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SUMMARY We describe a theoretically optimal algorithm

for computing the homography between two images. First, we de-

rive a theoretical accuracy bound based on a mathematical model

of image noise and do simulation to con�rm that our renormaliza-

tion technique e�ectively attains that bound. Then, we apply our

technique to mosaicing of images with small overlaps. By using

real images, we show how our algorithm reduces the instability

of the image mapping.
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1. Introduction

A homography is a mapping that typically occurs be-

tween two perspective images of a planar surface in the

scene. Computing homography plays an essential role

in aerial image registration and analysis of runway and

road images viewed from airplanes and vehicles. Since

far-away scenes can e�ectively be regarded as planar

surfaces, we can integrate multiple images into one con-

tinuous image by computing homographies; this process

is known as image mosaicing [10], [11], [16].

If we know the homography between two images

of a planar surface, we can determine the position of

the surface and the relative motion of the camera up

to scale [8], [9], [15]. This fact can be used to build a

scene understanding system based on objects with pla-

nar surfaces [14]. If the scene consists mostly of a sin-

gle planar surface (e.g., the ground) on which there are

non-planar objects, we can detect them by mapping one

image onto the other via a homography and searching

for non-overlapping regions. We can also reconstruct

3-D from the degree of non-overlapping [1], [3], [4]. Ho-

mography computation also plays an essential part in

calibrating cameras and structured-light projection sys-

tems using planar patterns [2], [13].

However, there are some issues which have not re-

ceived much attention:

� In the past, the least-squares method (described
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later) has been used widely because of compu-

tational simplicity. However, the least-squares

method produces statistical bias [6], [8], because

homogeneous coordinates are treated as if they

were physical quantities without distinguishing

measurement data from arti�cial constants. Since

noise occurs in \image coordinates" (inhomoge-

neous coordinates) subject to Euclidean geometry,

we must work in the Euclidean framework [12].

� Traditionally, the performance of a new algorithm

is tested by random noise simulation but usually

compared only with \previously proposed meth-

ods." However, an algorithm is optimal only when

it attains a theoretical accuracy bound .

Recently, Kanatani [6] proposed a theory of sta-

tistical optimization, generalizing various types of ge-

ometric estimation in an abstract framework and de-

riving a scheme for optimal estimation and reliability

evaluation. In this paper, we apply his theory to ho-

mography computation. First, we derive a theoreti-

cal accuracy bound based on a mathematical model

of image noise. Then, we describe a technique called

renormalization that theoretically attains the accuracy

bound in the �rst order. By random noise simulation,

we con�rm that our renormalization method e�ectively

attains that bound.

Finally, we apply our algorithm to mosaicing of

images with small overlaps. Since matching points are

restricted in very narrow strips in the images, their

small perturbation would cause large image deforma-

tions. Using real images, we demonstrate this vulnera-

bility and show how our algorithm reduces it.

2. Representation of Homography

A homography is an image mapping in the form

x

0

=

Ax+By + C

Px +Qy + R

; y

0

=

Dx+Ey + F

Px+Qy + R

: (1)

If we de�ne vectors x and x

0

and matrix H by

x =

0

@

x=f

y=f

1

1

A

; x

0

=

0

@

x

0

=f

y

0

=f

1

1

A

; (2)
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; (3)
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Eq. (1) can be written as

x

0

= kHx; (4)

where k is an arbitrary nonzero constant. To avoid nu-

merical instability, the scale factor f is chosen in such a

way that x=f and y=f have order of 1. Since the scale

of the matrix H is irrelevant, we adopt normalization

kHk = 1, where the norm of a matrix A = (A

ij

) is

de�ned by kAk =

q

P

3

i;j=1

A

2

ij

. We hereafter call both

the matrix H and the mapping it de�nes the \homog-

raphy H."

3. Description of Uncertainty

Regarding data as random variables, we describe the

uncertainty of data points (x

�

; y

�

) and (x

0

�

; y

0

�

) by their

covariance matrices �

�

and �

0

�

. It follows that the vec-

tors x

�

and x

0

�

have the following singular covariance

matrices (the superscript > denotes transpose):

V [x

�

] =

1

f

2

�

�

�

0

0

>

0

�

;

V [x

0

�

] =

1

f

2

�

�

0

�

0

0

>

0

�

: (5)

Since it is di�cult to predict the uncertainty of each

data point in advance, we assume that only the rela-

tive tendency of noise occurrences is known. In other

words, we assume that the covariance matrices V [x

�

]

and V [x

0

�

] are known up to scale and write

V [x

�

] = �

2

V

0

[x

�

]; V [x

0

�

] = �

2

V

0

[x

0

�

]: (6)

We call the unknown magnitude � the noise level . The

matrices V

0

[x

�

] and V

0

[x

0

�

], which we call the normal-

ized covariance matrices, specify the relative depen-

dence of noise occurrence on positions and orientations.

