄Ndu
by

∫
dx̄Ndu and omit Mi to avoid notational clutter.

5.2 Expansion Around ML Estimators

In order to simplify the notation, we introduce the
following metric associated with the Mahalanobis dis-
tance:

(a, b)α ≡ (a, V0[xα]−1b), ‖a‖α ≡
√

(a, a)α. (19)

Then, we see from Eq. (10) that

J=
N∑

α=1

‖xα − x̄α‖2
α

†Note that V0[x̃α] is defined by the right-hand side of
Eq. (13); not that x̃α is “substituted” into V0[xα]. Since
V0[xα] is a symbol, not a function, nothing can be sub-
stituted. However, V0[x̃α] is a “function” of xα, u, and
V0[xα].

††Strictly, we need a subscript i for the parameter u and
the functions p( · ) and p( · | · · · ), because they are different
from model to model. To avoid notational complications,
however, we omit such a subscript i.
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S

xα

xα
∼

xα

xα∼δxα

S

Fig. 2 Measured in the Mahalanobis distance, x̃α and x̂α are
the closest points in the true manifold S and the fitted manifold

Ŝ, respectively, from the data point xα. The true position x̄α is
in S.

=
N∑

α=1

‖(xα − x̃α) + (x̃α − x̄α)‖2
α

=
N∑

α=1

‖xα − x̃α‖2
α +

N∑
α=1

‖x̃α − x̄α‖2
α + · · · , (20)

where x̃α is a shorthand of x̃α(u), and “· · ·” denotes
omitted higher-order terms in ε. The reasoning behind
Eq. (20) is as follows. Since x̃α is, by definition, the
point in S “closest” to xα measured in the norm ‖ · ‖α,
the displacement xα − x̃α is “orthogonal” to S in the
metric ( · , · )α. The ML estimator x̃α ∈ S is in the
O(ε) neighborhood of its true position x̄α ∈ S, so the
deviation x̃α − x̄α is in higher-order contact with S at
x̃α (Fig. 2). If the manifold S is flat, the terms “· · ·”
vanish†, and Eq. (20) is regarded as the “Pythagorean
theorem” of a right triangle with respect to the metric
in Eq. (19).

Consider the term
∑N

α=1 ‖xα−x̃α‖2
α (=

∑N
α=1 ‖xα−

x̃α(u)‖2
α) in Eq. (20). Letting u = û + δu, we expand

it in δu around û. Since by definition û minimizes
this term, the first order term in δu vanishes. From
Eq. (15), we obtain

N∑
α=1

‖xα − x̃α‖2
α = Ĵ + (δu, M̂δu) + · · · , (21)

where “· · ·” denotes omitted higher-order terms in δu.
This is obtained by noting that Eq. (15) implies that the
a posteriori probability density of u should be propor-
tional to e−(δu,V [û]−1δu) (= e−(δu,M̂δu)/2ε2

) except for
higher-order terms in δu (see [4] for the details). Since
the posterior probability of the parameter u should be
proportional to the likelihood in Eq. (9), they should
have the same logarithmic expansion form.

Similarly, the term ‖x̃α − x̄α‖2
α in Eq. (20) is writ-

ten from Eq. (13) as

‖x̃α − x̄α‖2
α = (δxα, V0[x̃α]−δxα) + · · · , (22)

where we put δxα = x̃α − x̄α, and V0[x̃α]− is the pseu-
doinverse††of V0[x̃α].

Thus, Eq. (20) has the following expansion:

J = Ĵ+(δu, M̂δu)+
N∑

α=1

(δx̃α,V0[x̃α]−δx̃α)+ ....(23)

The reasoning invoked here is essentially the same as
that used for deriving the geometric AIC and the geo-
metric MDL [4], [8], [11].

5.3 Expansion of A Posteriori Probability

Substituting Eq. (23) and omitting higher-order terms
in ε, we can write Eq. (18) as follows:

L=e−Ĵ/2ε2

∫
e−(δu,M̂ δu)/2ε2

(∫
e−

∑N

α=1
(δx̃α,V0[x̃α]−δx̃α)/2ε2

×p({x̄α}|u)dx̄N
)
p(u)du

=e−Ĵ/2ε2
∫

e−(u−û,M̂(u−û))/2ε2

×
N∏

α=1

(∫
e−(x̄α−x̃α,V0[x̃α]−(x̄α−x̃α))/2ε2

×p({x̄α}|u)dx̄α

)
p(u)du. (24)

