
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.10 OCTOBER 2005
2269

PAPER Special Section on Image Recognition and Understanding

Optimizing a Triangular Mesh for Shape Reconstruction
from Images

Atsutada NAKATSUJI†, Student Member, Yasuyuki SUGAYA††a),
and Kenichi KANATANI††, Members

SUMMARY In reconstructing 3-D from images based on fea-
ture points, one usually defines a triangular mesh that has these
feature points as vertices and displays the scene as a polyhe-
dron. If the scene itself is a polyhedron, however, some of the
displayed edges may be inconsistent with the true shape. This pa-
per presents a new technique for automatically eliminating such
inconsistencies by using a special template. We also present a
technique for removing spurious occluding edges. All the proce-
dures do not require any thresholds to be adjusted. Using real
images, we demonstrate that our method has high capability to
correct inconsistencies.
key words: triangular mesh generation, Delaunay triangula-
tion, polyhedral representation, mesh optimization, 3-D recon-
struction

1. Introduction

One of the most important issues of 3-D reconstruc-
tion from images is how to represent the reconstructed
shape. If we use stereo vision using calibrated cameras,
we can obtain a dense depth map over all the pixels.
By inter-pixel interpolation, we can display the scene
as a curved surface. Alternatively, we can use a tech-
nique called space carving [5] and represent the scene
as an aggregate of colored voxels. More sophisticated
methods, called by such names as plenoptic representa-
tion [1], light field rendering [6], and lumigraph [2], are
to register all the light rays in the scene for generating
new views seen from an arbitrary viewpoint.

For images taken by uncalibrated cameras, on the
other hand, we extract corresponding feature points
from them and compute their 3-D coordinates, whether
we deal with a continuous video stream using a method
such as the factorization [10] or impose the epipolar ge-
ometry [3] on separate images. Then, we define a trian-
gular mesh that has the feature points as vertices and
display the scene as a texture-mapped polyhedron.

The triangular mesh is usually generated by De-
launay triangulation [9] of feature points in a speci-
fied frame. This produces triangles of balanced sizes
and shapes, suitable for polyhedral representation of a
curved surface. However, a serious problem occurs if
the scene itself is a polyhedron. In man-made envi-
ronments such as indoors and cities, most objects are
polyhedra. If the vertices of polyhedral objects are cho-

Manuscript received October 7, 2004.
†The author is with the Internet Terminal Division,

NEC Engineering, Ltd., Yokohama-shi, 224-0053 Japan.
††The authors are with the Department of Computer Sci-

ence, Okayama University, Okayama-shi, 700-8530 Japan.
a) E-mail: a-nakatsuji@pb.jp.nec.com

DOI: 10.1093/ietisy/e88-d.10.2269

Copyright c©2005 The Institute of Electronics, Information and Comunication Engineers

(a) (b)

Fig. 1 (a) Triangulation inconsistent with the object shape.
(b) Triangulation consistent with the object shape.

sen as feature points, some of the triangulation edges
may not coincide with the physical edges. Then, the
displayed 3-D shape may be inconsistent with the true
polyhedral shape.

See Fig. 1, for example. The Delaunay triangula-
tion in Fig. 1(a) does not correctly represent the ob-
ject shape, but the triangulation in Fig. 1(b) correctly
represents it. The aim of this paper is to present a
technique for automatically transforming a given trian-
gulation into a physically compatible one.

Sections 2 and 3 describe the principle of our
method. The details of the procedure are described
in Sect. 4 ∼ 7. In Sect. 8, we show real image examples
to demonstrate that our method has high capability
to correct inconsistencies. In Appendix, we present a
technique for removing spurious occluding edges. The
marked characteristic of our method is that no thresh-
olds are required to be adjusted.

2. Compatibility of Triangulation

Many studies have been done in the past for generating
optimal triangular meshes. They are roughly classified
into two categories: one is to replace a dense mesh by
a coarser one without impairing the faithfulness of the
shape representation; the other is to upgrade the de-
scriptiveness of the shape by adding vertices and edges.
For the former, Vogiatzis et al. [11] introduced stochas-
tic annealing coupled with Bayesian estimation on the
assumption that the object mostly consists of planar
faces. For the latter, Yu et al. [12] refined the mesh
by iteratively estimating both the object shape and the
surface reflectance map.