If no prior knowledge is available for them, we simply

assume isotropy and homogeneity and use the default

values V

0

[x

�

] = V

0

[x

0

�

] = diag(1; 1; 0) (the diagonal ma-

trix with diagonal elements 1, 1, and 0 in that order).

Let

^

H = (

^

H

ij

) be an estimate of the homography,

and

�

H = (

�

H

ij

) its true value. The uncertainty of the

estimate

^

H is measured by its covariance tensor

V [

^

H ] = E[P

�

(

^

H �

�

H) 
 (

^

H �

�

H)

�

P

>

]; (7)

where E[ � ] denotes expectation. The symbol 
 de-

notes tensor product: for matrices A = (A

ij

) and B

= (B

ij

), the (ijkl) element of their tensor product

is A

ij

B

kl

. For tensors P = (P

ijkl

) and T = (T

ijkl

),

the product PT P

>

is a tensor whose (ijkl) element is

P

3

m;n;p;q=1

P

ijmn

P

klpq

T

mnpq

. The (ijkl) element of the

tensor P in Eq. (7) is given by

P

ijkl

= �

ik

�

jl

�

�

H

ij

�

H

kl

; (8)

where �

ij

is the Kronecker delta, taking 1 for i = j

and 0 otherwise. Since a homography is normalized to

have unit norm, it is a point on an 8-dimensional sphere

S

8

in the 9-dimensional parameter space R

9

. The ten-

sor P projects the deviation

^

H �

�

H onto the tangent

space T

�

H

(S

8

) at

�

H ; the uncertainty of computation is

measured in the plane orthogonal to

�

H in R

9

. The

root-mean-square error is given by

rms(

^

H) =

q

E[kP(

^

H �

�

H)k

2

]: (9)

Its domain is 0

<

=

rms(

^

H)

<

=

1.

4. Theoretical Accuracy Bound

If we use bars to denote the true values, the problem is

formally stated as follows:

Problem 1: Estimate a matrix H such that

�
x

0

�

�H
�
x

�

= 0 (10)

from noisy data fx

�

g and fx

0

�

g.

Applying the general theory of Kanatani [6], we

obtain the theoretical accuracy bound as follows:

V [

^

H] � �

2

�

N

X

�=1

3

X

k;l=1

�

W

(kl)

�

�

e

(k)

�
�
x

0

�

�



�
x
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�

e

(l)

�
�
x

0
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�
x

�

�

�

8

; (11)

�
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�

�
x

0

�

�

�

HV

0

[x

�

]

�

H

>

�
�
x

0

�

+(

�

H
�
x

�

)� V

0

[x

�

] � (

�

H
�
x

�

)

�

�

2

: (12)

Consequently, the root-mean-square error is bounded

in the form

rms(

^

H)

>

=

q

trV[

^

H]; (13)

where the trace of a tensor T = (T

ijkl

) is de�ned by

trT =

P

3

k;l=1

T

klkl

.

In Eq. (11), T � S means that T � S is a posi-

tive semi-de�nite symmetric tensor, and the operation

( � )

�

r

denotes the (Moore-Penrose) generalized inverse

of rank r (discussed later). The product a � T � a of

a vector a = (a

i

) and a matrix T = (T

ij

) is a matrix

whose (ij) element equals

P

3

k;l;m;n=1

"

ikl

"

jmn

a

k

a

m

T

ln

,

where "

ijk

denotes the Eddington epsilon, taking 1 and

�1 if (ijk) is an even and odd permutation of (123), re-

spectively, and 0 otherwise. We de�ne e

(1)

= (1; 0; 0)

>

,

e

(2)

= (0; 1; 0)

>

, and e

(3)

= (0; 0; 1)

>

.

For a tensor T = (T

ijkl

) and a matrix A = (A

ij

),

we say that A is an eigenmatrix of T for eigenvalue �

if TA = �A, where the product TA is a matrix whose

(ij) element is

P

3

k;l=1

T

ijkl

A

kl

. The eigenmatrices and

eigenvalues of a tensor can be computed by identify-

ing a tensor and a matrix with a 9 � 9 matrix and a

9-dimensional vector, respectively [6].



KANATANI et al: OPTIMAL HOMOGRAPHY COMPUTATION WITH A RELIABILITY MEASURE

1371

A tensor T = (T

ijkl

) is said to be symmetric if T

ijkl

= T

klij

. A symmetric tensor has nine real eigenvalues

f�

i

g. The corresponding eigenmatrices fU

i

g can be

chosen to be an orthogonal system of matrices of unit

norm, where the inner product of matrices A = (A

ij

)

and B = (B

ij

) is de�ned by (A;B) =

P

3

i;j=1

A

ij

B

ij

.