The expression e−(x̄α−x̃α,V0[x̃α]−(x̄α−x̃α))/2ε2
in x̄α

takes a value close to 1 only when x̄α is in the
O(ε) neighborhood of x̃α, exponentially decaying to 0
around it. The a priori probability p({x̄α}|u) repre-
sents the state of our knowledge about the true position
of xα given u [3], e.g., that the feature point we seek
may be detected around a certain region in the image if
the scene has a certain structure specified by u. Hence,
we may assume that p({x̄α}|u) varies smoothly around
x̃α unless a specific evidence for otherwise exists. Thus,
if p({x̄α}|u) is expanded around x̃α into p({x̃α}|u) +
(∇xp({x̃α}|u), x̄α − x̃α) + · · ·, the remaining terms
“· · ·”, which are second (quadratic) or higher orders
in ε, can be ignored. However, the first order (linear)
term is an odd function around x̃α, so integration of
it after multiplication by e−(x̄α−x̃α,V0[x̃α]−(x̄α−x̃α))/2ε2

vanishes. The integration of the remaining zeroth order
(constant) term p({x̃α}|u) is evaluated from the nor-
malization relation of the Gaussian distribution in the
form∫

e−(x̄α−x̃α,V0[x̃α]−(x̄α−x̃α))/2ε2
p({x̃α}|u)dx̄α

=
√

(2π)dε2d|V0[x̃α]|+ p({x̃α}|u), (25)

where |V0[x̃α]|+ denotes the product of positive eigen-
values of V0[x̃α], i.e., its determinant restricted to its
domain Tx̃α(S).

Next, we compute the product
∏N

α=1 of Eq. (25),
multiply it by e−(δu,M̂δu)/2ε2

p(u), and integrate the
resulting expression with respect to u. Again, the ex-
pression e−(u−û,M̂(u−û))/2ε2

in u has a value close to
1 only when u is in the O(ε) neighborhood of û, expo-

†Thus, the terms “· · ·” in Eq. (20) depend not only on ε
but also the “curvature” of the manifold S. Rigorous order
analysis would require more precise analysis, but what we
need later is only the leading terms.

††The matrix V0[x̃α] in Eq. (13) is singular and has rank
d. Its domain is the d-dimensional tangent space Tx̃α(S) to
S, whose orthogonal complement is the null space of V0[x̃α];
no deviations are allowed in it. The pseudoinverse V0[x̃α]−

means the inverse operation within Tx̃α(S), preserving the
same null space.
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nentially decaying to 0 around it. As before, |V0[x̃α]|+,
p({x̃α}|u), and p(u) can be regarded as smooth func-
tions of u around û, so their second (quadratic) and
higher-order expansion terms can be ignored. The first
order (linear) terms are odd functions of u around û, so
their integration after multiplication by e−(δu,M̂δu)/2ε2

vanishes. Hence, we only need to integrate the zeroth
order (constant) terms of |V0[x̂α]|+, p({x̂α}|u), and
p(u) multiplied by e−(δu,M̂δu)/2ε2

, where |V0[x̂α]|+ is
a shorthand of |V0[x̃α(û)]|+. Using the normalization
relation of the Gaussian distribution, we obtain∫

e−(δu,M̂δu)/2ε2
N∏

α=1

√
(2π)dε2d|V0[x̂α]|+

×p({x̂α}|u)p(u)du

=
√

(2π)pε2p|M̂ |−p
+

N∏
α=1

√
(2π)dε2d|V0[x̂α]|+

×p({x̂α}|û)p(û) + · · · . (26)

The reasoning invoked here is essentially the same
as that of Schwarz [19] used for deriving his BIC.

5.4 Geometric BIC

Thus, Eq. (24) is evaluated except for higher-order
terms in ε in the following form:

L=e−Ĵ/2ε2
√

(2π)pε2p|M̂ |−p
+ p(û)

×
N∏

α=1

√
(2π)dε2d|V0[x̂α]|+ p({x̂α}|û). (27)

Its logarithm takes the form

log L=− Ĵ

2ε2
+

p

2
log 2π +

p

2
log ε2 − p

2
log |M̂ |+

+ log p(û) +
Nd

2
log 2π +

Nd

2
log ε2

+
1
2

N∑
α=1

log |V0[x̂α]|++
N∑

α=1

log p({x̂α}|û). (28)

The model that has the largest value of log L can be
regarded as the most appropriate. Multiplying Eq. (28)
by −2ε2, we obtain

Ĵ − (Nd + p)ε2 log ε2 + ε2
(
p log |M̂ |+

−
N∑

α=1

log |V0[x̂α]|+ − (Nd + p) log 2π − 2 log p(û)

−2
N∑

α=1

log p({x̂α}|û)
)
. (29)

The terms of O(ε2) approach 0 more quickly than the
terms of O(ε2 log ε2) as ε → 0. Omitting the last term,
we obtain the geometric BIC

G-BIC = Ĵ − (Nd + p)ε2 log ε2, (30)

which has the same form as the geometric MDL in
Eq. (6).

