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PAPER
Optimization without Minimization Search: Constraint Satisfaction
by Orthogonal Projection with Applications to Multiview
Triangulation

Kenichi KANATANI†a), Yasuyuki SUGAYA††, Members, and Hirotaka NIITSUMA†, Nonmember

SUMMARY We present an alternative approach to what we
call the “standard optimization”, which minimizes a cost function
by searching a parameter space. Instead, our approach “projects”
in the joint observation space onto the manifold defined by the
“consistency constraint”, which demands that any minimal sub-
set of observations produce the same result. This approach avoids
many difficulties encountered in the standard optimization. As
typical examples, we apply it to line fitting and multiview trian-
gulation. The latter produces a new algorithm far more efficient
than existing methods. We also discuss the optimality of our
approach.
key words: consistency constraint satisfaction, orthogonal pro-
jection, line fitting, multiview triangulation, trifocal tensor

1. Introduction
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For extracting a geometric structure from noisy im-
ages, numerical optimization is vital. A widely adopted
approach is the standard optimization, minimizing a
cost function by searching a parameter space. In this
paper, we present an alternative approach of orthog-
onally projecting the input in the joint input space
onto the manifold defined by the consistency constraint ,
which demands that any minimal subset of observations
produce the same result. We show how this approach
avoids many difficulties encountered in the standard op-
timization.

We first describe the standard optimization in
Sect. 2 and summarize existing global optimization
techniques in Sect. 3. We describe our orthogonal pro-
jection approach in Sect. 4 and apply it to line fitting in
Sect. 5. Then, we apply our approach to multiview tri-
angulation in Sect. 6 and demonstrate by experiments
in Sect. 7 that the resulting algorithm is far more ef-
ficient than existing methods. In Sect. 8, we conclude
and discuss the optimality of our approach.

2. Standard Optimization

Given M observations xκ, κ = 0, ..., M − 1, we want
sto estimate a parameter θ that specifies the structure
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that should exist in the input images. The estimation
is based on the knowledge that xκ should ideally satisfy
some constraint parameterized by θ, but it is violated in
the presence of noise. Let E(θ; x0, ...,xM−1) measure
the cost (also called “energy”) of this violation. We
compute the value of θ that minimizes E. A popular
approach is to express the ideal value of xκ, given θ, in
the form x̄κ(θ) and minimize

E =
M−1∑
κ=0

‖x̄κ(θ) − xκ‖2. (1)

This includes what is known as bundle adjustment ,
where Eq. (1) is called the reprojection error.

3. Global Optimization

The major problem of the standard optimization as
defined above is the difficulty of finding an absolute
minimum of the cost E. The parameter space of θ
is usually infinitely large and high-dimensional. Well
known search techniques include Newton iterations and
conjugate gradient search. For bundle adjustment,
the Leverberg-Marquardt method is the standard tool.
However, such gradient-based search may fall into lo-
cal minima. In recent years, intensive efforts have been
made to minimize E globally [4].

Algebraic methods. We let the derivatives of E with
respect to the parameters be zero, compute all so-
lutions exhaustively, and choose the one for which
E is the smallest. In many vision applications,
we obtain a set of algebraic equations, which re-
duces, via the Gröbner basis, to a single polyno-
mial. However, its degree is usually very high, and
numerical evaluation is unstable and inefficient.

Branch and bound. Introducing a function that
gives a lower bound of E locally, we partition the
parameter space into small cells, evaluating a rep-
resentative value and a lower bound in each cell.
Those cells for which the lower bound is larger
than the values already evaluated in other cells
are discarded; the remaining cells are recursively
subdivided. However, the lower bounding process
is often complicated, requiring a large amount of
computation.

Matrix inequality optimization. Changing variables,
we reduce the problem to polynomial minimiza-
tion subject to matrix inequalities [10]. This has
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the form of SDP (semidefinite program), which can
be solved by a Matlab tool called GloptiPoly. The
resulting solution is approximate, but it is theoret-
ically proved to approach the true solution as the
number of variables and the size of the accompany-
ing matrices are increased. A complicate analysis
and a large amount of computation are necessary
if we want to reach a high accuracy.

L∞ optimization. Minimizing Eq. (1) is regarded as
maximum likelihood (ML) if the noise is indepen-
dent and identical Gaussian, which is appropriate
in many applications. However, this makes global
optimization difficult, so we replace the L2 norm in
Eq. (1) by L∞ [5], [8], [13]. Then, the cost E usu-
ally becomes quasi-convex. We gradually increase
the threshold from 0 (or using binary search) and
check if there exists a value of E above the thresh-
old. This problem usually has the form of SOCP
(second-order cone program), which can be solved
by a Matlab tool called SeDuMi.
All these approaches need a complicated analysis

and a large amount of computation, requiring various
optimization tools, whose performance is not always
guaranteed.

4. Orthogonal Projection Approach

We now present a complementary approach: we do not
minimize any function in the parameter space; we reach
an optimal solution in the data space by imposing con-
straints. Our approach is motivated by the following
observations:

1. If there were no noise, the parameter θ could im-
mediately be computed. In fact, algebraic proce-
dures have been intensively studied for computing
geometric properties from exact image data [7].

2. There exists a minimum number of (nondegener-
ate) observations (call it a minimal set) that can
uniquely determine the value of θ. For example,
a line is uniquely determined by two points, an el-
lipse by five points, and a fundamental matrix by
seven pairs of corresponding points.

3. Given redundant observations, we can choose from
among them any minimal set for determining θ.
In the presence of noise, however, the solution de-
pends on which minimal set is chosen.
The standard optimization overcomes this depen-

dence on the choice of the minimal set by minimizing a
cost E over the parameter space of θ. Our alternative
does not introduce any cost but minimally corrects the
observations x0, ..., xM−1 into x̂0, ..., x̂M−1 to enforce
the condition, which we call the consistency constraint ,
that any choice of the minimal set result in the same so-
lution. Once this constraint is satisfied, we can choose
any minimal set to determine θ. By minimally , we
mean that the correction is done in such a way that

E =
M−1∑
κ=0

‖x̂κ − xκ‖2, (2)

S

p=x +0 x+ M-1

p=x +0 x+ M-1

Emin

E initial

E local min

Fig. 1 Orthogonal projection of p = x0 ⊕ · · · ⊕ xM−1 onto
the manifold S gives the minimum reprojection error Emin. The
standard optimization starts from some point in S and searches
the “inside” of S, where the consistency constraint is always sat-
isfied, but may stop at a local minimum Elocal min.

which we call the reprojection error , is the smallest.
Evidently, the solution is the same as the standard op-
timization using the cost of Eq. (1).