A symmetric tensor is positive semi-de�nite if its eigen-

values are all nonnegative.

Let �

1

>

=

� � �

>

=

�

9

(

>

=

0) be the eigenvalues of a

positive semi-de�nite symmetric tensor T , and fU

1

,

..., U

9

g the corresponding orthonormal set of eigenma-

trices of unit norm. If �

r

> 0, the (Moore-Penrose)

generalized inverse of T of rank r is computed as fol-

lows [6]:

�

T

�

�

r

=

r

X

i=1

U

i


U

i

�

i

: (14)

5. Maximum Likelihood Estimation

It can be shown [6] that the theoretical accuracy bound

can be attained in the �rst order (i.e., ignoring terms

of O(�

4

)) by minimizing the squared Mahalanobis dis-

tance

J =

N

X

�=1

(x

�

�
�
x

�

; V

0

[x

�

]

�

2

(x

�

�
�
x

�

))

+

N

X

�=1

(x

0

�

�
�
x

0

�

; V

0

[x

0

�

]

�

2

(x

0

�

�
�
x

0

�

)) (15)

subject to the constraint (10). We denote the in-

ner product of vectors a and b by (a; b). Using La-

grange multipliers and introducing �rst order approx-

imation, we can eliminate the constraint (10) and ex-

press Eq. (15) in the form

J =

N

X

�=1

(x

0

�

�Hx

�

;W

�

(x

0

�

�Hx

�

)); (16)

where W

�

is the matrix obtained by replacing, in

Eq. (12), the true values
�
x

�

,
�
x

0

�

, and

�

H by the data

x

�

and x

0

�

and the variable H, respectively. Let

^

J be

the residual, i.e., the minimum of the function J . It can

be shown that

^

J=�

2

is subject to a �

2

distribution with

2(N � 4) degrees of freedom to a �rst approximation

[6]. Hence, an unbiased estimator of �

2

is obtained in

the form

�̂

2

=

^

J

2(N � 4)

: (17)

Since the resulting solution

^

H is optimal, we can

evaluate its covariance tensor to a �rst approximation

by replacing, in the right-hand side of Eq. (11), the true

values
�
x

�

,
�
x

0

�

, and

�

H by the data x

�

and x

0

�

and the

solution

^

H, respectively. The square noise level �

2

is

replaced by the estimate (17).

The eigenmatrix U

max

of the resulting covariance

tensor V [

^

H ] for the maximum eigenvalue �

max

indicates

the orientation in the 9-dimensional parameter space

R

9

along which error is most likely to occur; �

max

is

the variance along it. We perturb the solution

^

H along

that orientation in both directions by the standard devi-

ation

p

�

max

and normalize the resulting values, which

we call primary deviation pair and view as typical in-

stances of perturbation:

H

(+)

= N [

^

H +

p

�

max

U

max

];

H

(�)

= N [

^

H �

p

�

max

U

max

]: (18)

The operator N [ � ] denotes normalization to unit norm.

6. Renormalization

We apply a technique called renormalization [6], which

is described as follows:

1. Let c = 0 and W

�

= I, � = 1, ..., N .

2. De�ne the following tensorM:

M =

1

N

N

X

�=1

3

X

k;l=1

W

(kl)

�

(e

(k)

� x

0

�

)
 x

�


(e

(l)

� x

0

�

) 
 x

�

: (19)

3. Compute the following tensor N = (N

ijkl

):

N

ijkl

=

1

N

N

X

�=1

3

X

m;n;p;q=1

"

imp

"

knq

W

(mn)

�

�

V

0

[x

�

]

jl

x

0

�(p)

x

0

�(q)

+V

0

[x

0

�

]

pq

x

�(j)

x

�(l)

�

: (20)

4. Compute the nine eigenvalues �

1

>

=

� � �

>

=

�

9

of

tensor

^

M =M� cN (21)

and the corresponding orthonormal system of

eigenmatrices fH

1

, ..., H

9

g of unit norm.

5. If �

9

� 0, stop. Else, update c and W

�

in the

following way and go back to Step 2:

c c+

�

9

(H

9

;NH

9

)

; (22)

W

�

 

�

x

0

�

�H

9

V

0

[x

�

]H

>

9

� x

0

�

+(H

9

x

�

)� V

0

[x

0

�

]� (H

9

x

�

)

�

�

2

: (23)

In the above procedure, I denotes the unit matrix, and

x

�(i)

and x

0

�(i)

denote the ith components of vectors

x

�

and x

0

�

, respectively. The symbol W

(kl)

�

denotes

the (kl) element of the matrix W

�

, and V

0

[x

�

]

ij

and

V

0

[x

0

�

]

ij

denote the (ij) elements of the normalized co-

variance matrices V

0

[x

�

] and V

0

[x

0

�

], respectively.
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7. Accuracy and E�ciency

Figure 1 shows two synthetic images of a grid pattern.

