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PAPER

Ellipse Fitting with Hyperaccuracy

Kenichi KANATANI†a), Member

SUMMARY For fitting an ellipse to a point sequence, ML
(maximum likelihood) has been regarded as having the highest
accuracy. In this paper, we demonstrate the existence of a “hy-
peraccurate” method which outperforms ML. This is made pos-
sible by error analysis of ML followed by subtraction of high-
order bias terms. Since ML nearly achieves the theoretical accu-
racy bound (the KCR lower bound), the resulting improvement
is very small. Nevertheless, our analysis has theoretical signifi-
cance, illuminating the relationship between ML and the KCR
lower bound.
key words: ellipse fitting, maximum likelihood estimation, KCR
lower bound, error analysis, hyperaccuracy correction

1. Introduction

Circular objects in a 3-D scene are projected onto el-
lipses on a 2-D image, and their 3-D positions can be
computed from their projections [13]. For this reason,
fitting an ellipse to a point sequence is one of the first
steps of various vision applications, and numerous pa-
pers have been written on this subject. They are clas-
sified into two categories:

1. How can we judge whether a sequence of edge
points entirely consists of points on an ellipse or
it contains other points (“outliers”)?

2. How can we fit the equation of an ellipse to a se-
quence of points as accurately as possible?

For the first task, many algorithms have been pro-
posed in the past [6], [10], [11], [19], [30]–[32], [36], [38].
An abundance of literature exist on the second task,
too. Most of the proposed methods are based on
heuristics combining voting and least squares (LS) [2],
[3], [12], [21], [28], [29], [33]–[35], but there are also the-
oretical treatments, mainly by statisticians, treating
the problem as statistical estimation [22], [23], [25], [37].
However, their major concern is the consistency and ef-
ficiency of the estimator in the asymptotic limit as the
number of points increases.

A contrasting approach was presented by Kanatani
[15], who generalized ellipse fitting into an abstract
framework, which he called “geometric fitting”. Hav-
ing actual image processing in mind, he pursued fitting
schemes whose accuracy rapidly increases as the noise
level decreases for a fixed number of points. He asserted
that such methods can tolerate larger image processing
uncertainty for a desired accuracy level [18].
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Table 1 Accuracy of ellipse fitting methods.

low accuracy LS, Taubin’s method, etc.
high accuracy ML (renormalization, HEIV, FNS)
hyperaccuracy studied in this paper

In his framework, a lower bound on the covariance
matrix of the estimator is obtained [15], [17]. Chernov
and Lesort [4] called it the “KCR (Kanatani-Cramer-
Rao) lower bound” and showed that it can be derived
under a weaker assumption.

It can be shown that maximum likelihood (ML)
achieves that bound except for higher order terms in
the noise level [4], [15], [18]. The solution can be com-
puted by iterative schemes such as FNS [5] and HEIV
[24]. Kanatani’s renormalization∗ [14], [15], [20] also has
accuracy nearly equivalent to ML [18].

Let us call, for convenience, those methods whose
accuracy is comparable to ML high accuracy methods
and other methods (e.g., LS and Taubin’ method [35])
low accuracy methods. In contrast, we say methods
that outperform ML, if they exist, have hyperaccuracy
(Table 1).

In the past, ML has been regarded as the most
accurate method for ellipse fitting. In other domains,
such as structure from motion [8], [26], [27] and funda-
mental matrix computation [37], methods purported to
be better than ML have been shown to exist, but they
are effective only asymptotically as the number of data
points grows. Their basic strategy is to estimate the
asymptotic distribution of the data points and make
use of that knowledge. Such approaches are known as
semi-parametric models [1].

In contrast, our approach is to do error analysis of
ML and subtract high-order bias terms. Bias removal
can be done by numerical resampling called bootstrap
[7]. Cabrera and Meer [3] applied this technique to el-
lipse fitting, but the computational burden is too heavy
to be effective. Here, we derive an analytical correction
formula, which can be applied to any finite (typically
very small) number of data.

The goal of this paper is to show the following:

1. There does exist a hyperaccurate method.
2. The accuracy gain is very small, because ML al-

ready nearly achieves the KCR lower bound.

The second fact implies that we cannot expect dramatic
accuracy improvement in practice. Nevertheless, our

∗The program is available from the following site:
http://www.suri.it.okayama-u.ac.jp
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analysis has theoretical significance, illuminating the
relationship between ML and the KCR lower bound.

Our analysis is not limited to ellipse fitting; it is di-
rectly applied to general quadratic curves and surfaces,
in fact to any algebraic curves and surfaces in general
spaces. However, we restrict ourselves to ellipses, partly
because this is the most important problem in practical
vision applications and partly because the effect of our
method is easy to visualize for ellipses.