Our approach can be geometrically interpreted as
follows. Let

F (x0, ...,xM−1) = 0, (3)

be the consistency constraint, which may be a set of
equations. This defines a manifold S in the joint space
of x0, ..., xM−1. Our goal is to find a point p̂ =
x̂0 ⊕ · · · ⊕ x̂M−1 ∈ S closest to the observation p =
x0 ⊕ · · · ⊕ xM−1; the square distance |pp̂|2 between p
and p̂ is the reprojection error in Eq. (2). Thus, the so-
lution is obtained by orthogonally projecting p onto S
(Fig. 1). The fact that minimum Euclidean distance is
equivalent to orthogonal projection is well known [15],
and this principle has been used in many geometric
problems including curve/surface fitting [1], [2] and 3-D
reconstruction from multiple images [3].

The standard optimization using Eq. (1) can be
interpreted as follows. Introducing the parameter θ is
equivalent to parameterizing S. We search the inside
of S to find a location (i.e., its “coordinates” θ) closest
to p. Gradient-based search may fall into local minima,
but finding a global minimum is difficult, as described
earlier.

Our approach can be viewed as geometric correc-
tion, as described in [11], which optimally corrects ob-
servations so that they satisfy a given constraint. The
first contribution of this paper is to show that para-
metric minimization problems can be converted into
geometric correction problems via “consistency con-
straint”. Although first order expressions for geometric
correction are given in [11], we need iterations to obtain
a strictly optimal solution. The second contribution of
this paper is to derive an iteration scheme for this, al-
ways projecting original observations, not intermediate
solutions. We also give a geometric interpretation as to
how our scheme works.

5. Line Fitting

We now apply our approach to a simplest example: fit-
ting a line to points. Although this does not produce
practical benefits, since the problem is immediately
solved by the standard optimization, this will illustrate
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how our approach works. Given M points (x0, y0), ...,
(xM−1, yM−1), the standard optimization goes like this.
We first parameterize the line, say Ax + By + C = 0,
the parameter being θ = (A, B,C)>. The distance dκ

of point (xκ, yκ) from this line is

dκ =
|Axκ + Byκ + C|√

A2 + B2
. (4)

We minimize the sum of square distances:

E(A,B,C) =
M−1∑
κ=0

(Axκ + Byκ + C)2

A2 + B2
. (5)

The solution is analytically obtained by solving a 2× 2
eigenvalue problem.

Our approach is different. We represent the point
(xκ, yκ) by the 3-D vector

xκ =

xκ/f0

yκ/f0

1

 , (6)

where f0 is a scale normalization constant of approx-
imately the image size†. Three points xκ, xλ, and
xµ are collinear if and only if their scalar triple prod-
uct |xκ, xλ, xµ| is zero. Hence, the consistency (or
collinearity in this case) constraint is given by

|xκ, xκ+1, xκ+2| = 0, (7)

for κ = 0, ..., M − 3. These M − 2 equations define
an (M + 2)-D manifold S in the 2M -D joint space of
(x0, y0, ... xM−1, yM−1). Here, consecutive triplets of
points are considered, but the order is irrelevant as long
as the M points are constrained to be collinear. The
dimension of S corresponds to the two degrees of free-
dom of the line to be fitted and the positions of the M
points on it. We now orthogonally project the observa-
tion p = x0 ⊕ · · · ⊕ xM−1, which does not necessarily
satisfy Eq. (7), onto S. Note that we neither introduce
any parameterization to the line to be fitted nor define
any cost function to minimize.

Let p̂ = x̂0⊕· · ·⊕ x̂M−1 be the desired projection,
and let x̂κ = xκ − ∆xκ. Substituting x̂κ into Eq. (7)
and expanding it to a first order in ∆xκ, we obtain

(∆xκ, xκ+1 × xκ+2) + (∆xκ+1, xκ+2 × xκ)
+(∆xκ+2, xκ × xκ+1) = |xκ, xκ+1,xκ+2|, (8)

where and throughout this paper we denote by (a, b)
the inner product of a and b. Since Eq. (8) is lin-
ear in ∆xκ, the M − 2 equations in this form, when
viewed as equations of free variables x̂κ through ∆xκ

= xκ − x̂κ, define a plane††, Π that approximates the
manifold S. We now compute a projection direction
∆x0 ⊕ · · · ⊕∆xM−1 orthogonal to Π. The direction of
this projection is given by

∆xκ=λκP k(xκ+1×xκ+2)+λκ−1P k(xκ+1×xκ−1)
+λκ−2P k(xκ−2 × xκ−1), (9)

where λκ are unknown parameters and P k ≡

S

Π

Π

p

p

p

p∆

Fig. 2 Successive orthogonal projection onto S. The orthogo-
nal projection from p to Π minimizes ‖p− p̂‖2, while the orthog-

onal projection from p to Π̂ minimizes ‖p− ˆ̂p‖2 = ‖p− p̂+∆p̂‖2,
where ∆p̂ = ∆x̂0 ⊕ · · · ⊕ ∆x̂M−1.

diag(1, 1, 0) and (see Appendix A.1 for the derivation).
We adjust the parameters λκ so that the projection
reaches the plane Π. Substitution of Eq. (9) into Eq. (8)
results in simultaneous linear equations in λκ in the
form
Aκλκ−2+Bκλκ−1+Cκλκ+Dκλκ+1+Eκλκ+2 =Fκ, (10)

where

Aκ=(P k(xκ−2 × xκ−1), P k(xκ+1 × xκ+2)),
Bκ=(P k(xκ+1 × xκ−1), P k(xκ+1 × xκ+2))

+(P k(xκ−1 × xκ), P k(xκ+2 × xκ)),
Cκ=‖P k(xκ+1 × xκ+2)‖2 + ‖P k(xκ+2 × xκ)‖2

+‖P k(xκ × xκ+1)‖2,

Dκ=(P k(xκ+2 × xκ+3),P k(xκ+2 × xκ))
+(P k(xκ+3 × xκ+1),P k(xκ × xκ+1)),

Eκ=(P k(xκ+3 × xκ+4),P k(xκ × xκ+1)),
Fκ=|xκ, xκ+1, xκ+2|. (11)