We evaluated the accuracy and e�ciency of our algo-

rithm by adding random Gaussian noise of standard de-

viation � (pixels) to the coordinates of the grid points

independently and computing the homography between

them by using the default noise model.

Figure 2(a) plots the root-mean-square error com-

puted for each � by repeating the computation 50

times with di�erent noise. The symbol � is for our

method, and the dotted lines indicate the theoretical

lower bound given by Eq. (13). The symbol � is for the

least-squares method (also called the algebraic-distance

Fig. 1 Synthetic images of a grid pattern.
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3
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σ

(b)

Fig. 2 (a) Root-mean-square errors for our algorithm (�), the

least-squares method (�), and the theoretical lower bound (dot-

ted lines). (b) Computation time (seconds) for our algorithm (�)

and the least-squares method (�).

minimization) minimizing

N

X

�=1

kx

0

�

�Hx

�

k

2

: (24)

Since this is a quadratic form inH , the solution is

immediately obtained by eigenvalue analysis. For this

simplicity, this method has been widely used. However,

it can be proved that the least-squares solution has sta-

tistical bias while the renormalization solution has the

same order of accuracy as the maximum likelihood so-

lution [6]. Indeed, we can con�rm from Fig. 2(a) that

not only does our method always perform better than

the least-squares method but that it also attains the

theoretical lower bound.

Figure 2(b) plots the corresponding average com-

putation time in seconds on a Sun Ultra-1 workstation

(Solaris 2.5.1): the solid lines are for our algorithm and

the dashed lines are for the least-squares method. The

least-squares method has the advantage if speed has

priority at the cost of accuracy.

8. Instability of Homography

Figure 3(a) is a real image of an outdoor scene. Fig-

ure 3(b) is a zoomed image of the same scene. We

manually selected seven matching points marked in the

images and computed the homography by using the

default noise model. Figure 3(c) shows the mapping

of Fig. 3(b) into Fig. 3(a) via the computed homogra-

phy (white solid lines) and its primary deviation pair

(white dashed lines). Figure 3(d) shows the correspond-

ing result by least squares; its primary deviation pair

is not de�ned. Figure 3(c) tells us that the upper-right

part of the mapped frame is most uncertain. In fact,

the least-squares solution in Fig. 3(d) is such that the

upper-right part in�nitely extends to upper right and

reappears from lower left. In contrast, our algorithm

yields a reasonably accurate solution even in such a de-

generate con�guration.

This type of instability of homography often oc-

curs in creating a mosaic of images with small overlaps

between them, since matching points are restricted in

very narrow strips in the images. Figure 4(a) shows im-

ages of an outdoor scene. Figure 5(a) shows a mosaiced

image obtained by optimally computing the homogra-

phy from the six matching points marked in the im-

ages. Figure 5(b) is the corresponding result obtained

by least squares. This is an exaggerated example, since

more matching points can be available for this particu-

lar image pair. In general, however, we can clearly see

that a small error can result in a large image distortion

if only a small number of matching points concentrated

in a small region are available. In such a case, the accu-

racy of homography computation critically a�ects the

quality of the mosaiced image, and our algorithm best

serves such a purpose.
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(a) (b)

(c) (d)

Fig. 3 (a) A real image of an outdoor scene and selected seven matching points. (b)

A zoomed image of the same scene; it corresponds to the white frame in (a). (c) The

image mapping (solid lines) and its primary deviation pair (dashed lines) computed by our

algorithm. (d) The image mapping computed by least squares.

Fig. 4 Outdoor scene.

(a) (b)

Fig. 5 (a) Mosaicing by an optimal homography. (b) Mosaicing by least squares.
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9. Concluding Remarks

This paper has described an algorithm for optimally

computing the homography between two images from

point matches. First, we derived a theoretical accu-

racy bound based on a mathematical model of image

noise. Using the renormalization technique, we then

presented an algorithm that theoretically attains the

accuracy bound in the �rst order; its C++ program is

avaliable via the Web

y

. By random noise simulation,

we have con�rmed that our algorithm e�ectively at-

tains that bound. Applying our technique to mosaicing

of images with small overlaps, we have shown how our

algorithm reduces the instability of the image mapping.

This paper has focused on accuracy, but in prac-

tice mismatch detection is also an important issue to

be studied separately [12].
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