2. KCR Lower Bound for Ellipse Fitting

We want to fit an ellipse to N points {(xα, yα)}, α =
1, ..., N . An ellipse is represented by

Ax2+2Bxy+Cy2+2f0(Dx+Ey)+Ff2
0 = 0, (1)

where f0 is an arbitrary scaling constant†. If we define

u = ( A B C D E F )> ,

ξ =
(
x2 2xy y2 2f0x 2f0y f2

0

)>
, (2)

Equation (1) is written as

(u, ξ) = 0. (3)

Throughout this paper, we denote the inner product
of vectors a and b by (a, b). Since the magnitude of
the vector u is indeterminate, we adopt normalization
‖u‖ = 1. Geometrically, Eq. (3) describes a hyperplane
in the 6-dimensional space R6 of the variable vector
ξ. The N points {(xα, yα)}, α = 1, ..., N , can be
regarded as points in R6 via the embedding ξ : R2 →
R6 defined by the second of Eqs. (2). Thus, ellipse
fitting is converted to hyperplane fitting in R6.

Equation (1) describes not necessarily an ellipse
but also a parabola, a hyperbola, and their degeneracy
(e.g., two lines), generically called a conic. For this
reason, fitting a curve in the form of Eq. (1) is often
called conic fitting [13]. Even if the points {(xα, yα)}
are sampled from an ellipse, the fitted equation may
represent a hyperbola or other curves in the presence
of large noise, and a technique for preventing that has
been proposed [9]. Here, however, we do not impose
any such constraints, assuming that noise is sufficiently
small. We also assume that outliers have already been
removed in the preceding image processing stage.

Suppose each point (xα, yα) is perturbed from its
true position (x̄α, ȳα) by Gaussian noise of mean 0
and standard deviation σ in each component indepen-
dently. Then, the covariance matrix of ξα has the form
4σ2V0[ξα], where V0[ξα], which we call the normalized
covariance matrix , has the following form after omit-
ting higher order terms††in σ:




x̄2
α x̄αȳα 0 f0x̄α 0 0

x̄αȳα x̄2
α + ȳ2

α x̄αȳα f0ȳα f0x̄α 0
0 x̄αȳα ȳ2

α 0 f0ȳα 0
f0x̄α f0ȳα 0 f2

0 0 0
0 f0x̄α f0ȳα 0 f2

0 0
0 0 0 0 0 0




. (4)

Since ξα has only 2 degrees of freedom (i.e., xα and
yα), the matrix V0[ξα] has rank 2.

Let û be an estimator of u obtained by some
means. Its accuracy is measured by the following co-
variance matrix:

V [û] = E[(P uû)(P uû)>]. (5)

Here, E[ · ] denotes expectation with respect to the
noise in the data {(xα, yα)}, and P u is the projection
matrix (I denotes the unit matrix)

P u = I − uu>, (6)

which projects û onto the hyperplane orthogonal to
u. Since the parameter vector u is normalized to unit
norm, its domain is the unit sphere S5 inR6. Following
the approach of Kanatani [15], we focus on the asymp-
totic limit of small noise and identify the domain of the
errors with the tangent hyperplane to S5 at u. So, the
error is evaluated after projecting it onto that hyper-
plane. Hence, the covariance matrix V [û] is a singular
matrix of rank 5.

In this setting, Kanatani [15], [18] proved that if ξα
is regarded as an independent Gaussian random vari-
able of mean ξ̄α and covariance matrix V [ξα], the fol-
lowing inequality holds for an arbitrary unbiased esti-
mator û of u:

V [û] Â
( N∑

α=1

ξ̄αξ̄
>
α

(u, V [ξα]u)

)−
. (7)

Here, Â means that the left-hand side minus the right
is positive semidefinite, and the superscript − denotes
the generalized inverse (of rank 5).

Chernov and Lesort [4] called the right-hand side of
Eq. (7) the KCR (Kanatani-Cramer-Rao) lower bound
and showed that it holds except for O(σ4) even if û is
not unbiased; it is sufficient that û is “consistent” in
the sense that û → u as σ → 0.

3. Maximum Likelihood Estimation

The best known method for solving the above prob-
lem is the least squares (LS ), also known as algebraic
distance minimization, minimizing

JLS =
N∑

α=1

(u, ξα)2, (8)

which is written as JLS = (u,MLSu) if we define

MLS =
N∑

α=1

ξαξ>α . (9)

The solution ûLS is the unit eigenvector of MLS for
†One can set f0 = 1 unless the data have too large mag-

nitudes, in which case a large value of f0 would stabilize
numerical computation.