Solving Eq. (10) and substituting the resulting λκ into
Eq. (9), we can determine x̂κ = xκ −∆xκ. The result-
ing projection p̂ = x̂0⊕· · ·⊕ x̂M−1 is orthogonal to the
plane Π by construction, but not necessarily p̂ ∈ S or
the projection is orthogonal to S. So, we correct p̂ to ˆ̂p
= ˆ̂x0 ⊕ · · · ⊕ ˆ̂xM−1 so that ˆ̂p ∈ S and the projection is
orthogonal to S. Letting ˆ̂xκ = x̂κ−∆x̂κ, we substitute
ˆ̂xκ for xκ in Eq. (7). The first order expansion at x̂κ

in the higher order term ∆x̂κ is

(∆x̂κ, x̂κ+1 × x̂κ+2) + (∆x̂κ+1, x̂κ+2 × x̂κ)
+(∆x̂κ+2, x̂κ × x̂κ+1) = |x̂κ, x̂κ+1, x̂κ+2|. (12)

The M −2 equations in this form define a plane Π̂ that
approximates S better than Π. We compute a new
orthogonal projection to it. Note that the projection
always starts from the observation p = x0⊕· · ·⊕xM−1,
not from p̂ (Fig. 2). The new direction of this projection
is given by

∆x̂κ=λκP k(x̂κ+1×x̂κ+2)+λκ−1P k(x̂κ+1×x̂κ−1)
+λκ−2P k(x̂κ−2 × x̂κ−1) − x̃κ, (13)

where we define
†This is merely for making the three components to have

the same order of magnitude for numerical stability. Theo-
retically, it can be set to any value, e.g., 1.

††Strictly speaking, this is an (M + 2)-D affine space but
we call this a “plane” for short.
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x̃κ = xκ − x̂κ. (14)

(See Appendix A.2 for the derivation.) The parameters
λκ are determined so that that the projection reaches
the plane Π̂. Substitution of Eq. (13) into Eq. (12)
results in simultaneous linear equations in λκ in the
same form as Eq. (10) except that Aκ, ..., Fκ are now
replaced by

Aκ=(P k(x̂κ−2 × x̂κ−1), P k(x̂κ+1 × x̂κ+2)),
Bκ=(P k(x̂κ+1 × x̂κ−1), P k(x̂κ+1 × x̂κ+2))

+(P k(x̂κ−1 × x̂κ), P k(x̂κ+2 × x̂κ)),
Cκ=‖P k(x̂κ+1 × x̂κ+2)‖2 + ‖P k(x̂κ+2 × x̂κ)‖2

+‖P k(x̂κ × x̂κ+1)‖2,

Dκ=(P k(x̂κ+2 × x̂κ+3), P k(x̂κ+2 × x̂κ))
+(P k(x̂κ+3 × x̂κ+1), P k(x̂κ × x̂κ+1)),

Eκ=(P k(x̂κ+3 × x̂κ+4), P k(x̂κ × x̂κ+1)),
Fκ=|x̂κ, x̂κ+1, x̂κ+2| + |x̃κ, x̂κ+1, x̂κ+2|

+|x̂κ, x̃κ+1, x̂κ+2| + |x̂κ, x̂κ+1, x̃κ+2|. (15)

Solving Eq. (10) and substituting the resulting λκ in
Eq. (13), we can determine ˆ̂xκ = xκ − ∆x̂κ. The re-
sulting projection is orthogonal to Π̂ by construction
but still not strictly on S or orthogonal to it. So, we let
x̂κ ← ˆ̂xκ and repeat this correction. In the end, ∆x̂κ

= 0 and p̂ = ˆ̂p ∈ S. Because the plane Π̂ is a first order
expansion of S at p̂ ∈ S, it is tangent to S at p̂. Since
pp̂ is orthogonal to Π̂, it is orthogonal to S itself. Our
algorithm is summarized as follows:

Input: Observed positions xκ, κ = 0, ..., M − 1.
Output: Corrected positions x̂κ, κ = 0, ..., M−1, and

the reprojection error E.

Procedure:

1. Let E0 = ∞, x̂κ = xκ, x̃κ = 0, κ = 0, ..., M − 1,
where ∞ is a sufficiently large number.

2. Compute Aκ, ..., Fκ, κ = 0, ..., M−3, by Eqs. (14).
3. Solve the following set of linear equations in λκ, κ

= 0, ..., M − 3:

C0 D0 E0

B1 C1 D1 E1

A2 B2 C2 D2 E2

A3 B3 C3 D3 E3

. . . . . . . . . . . .

AM−3 BM−3 CM−3





λ0

λ1

λ2

λ3

...

λM−3



=



F0

F1

F2

F3

...

FM−3


. (16)

4. Update x̃κ and x̂κ, κ = 0, ..., M − 1, as follows:

x̃κ←λκP k(x̂κ+1×x̂κ+2)
+λκ−1P k(x̂κ+1×x̂κ−1)
+λκ−2P k(x̂κ−2×x̂κ−1),

x̂κ←xκ − x̃κ. (17)

5. Compute the reprojection error E as follows:

E =
M−1∑
κ=0

‖x̃κ‖2. (18)

6. If |E−E0| ≈ 0, return E and x̂κ, κ = 0, ..., M −1,
and stop. Else, let E0 ← E, and go back to Step
2.

Once we have imposed the consistency constraint,
we can pick out any two (distinct) points and compute
the line connecting them.

6. Triangulation from Multiple Views

The above line fitting algorithm is only for illustration
of our approach. In practice, as pointed out earlier,
it is much simpler to minimize Eq. (5) by solving a
2×2 eigenvalue problem; the solution is identical to the
one obtained by the above procedure. Using the same
principle, however, we can derive a new algorithm for
triangulation from multiple views.