However, the only studies of optimizing edges for a
given set of vertices are those of Morris and Kanade [7]



2270
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.10 OCTOBER 2005

A

B

P
Q

A

B

P
Q

Fig. 2 Edge flipping.

and Perrier et al. [8]. The basic principle for their in-
consistency detection is to compare the textures in cor-
responding triangular patches in different images. Sup-
pose we have two images of a polyhedral object. If a tri-
angular patch is defined on a planar surface, its texture
in one image can be mapped onto the corresponding
patch in the other by an affine transformation†. Hence,
the intensity difference†† after the mapping should be
zero in that patch. If not, the patch is not on a planar
surface, so we “flip”††† an appropriate edge into the di-
agonal position as illustrated in Fig. 2. Iterating this,
we should end up with a triangular mesh compatible
with the object shape [7].

In reality, however, the intensity difference is not
exactly zero due to various disturbances such as inac-
curacies of feature point matching, viewpoint depen-
dent reflectance changes, and supposedly planar faces
not being exactly planar. However, setting an appro-
priate threshold for judging planarity is very difficult.
So, Morris and Kanade [7] and Perrier et al. [8] iter-
atively flipped edges so as to maximize the similarity
(or minimize the dissimilarity) between the textures of
corresponding patches.

As the texture (dis)similarity measure, Morris and
Kanade [7] used the sum of square differences of the cor-
responding pixel values (to be minimized), while Perrier
et al. [8] used the normalized correlation (to be maxi-
mized). In this paper, we show that the use of such a
patch-based (dis)similarity measure is insufficient and
present a more effective measure. Using real images,
we demonstrate that our measure has higher capability
to correct inconsistencies.

3. Principle of Inconsistency Detection

Given a triangular mesh over a polyhedral object scene,
we hereafter say that an edge of the mesh is correct if it
entirely lies on a planar face, and incorrect otherwise:
an incorrect edge connects two points on different faces.
We assume that the texture, color, or brightness of the
object is different from face to face.

Figure 3 illustrates the principle of our inconsis-
tency detection. Consider the 2-D quadrilateral ABCD
in the left of Fig. 3. Two possibilities exist for interpret-
ing it as a 3-D polyhedron: one with faces 4ABC and
4CDA; the other with faces4ABD and4BCD. Sup-
pose we view this object from a different angle. If the
former interpretation is the case, the object should look
as shown in the upper middle; if the latter is the case,
it should look as shown in the lower middle. The right

A

B

D

C

Fig. 3 Two 3-D interpretations of a quadrilateral ABCD and
the predicted intensity difference.

(a) (b)

(c) (d)

Fig. 4 (a),(b) Real images of a polyhedral object with a De-
launay triangulation (58 edges). (c) Texture mapping of (b) onto
(a). (d) Intensity difference between (a) and (c). Darker tones
correspond to larger values.

figure shows their intensity difference (darker tones cor-
respond to larger values). Such intensity difference ap-
pears when the texture (including color and brightness)
is different from face to face.

Figures 4(a),(b) are real images of a polyhedral
†Theoretically, corresponding patches in different views

are related by a homography [3], but as far as individual
patches are concerned, as opposed to a global planar scene,
the mapping can be approximated by an affine transforma-
tion with negligible differences.

††In this paper, we consider color images and refer to
the root-mean-square difference in the R, G, and B values
simply as “intensity difference”.

†††Morris and Kanade [7] used the term “swap”, but
since only one edge is involved, we use the more mathemat-
ically accepted term “flip” after Perrier et al. [8].



NAKATSUJI et al.: OPTIMIZING A TRIANGULAR MESH FOR SHAPE RECONSTRUCTION FROM IMAGES
2271

object, on which a Delaunay triangulation (based on
(a)) is overlaid. Mapping the texture of Fig. 4(b) onto
Fig. 4(a) patch by patch, we obtain Fig. 4(c). Figure
4(d) shows the intensity difference between Fig. 4(a)
and Fig. 4(c). We observe narrow dark triangular re-
gions that cross incorrect edges, because there are tex-
ture discontinuities across physical edges.