††We confirmed by experiment that inclusion of the omit-
ted higher order terms has no noticeable effects in our nu-
merical results shown later.
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the smallest eigenvalue. However, the LS solution uLS

is known to have large statistical bias [15].
If ξα is regarded as an independent Gaussian ran-

dom variable of mean ξ̄α and covariance matrix V [ξα],
maximum likelihood (ML) is to minimize the sum of the
square Mahalanobis distances of the data points ξα to
the hyperplane to be fitted, minimizing

J =
N∑

α=1

(ξα − ξ̄α, V0[ξα]−(ξα − ξ̄α)), (10)

subject to the constraint (u, ξ̄α) = 0, α = 1, ..., N .
We can use V0[ξα] instead of the full covariance matrix
4σ2V0[ξα], because the solution is unchanged if V0[ξα]
is multiplied by a positive constant. Introducing La-
grange multipliers for the constraint (u, ξ̄α) = 0, we
can reduce the problem to unconstrained minimization
of the following function [5], [15], [24]:

J =
N∑

α=1

(u, ξα)2

(u, V0[ξα]u)
. (11)

By differentiation with respect to u, we have

∇uJ =
N∑

α=1

2(ξα, u)ξα

(u, V0[ξα]u)
−

N∑
α=1

2(ξα, u)2V0[ξα]u
(u, V0[ξα]u)2

. (12)

The ML estimator û is obtained by solving ∇uJ = 0,
or

Mu = Lu, (13)

where we define

M =
N∑

α=1

ξαξ>α
(u, V0[ξα]u)

, L =
N∑

α=1

(ξα, u)2V0[ξα]
(u, V0[ξα]u)2

.

(14)

The FNS of Chojnacki et al. [5] solves Eq. (13) by it-
eratively computing eigenvalue problems; the HEIV of
Leedan and Meer [24] iteratively computes generalized
eigenvalue problems. Kanatani’s renormalization [15]
also solves Eq. (13) with nearly the same accuracy [18].

4. Error Analysis of ML

Substituting ξα = ξ̄α + ∆ξα in the matrix M in
Eqs. (14), we obtain

M = M̄ + ∆1M + ∆2M , (15)

∆1M =
N∑

α=1

∆ξαξ̄
>
α + ξ̄α∆ξ>α

(u, V0[ξα]u)
,

∆2M =
N∑

α=1

∆ξα∆ξ>α
(u, V0[ξα]u)

, (16)

where M̄ is the value of the matrix M defined by the
true values {ξ̄α} of {ξα}. The matrix L in Eqs. (14) is
written as

L =
N∑

α=1

(ξ̄α + ∆ξα, u)2V0[ξα]
(u, V0[ξα]u)2

=
N∑

α=1

(∆ξα, u)2V0[ξα]
(u, V0[ξα]u)2

= ∆2L, (17)

so L is a second order quantity.
Letting u be the noise-free value of the solution,

we expand the ML estimator û in the form

û = u + ∆1u + ∆2u + · · · , (18)

where ∆ku denotes terms which contain kth powers of
the components of ∆ξα having a magnitude of O(σk).
Substituting Eq. (18) into Eq. (13), we obtain

(M̄ + ∆1M + ∆∗
1M + ∆2M + ∆∗

2M + · · ·)
(u + ∆1u + ∆2u + · · ·)
= (∆2L + ∆∗

2L + · · ·)(u + ∆1u + ∆2u + · · ·),
(19)

where ∆∗
1M , ∆∗

2M , and ∆∗
2L are, respectively, the per-

turbation terms arising from replacing u by û in M ,
∆1M , and L. They are given by

∆∗
1M =−2

N∑
α=1

(∆1u, V0[ξα]u)ξ̄αξ̄
>
α

(u, V0[ξα]u)2
,

(20)

∆∗
2M =−2

N∑
α=1

(∆1u,V0[ξα]u)(∆ξαξ̄
>
α+ξ̄α∆ξ>α )

(u, V0[ξα]u)2

+
N∑

α=1

ξ̄αξ̄
>
α

(u, V0[ξα]u)
O(σ2),

∆∗
2L =

N∑
α=1

(ξ̄α, ∆1u)2V0[ξα]
(u, V0[ξα]u)2

+2
N∑

α=1

(ξ̄α,∆1u)(∆ξα, u)V0[ξα]
(u, V0[ξα]u)2

. (21)

Equating terms of O(1), O(σ), and O(σ2) on both
sides of Eq. (19), we obtain

∆1u = −M̄
−∆1Mu (22)

∆2u
⊥= −M̄

−∆2Mu + M̄
−∆1MM̄

−∆1Mu

+M̄
−∆∗

1MM̄
−∆1Mu− M̄

−∆∗
2Mu

+M̄
−∆2Lu + M̄

−∆∗
2Lu, (23)

where the superscript ⊥ means the component orthogo-
nal to u; the component parallel to u is irrelevant, since
the solution is normalized to a unit vector (Fig. 1). The
derivation of Eqs. (23) is given in the Appendix.