6.1 Problem

Suppose we have M cameras. We assume that their in-
trinsic and extrinsic parameters are known. Let (xκ, yκ)
be the image of a 3-D point (X,Y, Z) in the κth view.
Our task is to compute (X,Y, Z) from (xκ, yκ), κ =
0, ..., M − 1. If (xκ, yκ) are exact, we can pick out
any two (nondegenerate) views and compute (X,Y, Z)
by elementary triangulation. If (xκ, yκ) are not exact,
however, the rays, call them the lines of sight , starting
from the projection centers and passing through the
points in the images, do not meet at a single point in
the scene. Traditionally, this has been dealt with by the
standard optimization [4]: we search the 3-D space for
θ = (X,Y, Z)> that minimizes the reprojection error
of Eq. (1). Our approach is as follows. As line fitting,
we represent each point (xκ, yκ) by the 3-D vector in
Eq. (6). The consistency constraint we adopt is

εljpεmkqT
lm
(κ)ix

i
(κ)x

j
(κ+1)x

k
(κ+2) = 0, (19)

for κ = 0, ..., M − 3, where T lm
(κ)i is the trifocal tensor

for the κth, the (κ + 1)st, and the (κ + 2)nd views; εijk

is the permutation symbol. We use Einstein’s conven-
tion for omitting the summation symbol over repeated
upper and lower indices. Equation (19) is known as the
trilinear constraint , which provides a necessary and suf-
ficient condition that the lines of sight from the three
cameras meet at a single point in the scene [7]. The
M −2 equations in Eq. (19) guarantee that the M lines
of sight have a common intersection. Here, consecutive
triplets of frames are considered, but as in the case of
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line fitting the order is irrelevant as long as the M lines
of sight are constrained to meet at a point.

The M − 2 equations in Eq. (19) define a manifold
S in the joint 2M -D space of (x0, y0, ..., xM−1, yM−1).
Our task is to orthogonally project the observation p =
x0⊕· · ·⊕xM−1 onto S. Let p̂ = x̂0⊕· · ·⊕x̂M−1 be the
desired projection, and let x̂κ = xκ − ∆xκ. Replacing
xκ in Eq. (19) by x̂κ and expanding it to a first order
in ∆xκ, we obtain (the summation symbol is omitted
by Einstein’s convention)

εljpεmkqT
lm
(κ)i

(
∆xi

κxj
κ+1x

k
κ+2 + xi

κ∆xj
κ+1x

k
κ+2

)
+xi

κxj
κ+1∆xk

κ+2 = εljpεmkqT
lm
(κ)ix

i
κxj

κ+1x
k
κ+2. (20)

The resulting 9(M − 2) equations for p, q = 1, 2, 3
and κ = 0, ..., M − 3, when viewed as equations of
free variables x̂κ through ∆xκ = xκ − x̂κ, define a set
Π of 9(M − 2) hyperplanes in 2M -D that approximate
S. They would intersect at a 3-D affine space if p =
x0 ⊕ · · · ⊕ xM−1 ∈ S. Otherwise, they may not have a
common intersection.

We now determine a projection direction ∆x0 ⊕
· · · ⊕ ∆xM−1 orthogonal to all the hyperplanes in Π.
Such a direction may not exist, but we proceed as if
there is; the nonexistence condition emerges later. If
there are such ∆xκ, they should have form

∆xs
κ = P i

(κ)pqλ
pq
(κ) + Qi

(κ)pqλ
pq
(κ−1) + Ri

(κ)pqλ
pq
(κ−2), (21)

where λpq
(κ) are unknown parameters (Appendix A.3 for

the derivation). Here, we define

P s
(κ)pq=εljpεmkqT

lm
(κ)iP

si
k xj

κ+1x
k
κ+2,

Qs
(κ)pq=εljpεmkqT

lm
(κ−1)ix

i
κ−1P

sj
k xk

κ+1,

Rs
(κ)pq=εljpεmkqT

lm
(κ−2)ix

i
κ−2x

j
κ−1P

sk
k . (22)

The symbol P ij
k denotes the (ij) element of the matrix

P k (= diag(1, 1, 0)). We adjust the parameters λpq
(κ) so

that the projection p̂ = x̂0 ⊕ · · · ⊕ x̂M−1 be on all the
hyperplanes in Π. Such a solution may not exist, but
we proceed as if there is. Substituting Eq. (21) into
Eq. (20), we obtain

A(κ)pqrsλ
rs
(κ−2) + B(κ)pqrsλ

rs
(κ−1) + C(κ)pqrsλ

rs
(κ)

+D(κ)pqrsλ
rs
(κ+1) + E(κ)pqrsλ

rs
(κ+2) = F(κ)pq, (23)

where we define
A(κ)pqrs = εljpεmkqT

lm
(κ)iR

i
(κ)rsx

j
κ+1x

k
κ+2,

B(κ)pqrs = εljpεmkqT
lm
(κ)i

(
Qi

(κ)rsx
j
κ+1x

k
κ+2

+ xi
κRj

(κ+1)rsx
k
κ+2

)
,

C(κ)pqrs = εljpεmkqT
lm
(κ)i

(
P i

(κ)rsx
j
κ+1x

k
κ+2

+ xi
κRj

(κ+1)rsx
k
κ+2 + xi

κQj
(κ+1)rsx

k
κ+2

+ xi
κRj

(κ+1)rsx
k
κ+2 + xi

κxj
κ+1R

k
(κ+2)rs

)
,

D(κ)pqrs = εljpεmkqT
lm
(κ)i

(
xi

κP j
(κ+1)rsx

k
κ+2

+ xi
κRj

(κ+1)rsx
k
κ+2 + xi

κxj
κ+1Q

k
(κ+2)rs

)
,

E(κ)pqrs = εljpεmkqT
lm
(κ)ix

i
κxj

κ+1P
k
(κ+2)rs,

F(κ)pq = εljpεmkqT
lm
(κ)ix

i
κxj

κ+1x
k
κ+2. (24)

Equation (23) provides 9(M−2) linear equations (r, s =
1, 2, 3, κ = 0, ..., M−3) in the 9(M−2) unknowns λpq

(κ)

(p, q = 1, 2, 3, κ = 0, ..., M − 3). However, Eq. (23) is
derived on the assumption that there is a solution, but
it has a unique solution only when p = x0⊕· · ·⊕xM−1

∈ S; the solvability condition is gradually violated as
p departs from S. We discuss how to cope with this
shortly. Once λpq

(κ) are obtained, we can determine ∆xκ

by Eq. (21) and compute x̂κ = xκ − ∆xκ.
Now, we go the second round. Replacing xκ in

Eq. (19) by ˆ̂xκ = x̂κ −∆x̂κ and expanding it to a first
order in ∆x̂κ, we obtain