4. Inconsistency Detection Template

The above observation leads to the idea of detecting
texture discontinuities by a template specifically de-
signed to detect them. Figure 5(a) shows our template
(lighter tones correspond to larger values). It is de-
fined over a square region ORST of size l × l with the
following value:

T (x, y)=





e
− (x+y−l)2

2α2(x−y−l)2 x + y < l, x ≥ y
T (y, x) x + y ≤ l, x < y

−T (l − y, l − x) x + y > l

. (1)

The template value is symmetric with respect to the
diagonal OS and anti-symmetric with respect to TR.
The contour T (x, y) = constant consists of two line seg-
ments starting from R and T and meeting on the diag-
onal OS. Figure 5(b) shows the cross section along the
diagonal OS: the Gaussian function of mean l/

√
2 and

standard deviation αl
√

2 cut in the middle and placed
upside down on the right side†.

For a given edge, we map the intensity difference of
the two triangles adjacent to it onto4OSR and4OST
and compute the correlation (the sum of the product
of corresponding pixel values) with this template. We
set the template size l in such a way that the average
area of the triangular patches in the input images is
approximately l2/2.

The reason why we use an anti-symmetric tem-
plate is that we do not know a priori on which side the
inconsistency region appears; it should lie only on one
side of the diagonal of the surrounding quadrilateral
(see Figs. 3 and 4(d)). Since the intensity difference
is nearly zero on the other side, we can detect tex-
ture discontinuity by computing the absolute value of
the correlation. It also has the advantage of cancel-
ing small fluctuations in the intensity difference caused
by texture mapping inaccuracy, since such fluctuations
are expected to spread randomly and evenly over the
quadrilateral region.

In our experiment, we set the template value
T (x, y) to zero at the pixels on the diagonal TR and

O R

ST

-1

0

1

(a) (b)

Fig. 5 (a) Inconsistency detection template. Lighter tones cor-
respond to larger values. (b) Cross section along OS.

at the pixels within distance 0.02l pixels from the diag-
onal OS or from the boundary. This is for preventing
texture mapping discrepancies caused by inaccuracies
in locating feature points.

5. Evaluation of Edge Incorrectness

Given an initial triangulation over two corresponding
images, we first measure the degree of incorrectness
w(AB) of each edge AB using the template T (x, y) of
Eq. (1). For this, we make the computation symmetric
with respect to the two images: instead of mapping the
texture from one image onto the other and computing
the intensity difference there as described earlier, we di-
rectly map the texture onto the template region ORST
by a homography and compute the intensity difference
there. The procedure is as follows:

1. If the edge AB has only one adjacent triangle, let
w(AB) = −1, meaning that AB is a boundary
edge.

2. Let 4ABP and 4ABQ be the adjacent triangles.
Let w(AB) = 0 if the quadrilateral APBQ is con-
cave in either image.

3. Otherwise, map the texture in the quadrilateral
APBQ in the first image onto the template region
ORST by a homography and write down the in-
tensity values there.

4. Affinely map the texture in 4ABP and 4ABQ in
the second image onto 4OSR and 4OST , respec-
tively, and subtract the intensity values from the
values written there.

5. Map the texture in the quadrilateral APBQ in the
second image onto the template region ORST by
a homography and add the intensity values to the
values written there.

6. Affinely map the texture in 4ABP and 4ABQ
in the first image onto 4OSR and 4OST , respec-
tively, and subtract the intensity values from the
values written there.

7. Compute the correlation of the values written there
with the template T (x, y) of Eq. (1), and output
its absolute value as w(AB).

Here, we are assuming that at the time of generating the
mesh each edge is classified either into a boundary edge
with only one triangles on one side or into an internal
edge with two triangles on both sides.

The concavity check in Step 2 is for preventing
patch reversal as shown in Fig. 6. If A : (a1, a2),

A

B

P
Q

A

B

PQ

Fig. 6 Edge flipping for a concave quadrilateral would result
in a reversed patch.

†We experimentally found that α = 0.1 can produce a
good result.