This situation corresponds to the fact that Rissa-
nen’s MDL has the same form as Schwarz’ BIC as far
as the leading terms are concerned, in spite of the fact
that they are derived from quite different reasonings:
one from information theory, the other from the Bayes
theorem. Thus, our result is a reassuring evidence that
the logic and the derivation we used are correct. Today,
however, the view that the Bayesian principle is more
fundamental than the MDL principle is becoming more
and more dominant [3]. From this viewpoint, our result
can also justify the geometric MDL, whose axiomatic
origin has some arbitrariness, from the Bayesian stand-
point.

5.5 Dimensional anomaly

Both Eqs. (6) and (30) involve logarithm of ε, which
has the dimension of length (in pixels). This anomaly is
caused by our crude order comparison: the scale factor
to divide ε for canceling the dimensionality is separated
away due to the additivity of the logarithm and dis-
carded†, because it increases less rapidly than O(log ε)
as ε → 0.

This anomaly could be compensated for if higher-
order terms in ε were included, but that would cause
much complication. A realistic compromise is, as sug-
gested in [11], to introduce a typical reference length L,
such as the image size, and replace log ε2 by log(ε/L)2
(= log ε2 − 2 log L); the term −2 log L has little effect
on model selection when ε is sufficiently small [11].

6. Applications

The geometric AIC and the geometric MDL have been
used for model selection of various problems for com-
puter vision, including fitting lines, curves, planes, and
surfaces to 2-D and 3-D points [11], reliability evalu-
ation of 3-D computation using a moving camera [6],
detecting symmetry of 2-D shapes [5], segmenting a
curve into line segments [7], inferring object shapes by
stereo vision [13], moving object detection from optical
flow [17], camera motion estimation for virtual studio
systems [16], correspondence detection between images
[15], automatic regularity enforcement on 2-D figures
[21], automatic image mosaicing [14], and multibody
motion segmentation [10], [20].

Almost all these applications are for degeneracy
detection. For particular parameter values, the model
degenerates and has a lower degree of freedom, or the
manifold it defines has a lower dimension. For ex-
ample, curves and surfaces degenerate into lines and
planes if some of the coefficients vanish. Depending

†The same problem also arises to Rissanen’s MDL: if
multiple data are combined, e.g., a consecutive pair, into
one, the apparent number N of the data decreases, so the
MDL changes its value. This effect is compensated for by
higher-order terms in 1/

√
N involving the Fisher informa-

tion matrix I(θ). See the footnote † in page 145.
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on the parameter values, rigid motions may degenerate
into pure rotations, and projective transformations into
affine transformations. If such degeneracies occur, the
computation based on a nondegenerate model may fail.
For example, 3-D reconstruction fails if the assumed
rigid camera motion degenerates into a pure rotation.
In such a case, one needs to switch to the degenerate
model. To this, geometric model selection is called for,
because the nondegenerate model always has a smaller
residual than the degenerate one and hence they cannot
be compared by the residual alone. For such applica-
tions, the following has been known [11].

• The geometric AIC tends to select a model that
is faithful to the data. It almost always judges
a nondegenerate model to be nondegenerate but
sometimes judges a degenerate model to be non-
degenerate.

• The geometric MDL prefers the simplicity of the
model to the faithfulness to the data. It almost
always judges a degenerate model to be degenerate
but very often judges a nondegenerate model to be
degenerate.

Hence, the choice between the geometric AIC and the
geometric MDL should be based on which the user gives
preference, detecting degeneracy or nondegeneracy.

Since the geometric BIC introduced in this paper
has the same form as the geometric MDL, no essentially
new results are obtained by it. However, we obtain
a new “interpretation” that the use of the geometric
MDL can also be justified from the Bayesian principle.

7. Conclusions

Noting that Akaike’s AIC and Rissanen’s MDL in the
traditional statistical framework correspond to the ge-
ometric AIC and the geometric MDL, respectively, in
the geometric fitting framework, we have answered the
question as to what Schwarz’ BIC in the statistical
framework corresponds to in the geometric framework.

We first described the difference between the tradi-
tional statistical estimation framework and the geomet-
ric fitting framework, pointing out that the asymptotic
analysis as the number N of data goes to ∞ in the
former corresponds to the perturbation analysis as the
noise level ε goes to 0 in the latter. Then, we intro-
duced the Bayesian logic for geometric model selection
and derived the geometric BIC. We found that it has
the same form as the geometric MDL. Our result jus-
tifies the geometric MDL from the Bayesian principle.
We also discussed applications of geometric model se-
lection.
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