εljpεmkqT
lm
(κ)i

(
∆x̂i

κx̂j
κ+1x̂

k
κ+2 + x̂i

κ∆x̂j
κ+1x̂

k
κ+2

+x̂i
κx̂j

κ+1∆x̂k
κ+2

)
=εljpεmkqT

lm
(κ)ix̂

i
κx̂j

κ+1x̂
k
κ+2, (25)

which defines a set Π̂ of hyperplanes that should ap-
proximate S better than those in Π, since p̂ = x̂0 ⊕
· · · ⊕ x̂M−1 is expected to be closer to S than p =
x0⊕· · ·⊕xM−1. The hyperplanes in Π̂ would intersect
at a 3-D affine space if p̂ ∈ S. We determine a new
projection direction ∆x̂0 ⊕ · · · ⊕∆x̂M−1 orthogonal to
all the hyperplanes in Π̂, although such a direction may
not exist. If there are such ∆xκ, they should have the
form

∆x̂s
κ=

3∑
p,q=1

P̂ s
(κ)pqλ

pq
(κ) +

3∑
p,q=1

Q̂s
(κ)pqλ

pq
(κ−1)

+
3∑

p,q=1

R̂s
(κ)pqλ

pq
(κ−2) − x̃i

κ, (26)

where we define

x̃κ = xκ − x̂κ, (27)

and
P̂ s

(κ)pq =εljpεmkqT
lm
(κ)iP

si
k x̂j

κ+1x̂
k
κ+2,

Q̂s
(κ)pq =εljpεmkqT

lm
(κ−1)ix̂

i
κ−1P

sj
k x̂k

κ+1,

R̂s
(κ)pq =εljpεmkqT

lm
(κ−2)ix̂

i
κ−2x̂

j
κ−1P

sk
k . (28)

(See Appendix A.4 for the derivation.) We adjust the
parameters λpq

(κ) so that the resulting projection be on

all the hyperplanes in Π̂, although such a solution may
not exist. Substituting Eq. (26) into Eq. (25), we obtain
simultaneous linear equations in λpq

(κ) in the same form
as Eq. (23) except that A(κ)pqrs, ..., F(κ)pq are now
replaced by

A(κ)pqrs = εljpεmkqT
lm
(κ)iR̂

i
(κ)rsx̂

j
κ+1x̂

k
κ+2,

B(κ)pqrs = εljpεmkqT
lm
(κ)i

(
Q̂i

(κ)rsx̂
j
κ+1x̂

k
κ+2

+ x̂i
κR̂j

(κ+1)rsx̂
k
κ+2

)
,

C(κ)pqrs = εljpεmkqT
lm
(κ)i

(
P̂ i

(κ)rsx̂
j
κ+1x̂

k
κ+2

+ x̂i
κQ̂j

(κ+1)rsx̂
k
κ+2 + x̂i

κx̂j
κ+1R̂

k
(κ+2)rs

)
,
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D(κ)pqrs = εljpεmkqT
lm
(κ)i

(
x̂i

κP̂ j
(κ+1)rsx̂

k
κ+2

+ x̂i
κx̂j

κ+1Q̂
k
(κ+2)rs

)
,

E(κ)pqrs = εljpεmkqT
lm
(κ)ix̂

i
κx̂j

κ+1P̂
k
(κ+2)rs,

F(κ)pq = εljpεmkqT
lm
(κ)i

(
x̂i

κx̂j
κ+1x̂

k
κ+2+x̃i

κx̂j
κ+1x̂

k
κ+2

+x̂i
κx̃j

κ+1x̂
k
κ+2+x̂i

κx̂j
κ+1x̃

k
κ+2

)
. (29)

Solving Eqs. (23) and substituting the resulting λpq
(κ) in

Eq. (26), we can determine ∆x̂κ and compute ˆ̂xκ =
x̂κ−∆x̂κ. Letting x̂κ ← ˆ̂xκ, we repeat this procedure.
In the end, ∆x̂κ = 0 and p̂ = ˆ̂p ∈ S. Because the
hyperplanes in Π̂ are first order expansions of S at p̂
∈ S, they are tangent to S at p̂, defining the tangent
space Tp̂(S) at p̂ as their intersection. Since pp̂ is now
orthogonal to all the hyperplanes in Π̂, it is orthogonal
to S itself.
6.2 Rank deficiency
There is one added complexity due to the fact that
Eq. (19) has redundancies: each trilinear constraint
consists of nine equalities for p, q = 1, 2, 3, and only
four are linearly independent due to the skew prop-
erties of εijk. Hence, Eq. (19) consists of 9(M − 2)
equalities, 4(M − 2) of which are linearly independent.
Among them, however, only 2M − 3 are algebraically
independent. This is because the manifold S should be
homeomorphic to R3, since a point in S is in one-to-one
correspondence to a point to be reconstructed in R3 as
the unique intersection of the lines of sight. Thus, S is
3-D and can be defined as an intersection of 2M −3 hy-
persurfaces; the remaining hypersurfaces automatically
pass through it .

We enumerate the index pairs (p, q) = (1,1), (1,2),
..., (3,3) with a serial number α = 1, ..., 9 and (r, s)
= (1,1), (1,2), ..., (3,3) with β = 1, ..., 9, and identify
Â(κ)pqrs, B̂(κ)pqrs, etc. with 9 × 9 matrices. Likewise,
F̂(κ)pq and λpq

(κ) are identified with 9-D vectors f̂ (κ) and
λ(κ), respectively. Then, Eq. (23) now takes the form

C0 D0 E0

B1 C1 D1 E1

A2 B2 C2 D2 E2

. . . . . . . . .
AM−3 BM−3 CM−3




λ0

λ1

λ2

...
λM−3



=


f0
f1
f2
...

fM−3

 , (30)

where Aκ, ..., Eκ are 9×9 matrices, and λκ and fκ are
9-D vectors. The coefficient matrix has a band of width
45. Equation (30) does not have a unique solution un-
less p̂ = x̂0⊕· · ·⊕ x̂M−1 ∈ S. The 9(M −2)×9(M −2)
coefficient matrix generally has rank 2M , because the
underlying unknowns are 2M variables ∆x0, ∆y0, ...,
∆xM−1, ∆yM−1. However, the rank drops to 2M−3 at

the moment the projection p̂ = x̂0⊕· · ·⊕ x̂M−1 reaches
S, which is our goal. Hence, we can select appropriate
2M − 3 equations from among the 9(M − 2) equations
in Eq. (30), which is mathematically equivalent to us-
ing the pseudoinverse of rank 2M − 3. Our algorithm
is summarized as follows:
Input: Observed positions xκ, κ = 0, ..., M − 1, and

the trifocal tensors T jk
(κ)i, κ = 0, ..., M − 2.