2272
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.10 OCTOBER 2005

B : (b1, b2), P : (p1, p2), and Q : (q1, q2) are the im-
age coordinates of the four points A, B, P , and Q,
respectively, the quadrilateral is concave if and only if

∣∣∣∣
p1 − a1 q1 − a1

p2 − a2 q2 − a2

∣∣∣∣ ·
∣∣∣∣

p1 − b1 q1 − b1

p2 − b2 q2 − b2

∣∣∣∣ > 0. (2)

6. Initial Mesh Generation

Given two images and corresponding feature points on
them, we define a Delaunay triangulation using the fea-
ture points in the first image and isomorphically map
it to the corresponding points in the the second image.
Then, we compare the signs of corresponding trian-
gular patches, where we define the sign of 4ABC to
be 1 if the order of A, B, and C is counterclockwise,
−1 if clockwise, and 0 otherwise (i.e., degeneracy into
a line segment). If their coordinates are A : (a1, a2),
B : (b1, b2), and C : (c1, c2), the sign of 4ABC is given
by

sgn(
∣∣∣∣

b1 − a1 c1 − a1

b2 − a2 c2 − a2

∣∣∣∣), (3)

where the symbol sgn() is the sign function, returning
1, −1, and 0 if the argument† is positive, negative, and
zero, respectively.

If the signs are different between the two images,

→

Fig. 7 If one side of the reversed triangle is a boundary edge,
we eliminate it.

↓

Fig. 8 If the reversal occurs inside, we flip an appropriate side
of the triangle.

the triangle in the second image is reversed. We dissolve
such reversals as follows. If one side of the reversed tri-
angle is a boundary edge, we simply eliminate it (see
Fig. 7). If the reversal occurs inside, we flip an appro-
priate side of the triangle, as discussed by Morris and
Kanade [7] (see Fig. 8).

Once such patch reversals are resolved, no new re-
versals occur thereafter, since we check the concavity
of the surrounding quadrilateral before flipping edges
(Step 2 of the procedure in Sect. 5).

7. Procedure of Mesh Optimization

After resolving patch reversals, we do the following pro-
cedure:

1. Compute the incorrectness measure w() for all the
edges (Sect. 5).

2. Find the edge AB that has the largest value
w(AB).

3. Stop if w(AB) = 0.
4. Flip the edge AB to PQ as shown in Fig. 2 and

compute w(PQ).
5. If w(PQ) > w(AB), eliminate the edge PQ and

restore the edge AB. Then, let w(AB) = 0.
6. Otherwise, recompute w() for edges PA, PB, QA,

and QB, if w() is not already 0, with respect to
the new mesh configuration.

7. Go back to Step 2.

In this process, the value w itself has no absolute mean-
ing; it is used only for comparison. Hence, no artificial
thresholds need to be introduced. Since the largest
value of w() monotonically and strictly decreases at
each flipping, and since edges once checked are not
checked again, the above procedure terminates after all
the edges are traversed once.

The above procedure can correct those incorrect
edges that can be corrected by a single flipping opera-
tion. However, not all edges can be corrected that way,
in particular when one physical edge is crossed by mul-
tiple mesh edges (Fig. 9; see also Fig. 12). So, we repeat
the above procedure until the mesh configuration does
not alter any further††.

Fig. 9 If many mesh edges cross one physical edge (drawn in
dashed lines here), multiple steps of flipping is necessary for re-
solving the inconsistency. See also Fig. 12.

†The argument is a signed area of the parallelogram
defined by edges AB and AC.

††We record the history of the flipping and stop the com-
putation if the same configuration appears twice, which oc-
curs very rarely, though.



NAKATSUJI et al.: OPTIMIZING A TRIANGULAR MESH FOR SHAPE RECONSTRUCTION FROM IMAGES
2273

8. Experiments

Using real images, we compared the performance of our
method with that for maximizing patch-similarity; we
adopted the normalized correlation as Perrier et al. [8]
for canceling view-dependent reflectance changes†. We
randomly selected edges and flipped them if the dis-
similarity decreases. We stopped this when no flipping
occurred for consecutive E times, where E is the num-
ber of the mesh edges.

Applying our optimization to Figs. 4(a),(b), we ob-
tained the mesh in Fig. 10(a). The iterations converged
in two rounds of the procedure of Sect. 7. The correct-
ness and the computation time are as written in the
caption, where the correctness means (the number of
correct edges)/(the number of non-boundary edges) in
percentage. We used Pentium 4 3.2GHz for the CPU
with 2GB main memory and Linux for the OS.

We compared this result with the patch-similarity
maximization. Since the result changes at each trial
because of the randomness of the search, we showed
one typical result in Fig. 10(b). The correctness, the

(a) (b)

Fig. 10 Optimization of the mesh in Figs. 4(a),(b). (a) Our
method (100% correct, 2 rounds, 3.43 sec). (b) Patch-similarity
maximization (91.5% correct, 270 iterations, 9.05 sec).

(a) (b)

(c) (d)

Fig. 11 (a),(b) Initial triangulation (31 edges). (c) Our
method (100% correct, 3 rounds, 3.15 sec). (d) Patch-similarity
maximization (75.2% correct, 159 iterations, 5.43 sec).

number of iterations, and the computation time written
there are their averages over 10 trials.

Figures 11∼14 show other examples. Today, many
algorithms are available for automatically extracting
and matching feature points, e.g., [4], [13]. However,
our concern here is not the accuracy of automatic
matching but the performance of mesh optimization,
so we selected matching points by hand. In all exam-
ples, figures (a),(b) are input images with the initial
Delaunay triangulation overlaid; figures (c),(d) are the
results corresponding to Figs. 10(a),(b), respectively.

.

9. Observations

We can see that our inconsistency detection template
works very well. It is effective even when incorrect
edges cannot be corrected by a single flipping opera-
tion (see Fig. 12).

We have also found that incorrect meshes ob-
tained by patch-similarity maximization sometimes has
higher similarity than the correct mesh obtained by our
method, meaning that the patch-based correlation is
not a good measure of shape consistency. In contrast,
our method focuses specifically on regions where the
texture discontinuity is most conspicuous.

For Fig. 13, however, patch-similarity maximiza-
tion performed better than our method: one very short
incorrect edge remained after our optimization. After
careful investigations, we conclude that the triangles
adjacent to it are too small to clearly detect the incon-
sistency region as compared with comparing the entire

(a) (b)

(c) (d)

Fig. 12 (a),(b) Initial triangulation (47 edges). (c) Our
method (100% correct, 3 rounds, 4.03 sec). (d) Patch-similarity
maximization (96.2% correct, 313 iterations, 7.62 sec).

†In contrast, illumination changes are canceled when
texture discontinuities are detected by our method.



2274
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.10 OCTOBER 2005

(a) (b)

(c) (d)

Fig. 13 (a),(b) Initial triangulation (157 edges). (c) Our
method (98.7% correct, 7 rounds, 11.80 sec). (d) Patch-similarity
maximization (99.3% correct, 2611 iterations, 19.60 sec).

(a) (b)

(c) (d)

Fig. 14 (a),(b) Initial triangulation. (c) Our method (96.2%
correct, 4 rounds, 11.96 sec). (d) Patch-similarity maximization
(83.8%, 866 iterations, 19.70 sec).

Fig. 15 Triangulation of curved surfaces. Left: Delaunay tri-
angulation. Right: optimized triangulation.

patches.
We also tested our method using curved surfaces

as well (Fig. 15). The feature points in the first ex-
ample were generated by our automatic matching tool
[4]. We see that our method yields better polyhedral
approximations.

10. Concluding Remarks

We proposed a new technique for automatically trans-
forming a triangular mesh so that it is compatible with
the physical object shape. For this, we introduced
a template that can sensitively detect texture discon-
tiuities. Our procedure does not require any thresholds
to be adjusted. Using real images, we demonstrated
that our method has higher capability to correct incon-
sistencies than patch-similarity maximization.

In this paper, we used only pairs of images, but the
principle can be straightforwardly extended to multiple
images. Doing experiments (not shown here), however,
we found that in most cases two separate views are
sufficient.

We also studied another issue. The Delaunay tri-
angulation defines a mesh over the convex hull of the
given vertices. Hence, for objects having a concave
boundary, some edges do not correspond to the object
boundary, resulting in spurious edges (see Fig. 4). We
can detect and remove them by checking image proper-
ties on both sides of each boundary edge. The details
are described in Appendix.

One remaining issue is addition/deletion of ver-
tices. Our method optimizes a given triangular mesh,
but if some of the object corners are not chosen as mesh
vertices, the resulting mesh does not represent a faith-
ful 3-D shape however we optimize it. Also, too many
feature points reduce efficiency. Perrier et al. [8] pre-
sented a scheme for removing points that produce ex-
tremely narrow triangles and adding new points inside
large triangles. This type of process will be effective in
practice.



NAKATSUJI et al.: OPTIMIZING A TRIANGULAR MESH FOR SHAPE RECONSTRUCTION FROM IMAGES
2275

Acknowledgments

This work was supported in part by the Ministry of
Education, Culture, Sports, Science and Technology,
Japan, under a Grant in Aid for Scientific Research
C(2) (No. 17500112). The authors thank Daniel Morris
of Northrop Grumman Corporation, U.S.A., for helpful
comments and Masakazu Murata of Kumahira, Ltd. for
helping the real image experiments.