Output: Corrected positions x̂κ, κ = 0, ..., M−1, and
the reprojection error E.

Procedure:
1. Let E0 = ∞, x̂κ = xκ, x̃κ = 0, κ = 0, ..., M − 1,

where ∞ is a sufficiently large number.
2. Compute P̂ s

pq, Q̂s
pq, and R̂s

pq in Eqs. (28).
3. Compute Apqrs, ..., Fpq in Eqs. (29).
4. Solve Eq. (30) for λpq

(κ), using pseudoinverse of rank
2M − 3.

5. Update x̃κ and x̂κ, κ = 0, ..., M − 1, as follows:

x̃i
κ←

3∑
p,q=1

P i
(κ)pqλ

pq
(κ) +

3∑
p,q=1

Qi
(κ)pqλ

pq
(κ−1)

+
3∑

p,q=1

Ri
(κ)pqλ

pq
(κ−2o),

x̂κ←xκ − x̃κ. (31)

6. Compute the reprojection error E as follows:

E =
M−1∑
κ=0

‖x̃κ‖2. (32)

7. If |E−E0| ≈ 0, return E and x̂κ, κ = 0, ..., M −1,
and stop. Else, let E0 ← E, and go back to Step
2.

6.3 Efficient computation

In the above algorithm, we frequently encounter expres-
sions in the form

Tpq = εljpεmkqT
lm
i xiyjzk, (33)

where T lm
i takes T lm

i(κ), and xi, yj , and zk take, respec-
tively, the i, j, k components of xκ, x̂κ, or x̃κ. The
right-hand side of Eq. (33) is a sum over i, j, k, l,m =
1, 2, 3 (the summation symbol omitted), so we need to
add 35 = 243 terms. These summations cost a consider-
able computation time. It can be significantly reduced
if we note that Eq. (33) can be equivalently rewritten
as

Tpq = xi
(
T p¢1,q¢1

i yp¢2zq¢2−T p¢2,q¢1
i yp¢1zq¢2

− T p¢1,q¢2
i yp¢2zq¢1+T p¢2,q¢2

i yp¢1zq¢1
)
, (34)

where ¢ denotes addition modulo 3. The right-hand
side is a sum over i = 1, 2, 3, so we need to add only
3 × 4 = 12 terms. This makes the computation about
243/12 (≈ 20) times more efficient.
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7. Experiment

7.1 Accuracy

We created synthetic images of a cylindrical grid surface
viewed by cameras surrounding it. Fig. 3 shows some of
them. The image size is 1000×1000 pixels, and the focal
length is f = 600 pixels. Independent Gaussian noise
of mean 0 and standard deviation σ pixels is added to
the x and the y coordinates of each grid point, and our
algorithm† is applied. We stopped when the update of
the reprojection error E is less than 10−6.

The solid line in Fig. 4(a) shows the average re-
projection error per point over 1000 trials for each σ.
The dotted line shows the first order theoretical expec-
tation (2M − 3)(σ/f0)2 for maximum likelihood (ML);
we can see that the ML solution is indeed computed by
our method. As a comparison, the dashed line shows
the result of least squares; we linearize the perspective
projection equation of the 3-D position (X,Y, Z) onto
(x, y) in each frame and solve the resulting set of si-
multaneous linear equations by least squares. This is
computationally the simplest but is known to be not
optimal.

The solid line in Fig. 4(b) shows the average RMS
error per point of the reconstructed 3-D position. We
see that although the reprojection error is not much
different between least squares and our method, the 3-D
reconstruction accuracy is markedly distinct between
them.

Here, we are assuming that cameras are calibrated
in advance. In practice, accurate camera calibration
is crucial for triangulation from images. Camera cal-
ibration is usually done off line, using reference pat-
terns, but it is also possible to compute the intrin-
sic and extrinsic camera parameters and the 3-D po-
sitions simultaneously; this problem is called structure
from motion [7], and various algebraic schemes for self-

· · · · · ·

Fig. 3 Simulated images of a cylindrical grid surface.

1

2
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 0  2  4  6  8  10σ

x10
-3

 100

 200

 0  2  4  6  8  10

50

 150

σ
(a) (b)

Fig. 4 (a) Average reprojection error. (b) RMS error of 3-D.
Solid lines: our method. Dashed lines: least squares. Dotted
lines: theoretical expectation (2M − 3)(σ/f0)2.

†http://www.iim.cs.tut.ac.jp/˜sugaya/public.php

calibration and numerical schemes for bundle adjust-
ment have been proposed. We do not go into the details
of this problem in this paper.

7.2 Computation time

Figure 5 shows the average computation time per point
(average over 10 trials) for M = 3, 4, ..., 31 views
with noise of σ = 5 pixels. We used C++ with Intel
Core2Duo E6850, 3.0GHz, using the efficient expression
of Eq. (34). Most of the execution time is spent on the
pseudoinverse computation† for solving Eq. (30). The
dotted line is the curve aMe fitted to the result; we
found that the complexity is O(M3.22) as compared to
O(M) for least squares. This should not be a problem
for most applications, since usually feature points can
be tracked only over a relatively small number of views.

We also used the tracking data provided by Ox-
ford University†† with 36 views (Fig. 6(a)), where 4983
points are tracked over 2 to 21 views†††. One view of
the 3-D reconstruction is shown in Fig. 6(b). As a com-
parison, we tested the algorithm†††† of Kahl et al. [9],
and found that our reprojection error is slightly smaller
than theirs for all points†††††. We surmise that this has

 0.1

 0.2

 0.3

 0  5  10  15  20  25  30Μ

sec

Fig. 5 Computation time (sec) vs. the number M of views.
The dotted line aMe is fitted with a = 4.17×10−6 and e = 3.22.

(a) (b)

Fig. 6 (a) Feature point tracking. (b) Resulting 3-D recon-
struction.

†We did not take the band structure into consideration;
for a large M , further speedup will be possible by exploiting
the sparseness.

††http://www.robots.ox.ac.uk/˜vgg/data.html
†††For 2 view correspondences, we used the method de-

scribed in [12].
††††http://www.cs.washington.edu/homes/sagarwal /code.

html
†††††For most points, the reprojection error they reached
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something to do with the iteration stopping criteria of
the SeDuMi tool they used.

The total computation time of our method, includ-
ing the preprocessing of the trifocal tensor computation
and the post processing of 3-D reconstruction, is 2.22
sec, i.e., 0.000446 sec per point. The algorithm of Kahl
et al. [9] took 5030 sec, i.e., 1.01 sec per point. Lu
and Hartley [14] reported that their C++ program of
branch and bound applied for a different data set took
0.02 sec per point. Fair and definitive comparison is dif-
ficult; existing methods all use complicated algorithms
involving black box software tools and are difficult to
implement from scratch. Also, the codes offered by the
authors are written in different environments. Still, the
above observations suggest that our algorithm is far
faster than all existing standard optimization methods.

8. Conclusions

We presented an alternative approach to the stan-
dard optimization, which minimizes a cost function by
searching a parameter space. We showed that our ap-
proach can lead to a new algorithm of multiview tri-
angulation. While the standard optimization is generic
in nature, applicable to any problem for which the cost
function can be defined, our approach is limited only
to those problems for which the consistency constraint
can be defined in a tractable form. Another drawback
of our approach is the dependence of efficiency on the
number M of observations: Since we solve linear equa-
tions in the joint data space, the complexity is about
O(M3), as we showed in Sect. 7.2, while it is O(M) for
the standard optimization. However, this is not a prob-
lem depending applications. For example, our approach
for multiview triangulation with a moderate M is far
more efficient, as we demonstrated in the preceding sec-
tion. On the other hand, our apporach can avoid many
difficulties encountered in the standard optimization.

• The standard optimization requires clever param-
eterization of the problem. Poor parameterization
results in an intractable cost function which is dif-
ficult to minimize by any method. In contrast, our
approach does not require any parameterization.

• The standard optimization requires a good initial
value to start the search, which is often hard to
guess. Global optimization can reach a solution
independent of initial guesses but requires compli-
cated analysis and a large amount of computation,
often relying on various software tools. Our ap-
proach does no need any initial guess.

In theory, there can be pathological cases where
our approach does not produce an exactly global opti-
mum. This can arise when in the presence of extremely

was, when converted to pixel/frame, less than 1.005 times
ours. Among the 4983 points, however, there were 11 whose
reprojection error was more than that, the maximum ratio
being 1.33.

large noise the joint input p is as far away from the
manifold S as compared to its radius of curvature; two
points p̂, p̂′ ∈ S may exist such that pp̂ and pp̂′ are both
orthogonal to S and |pp̂| ≈ |pp̂′|. Then, our projection
may fall into either of them. Consider line fitting, for
example. Suppose the input points are so disturbed by
noise that they spread almost uniformly in a circular
region. Then, two or more lines can fit almost equally
well (or equally poorly, to be precise).

In an extremely noisy situation, however, the dis-
tinction between exactly optimal (in the sense of ML)
and nearly optimal solutions does not make much sense;
both are reasonable estimates in view of such noise, and
accepting the solution produced by our approach seems
a sensible choice. In the standard optimization, on the
other hand, a local minimum can arise even in the ab-
sence of noise if the initial guess is bad. The cost E at
a local minimum can be very high. In contrast, a non-
optimal solution of our approach could result only from
large noise (the input p being far apart from the con-
sistency manifold S), and its reprojection error would
be nearly the same as the optimal one.

From a theoretical viewpoint, however, it is desir-
able to obtain a criterion by analyzing the curvature
of S to give a noise threshold for guaranteeing exact
optimality of orthogonal projection, in the same spirit
as Hartley and Seo [6]. This remains as a future task.

Acknowledgments. The authors thank Fredrik Kahl
and Martin Byröd of Lund University, Sweden, Fang-
fang Lu of Australian National University, and Yong-
duek Seo of Sogang University, Korea for various in-
formation. This work was supported in part by the
Ministry of Education, Culture, Sports, Science, and
Technology, Japan, under a Grant in Aid for Scientific
Research (C 21500172).

References

[1] S.J. Ahn, W. Rauh, H.S. Cho, and H.-J. Warecke, “Orthog-
onal distance fitting of implicit curves and surfaces,” IEEE
Trans. Pattern Anal. Mach. Intell., vol.24, no.5, pp.620–
638, May 2002.

[2] A. Atieg and G.A. Watson, “A class of methods for fitting a
curve or surface to data by minimizing the sum of squares
of orthogonal distances,” J. Comp. Appl. Math., vol.158,
no.2, pp.277–296, Sept. 2003.
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Appendix A: Derivation of Eq. (9)

The projection direction ∆x0⊕· · ·⊕∆xM−1 orthogonal
to the (M + 2)-D plane Π in 2M-D defined by Eq. (8)
is computed by minimizing

E =
M−1∑
κ=0

‖∆xκ‖2, (A· 1)

subject to Eq. (8). The third component of xκ is iden-
tically 1, so the third component of ∆xκ is also identi-
cally 0. This constraint is written as

(k, ∆xκ) = 0, (A· 2)

where we define k ≡ (0, 0, 1)>. Introducing the La-
grange multiplies to Eqs. (8) and (A· 2), we let

1
2

M−1∑
κ=0

‖∆xκ‖2 −
M−1∑
κ=0

λκ

(
(∆xκ, xκ+1 × xκ+2)

+(∆xκ+1, xκ+2 × xκ) + (∆xκ+2, xκ × xκ+1)
)

−
M−1∑
κ=0

µκ(k, ∆xκ). (A· 3)

This can be rewritten as

1
2

M−1∑
κ=0

‖∆xκ‖2 −
M−1∑
κ=0

λκ(∆xκ, xκ+1×xκ+2)

−
M−1∑
κ=0

λκ−1(∆xκ, xκ+1×xκ−1)

−
M−1∑
κ=0

λκ−2(∆xκ, xκ−2 × xκ−1)

−
M−1∑
κ=0

µκ(k,∆xκ), (A· 4)

where terms with subscript k outside the range of 0, ...,
M−1 are regarded as 0. Differentiating Eq. (A· 4) with
respect to ∆xκ and setting the result to 0, we obtain

∆xκ=λκxκ+1×xκ+2+λκ−1xκ+1×xκ−1

+λκ−2xκ−2×xκ−1+µκk. (A· 5)

Multiplying on both sides P k = diag(1, 1, 0), which
makes the third component 0, and noting that P k∆xκ

= ∆xκ and P kk = 0, we obtain Eq. (9).