References

[1] E.H. Adelson and J.R. Bergen, “The plenoptic function and
the elements of early vision,” in Computational Models of
Visual Processing, ed. M. Landy and J.A. Movshon, pp.3–
20, MIT Press, Cambridge, MA, U.S.A., Oct. 1991.

[2] S.J. Gortler, R. Gzreszczuk, R. Szeliski, and M.F. Cohen,
“The lumigraph,” Proc. SIGGRAPH, pp.43–54, New Or-
leans, LA, U.S.A., Aug. 1996.

[3] R. Hartley and A. Zisserman, Multiple View Geometry in
Computer Vision, Cambridge University Press, Cambridge,
U.K., 2000.

[4] Y. Kanazawa and K. Kanatani, “Robust image matching pre-
serving global consistency,” Proc. 6th Asian Conf. Comput.
Vision, vol.2, pp.1128–1133, Jeju, Korea, Jan. 2004.

[5] K. Kutulakos and S. Seiz, “A theory of shape by space carv-
ing,” Proc. Int. Conf. Comput. Vision, pp.307–314, Kerkyra,
Greece, Sept. 1999.

[6] M. Levoy and P. Hanarahan, “Light field rendering,” Proc.
SIGGRAPH, pp.31–42, New Orleans, LA, U.S.A., Aug. 1996.

[7] D.D. Morris and T. Kanade, “Image-consistent surface trian-
gulation,” Proc. IEEE Conf. Comput. Vision Pattern Recog.,
vol.1, pp.332–338, Hilton Head, SC, U.S.A., June 2000.

[8] J. S. Perrier, G. Agin, and P. Cohen, “Image-based view
synthesis for enhanced perception in teleoperation,” in En-
hanced and Synthetic Vision 2000, Proc. SPIE, ed. J. G.
Verly, vol. 4023, June 2000.

[9] F. Preparata and M. Shamos, Computational Geometry,
Springer, Berlin, Germany, 1985.

[10] C. Tomasi and T. Kanade, “Shape and motion from image
streams under orthography—A factorization method,” Int.
J. Comput. Vis., vol.9, no.2, pp.137–154, Oct. 1992.

[11] G. Vogiatzis, P. Torr, and R. Cipolla, “Bayesian stochastic
mesh optimization for 3D reconstruction,” Proc. British Ma-
chine Vision Conf., vol.2, pp.711–718, Norwich, U.K., Sept.
2003.

[12] T. Yu, N. Xu, and N. Ahuja, “Shape and view indepen-
dent reflectance map from multiple views,” Proc. 8th Euro.
Conf. Comput. Vision, vol.4, pp.602–615, Prague, Czech.,
May 2004,

[13] Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong, “A ro-
bust technique for matching two uncalibrated images through
the recovery of the unknown epipolar geometry,” Artif. In-
tell., vol.78, pp.87–119, 1995.

Appendix: Spurious Edge Removal

A naive idea for detecting spurious edges is to compare,
over the two images, the texture inside the adjacent
triangular patches. Since spurious edges define “trans-
parent” patches, we should see through them different
backgrounds over the two images. Hence, it appears
that all we need to do is measure the intensity differ-
ence after texture mapping followed by thresholding.
However, it is difficult to set an appropriate threshold

a priori. Also, no intensity difference arises if the back-
ground is homogeneous, e.g. the sky or a white wall.
So, we consider a method that does not require any
thresholds.

Since occluding edges are on the object contours,
they should lie on “intensity edges” if we generate an
edge image (we use the term “intensity edges” to dis-
tinguish them from “mesh edges”). On the other hand,
spurious edges may cross intensity edges of the back-
ground but rarely lie along them. So, we check if each
boundary edge crosses intensity edges or lies along one†.

Let v be the unit vector along the boundary edge
under consideration. We measure the orientation of the
intensity edge relative to v at each point by

E = 2(v,∇I)2 − ‖v‖2‖∇I‖2, (A· 1)

where ∇I = (Ix, Iy)> is the gradient of the image in-
tensity I, and Ix and Iy are the derivatives of I with
respect to x and y, respectively. We compute them
using a 13 × 13 mask with Gaussian pre-smoothing of
σ = 3 (pixels)††. The symbol (v,∇I) denotes the in-
ner product of vectors v and ∇I, and ‖∇I‖ denote the
norm of ∇I.