Appendix B: Derivation of Eq. (13)

The projection direction ∆x̂0⊕· · ·⊕∆x̂M−1 orthogonal
to the (M + 2)-D plane Π in 2M-D defined by Eq. (12)
is computed by minimizing

E=
M−1∑
κ=0

‖xκ − x̂κ + ∆x̂κ‖2 =
M−1∑
κ=0

‖x̃κ + ∆x̂κ‖2.

(A· 6)

The third component of ∆x̂κ should be 0, so we have
the constraint

(k, ∆x̂κ) = 0. (A· 7)

Introducing the Lagrange multiplies to Eqs. (12) and
(A· 7), we let

1
2

M−1∑
κ=0

‖x̃κ + ∆x̂κ‖2−
M−1∑
κ=0

λκ

(
(∆x̂κ, x̂κ+1×x̂κ+2)

+(∆x̂κ+1, x̂κ+2 × x̂κ) + (∆x̂κ+2, x̂κ × x̂κ+1)
)

−
M−1∑
κ=0

µκ(k,∆x̂κ), (A· 8)

which can be rewritten as

1
2

M−1∑
κ=0

‖x̃κ+∆x̂κ‖2−
M−1∑
κ=0

λκ(∆x̂κ, x̂κ+1×x̂κ+2)

−
M−1∑
κ=0

λκ(∆x̂κ+1, x̂κ+2×x̂κ)

−
M−1∑
κ=0

λκ(∆x̂κ+2, x̂κ × x̂κ+1) −
M−1∑
κ=0

µκ(k, ∆x̂κ)

=
1
2

M−1∑
κ=0

‖x̃κ + ∆x̂κ‖2−
M−1∑
κ=0

λκ(∆x̂κ, x̂κ+1×x̂κ+2)

−
M−1∑
κ=0

λκ−1(∆x̂κ, x̂κ+1 × x̂κ−1)

−
M−1∑
κ=0

λκ−2(∆x̂κ, x̂κ−2 × x̂κ−1)
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−
M−1∑
κ=0

µκ(k, ∆x̂κ). (A· 9)

Differentiating this with respect to ∆x̂κ and setting the
result to 0, we obtain

∆x̂κ=λκx̂κ+1 × x̂κ+2 + λκ−1x̂κ+1 × x̂κ−1

+λκ−2x̂κ−2 × x̂κ−1 + µκk − x̃κ. (A· 10)

Multiplying P k = diag(1, 1, 0) on both sides and noting
that P k∆x̂κ = ∆x̂κ and P kk = 0, we obtain Eq. (13).

Appendix C: Derivation of Eq. (21)
The projection direction ∆x0⊕· · ·⊕∆xM−1 orthogonal
to all the hyperplanes in Π, if exists, is determined by
minimizing

E =
M−1∑
κ=0

‖∆xκ‖2, (A· 11)

subject to Eq. (20) and

ki∆xi
κ = 0, (A· 12)

which state that the third component of ∆xκ be zero (k
≡ (0, 0, 1)> as before). Introducing Lagrange multiplies
to Eqs. (20) and (A· 12), we write

1
2

M−1∑
κ=0

‖∆xκ‖2−
M−3∑
κ=0

λpq
(κ)εljpεmkqT

lm
(κ)i

(
∆xi

κxj
κ+1x

k
κ+2

+xi
κ∆xj

κ+1x
k
κ+2 + xi

κxj
κ+1∆xk

κ+2

)
−

M−1∑
κ=0

µ(κ)ki∆xi
κ. (A· 13)

Differentiating this with respect to ∆xn
κ and letting the

result be 0, we obtain

∆xn
κ =εljpεmkqλ

pq
(κ)T

lm
(κ)nxj

κ+1x
k
κ+2

+εlnpεmkqλ
pq
(κ−1)T

lm
(κ−1)ix

i
κ−1x

k
κ+1

+εljpεmnqλ
pq
(κ−2)T

lm
(κ−2)ix

i
κ−2x

j
κ−1

+µ(κ)kn, (A· 14)

where terms with subscript κ outside the range of
0, ..., M − 3 are regarded as 0. Multiplying P k =
diag(1, 1, 0) on both sides and noting that P k∆xκ =
∆xκ and P kk = 0, we obtain Eq. (21).

Appendix D: Derivation of Eq. (26)

The projection direction ∆x0⊕· · ·⊕∆xM−1 orthogonal
to all the hyperplanes in Π̂, if exists, is determined by
minimizing

E =
M−1∑
κ=0

‖xκ−x̂κ+∆x̂κ‖2 =
M−1∑
κ=0

‖x̃κ+∆x̂κ‖2. (A· 15)

Introducing Lagrange multipliers to Eqs. (25) and to

ki∆x̂i
κ = 0, (A· 16)

we write

1
2

M−1∑
κ=0

‖x̃κ + ∆x̂κ‖2 −
M−3∑
κ=0

λpq
(κ)εljpεmkqT

lm
(κ)i

×
(
∆x̂i

κx̂j
κ+1x̂

k
κ+2+x̂i

κ∆x̂j
κ+1x̂

k
κ+2+x̂i

κx̂j
κ+1∆x̂k

κ+2

)
−

M−1∑
κ=0

µ(κ)ki∆x̂i
κ. (A· 17)

Differentiating this with respect to ∆x̂n
κ and setting the

result to 0, we obtain

∆x̂n
κ =εljpεmkqλ

pq
(κ)T

lm
(κ)nx̂j

κ+1x̂
k
κ+2

+εlipεmkqλ
pq
(κ−1)T

lm
(κ−1)ix̂

i
κ−1x̂

k
κ+1

+εljpεmiqλ
pq
(κ−2)T

lm
(κ−2)ix̂

i
κ−2x̂

j
κ−1

+µ(κ)kn − x̃i
κ. (A· 18)

Multiplying P k on both sides and noting that P k∆x̂κ

= ∆x̂κ, P kk = 0, and P kx̃κ = 0 (see Eq. (27)), we
obtain Eq. (26).
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