The value E takes its maximum ‖v‖2‖∇I‖2 when
∇I is parallel to v, its minimum −‖v‖2‖∇I‖2 when
when ∇I is orthogonal to v, and 0 when v and ∇I
makes 45◦ or 135◦. The value of E does not depend on
the sign of the vector v.

We define the likeliness E of the edge in question by
integrating††† Eq. (A· 1) along that edge and dividing
it by its length. Then, we compare this E value with
the E values of the adjacent inside edges. This does not
require any thresholds to adjust.

At the time of generating the initial mesh, those
edges adjacent to only one triangle on either side were
labeled as boundary edges; this information was used in
our mesh optimization procedure (Sect. 5). We traverse
the list of boundary edges and do the following. Let AB
be the edge we are currently visiting, and let 4ABC
be the triangle adjacent to it.

1. If AC or BC is a boundary edge (Fig. A· 1(a)),
change the label of AB to occluding edge and go

A

B C

A

B

C

(a) (b)

Fig.A· 1 (a) Edges AB and BC are judged to be occluding
edges. (b) If edge AB is judged to be spurious, we check the
edges AC and CB recursively.

†We tried to incorporate this information for internal
edge correction, but this did not work: most detected in-
tensity edges are due to the texture of planar surfaces.

††We apply this edge filter only to those pixels at which
we need the value ∇I, rather than creating an edge image
in advance.
†††We used the trapezoid rule with 100 subintervals for

numerical integration.



2276
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.10 OCTOBER 2005

(a) (b)

Fig.A· 2 Spurious edge removal. (a) The mesh resulting from
Fig. 10(c). (b) The mesh resulting from Fig. 14(c).

to the next boundary edge.
2. Else, compute E(AB), E(AC), and E(BC).
3. If E(AB) ≥ E(AC) or E(AB) ≥ E(BC), change the

label of AB to occluding edge and go to the next
boundary edge.

4. Else, remove the edge AB, label the edges AC and
BC as boundary edges, and recursively apply the
same procedure to edges AC and BC.

5. Stop if no boundary edges remain to be visited.

The above procedure works only one image. If two
images are available, we do Steps 2 and 3 for both im-
ages and change the label of AB to occluding edge if
the condition is satisfied at least by one image. This
prevents ambiguous edges from being removed. In fact,
retaining some spurious edges does not do much harm,
while the object shape cannot be described correctly
if some occluding edges are inadvertently eliminated.
If three more images are available, we can make the
judgment more reliable by majority rule.

Figures A· 2(a),(b) show the meshes obtained from
those in Figs. 10(c) and Figs. 14(c). For Fig. A· 2(a),
in which the object color and reflectance are signifi-
cantly different from the background, all spurious edges
are correctly removed. For Fig. A· 2(c), however, some
spurious edges remain, because the object color and
reflectance are very similar to the background, and re-
moving them was judged to be dangerous.

Atsutada Nakatsuji received his
B.E. and M.S. in mechanical engineer-
ing from the Osaka Institute of Technol-
ogy, Japan, in 1999. Currently, he is
at the Internet Termnal Division, NEC
Engineering, Ltd. and is a Ph.D. can-
didate at the Department of Computer
Science, Okayama University, Okayama,
Japan. He is engaged in the research and
development of 3-D sensing devices.

Yasuyuki Sugaya received his B.E.,
M.S., and Ph.D. in computer science
from the University of Tsukuba, Ibaraki,
Japan, in 1996, 1998, and 2001, respec-
tively. He is currently Assistant Professor
of computer science at Okayama Univer-
sity, Okayama, Japan. His research in-
terests include image processing and com-
puter vision. He received the IEICE best
paper award in 2005.

Kenichi Kanatani received his B.E.,
M.S., and Ph.D. in applied mathemat-
ics from the University of Tokyo in 1972,
1974 and 1979, respectively. After serv-
ing as Professor of computer science at
Gunma University, Gunma, Japan, he is
currently Professor of computer science
at Okayama University, Okayama, Japan.
He is the author of many books on com-
puter vision and received many awards in-
cluding the best paper awards from IPSJ

(1987) and IEICE (2005). He is an IEEE Fellow.