The first order error ∆u1 yields the variation cor-
responding to the KCR lower bound. In fact, we have

E[∆1u∆1u
>] = E[M̄−∆1Muu>∆1MM̄

−]

= E
[
M̄

−
N∑

α=1

∆ξαξ̄
>
α + ξ̄α∆ξ>α

(u, V0[ξα]u)
uu>
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u
u

O

Fig. 1 The orthogonal and the parallel components of the error
in û.

N∑

β=1

∆ξβ ξ̄
>
β + ξ̄β∆ξ>β

(u, V0[ξβ ]u)
M̄

−]

= M̄
−

N∑

α,β=1

(u, E[∆ξα∆ξ>β ]u)ξ̄αξ̄
>
β

(u, V0[ξα]u)(u, V0[ξβ ]u)
M̄

−

= M̄
−

N∑
α=1

4σ2ξ̄αξ̄
>
α

(u, V0[ξα]u)
M̄

−

= 4σ2M̄
−

M̄M̄
− = 4σ2M̄

−
, (24)

where we have used the identity†E[∆ξα∆ξ>β ] =
4σ2δαβV0[ξα], a consequence of the noise independence.

From the definition of M̄ and V0[ξα], we can see
that Eq. (24) coincides the KCR lower bound (the right-
hand side of Eq. (7)). We now examine the effect of the
second order error ∆2u.

5. Bias Evaluation for ML

Since E[∆ξα] = 0, we have E[∆1M ] = O. Hence, the
first order error ∆1u is “unbiased”. So, we evaluate the
bias of the second order error ∆2u. The expectation of
∆2M is

E[∆2M ] =
N∑

α=1

E[∆ξα∆ξ>α ]
(u, V0[ξα]u)

=
N∑

α=1

4σ2V0[ξα]
(u, V0[ξα]u)

= 4σ2N , (25)

where we define

N =
N∑

α=1

V0[ξα]
(u, V0[ξα]u)

. (26)

The expectation of M̄
−∆1MM̄

−∆1Mu is

E[M̄−∆1MM̄
−∆1Mu]

= E
[
M̄

−
N∑

α=1

ξ̄α∆ξ>α + ∆ξαξ̄
>
α

(u, V0[ξα]u)
M̄

−

N∑

β=1

ξ̄β∆ξ>β + ∆ξβ ξ̄
>
β

(u, V0[ξβ ]u)
u

]

=
N∑

α,β=1

1
(u, V0[ξα]u)(u, V0[ξβ ]u)

(
M̄

−
ξ̄α(M̄−

ξ̄β , E[∆ξα∆ξ>β ]u)

+M̄
−

E[∆ξα∆ξ>β ]u(ξ̄α, M̄
−

ξ̄β)
)

= 4σ2
N∑

α=1

1
(u, V0[ξα]u)2

(
(M̄−

ξ̄α,

V0[ξα]u)M̄ −̄
ξα+(ξ̄α,M̄

−̄
ξα)M̄−

V0[ξα]u
)
. (27)

The expectation of ∆∗
1MM̄

−∆1Mu is

E[∆∗
1MM̄

−∆1Mu]

= −2
N∑

α=1

E[(∆1u, V0[ξα]u)ξ̄α(ξ̄α, M̄
−∆1Mu)]

(u, V0[ξα]u)2

= −2
N∑

α=1

1
(u, V0[ξα]u)2

E[(M̄−∆1Mu, V0[ξα]u)

(ξ̄α,M̄
−∆1Mu)ξ̄α]

= −2
N∑

α=1

1
(u, V0[ξα]u)2

(M̄−
V0[ξα]u,

E[(∆1Mu)(∆1Mu)>]M̄−
ξ̄α)ξ̄α, (28)

where E[(∆1Mu)(∆1Mu)>] is evaluated as follows:

E[(∆1Mu)(∆1Mu)>]

= E
[ N∑

α=1

ξ̄α(∆ξα, u)
(u, V0[ξα]u)

N∑

β=1

ξ̄
>
β (∆ξβ , u)

(u, V0[ξβ ]u)

]

=
N∑

α,β=1

(u, E[∆ξα∆ξ>β ], u)ξ̄αξ̄
>
β

(u, V0[ξα]u)(u, V0[ξβ ]u)

= 4σ2
N∑

α=1

ξ̄αξ̄
>
β

(u, V0[ξα]u)
= 4σ2M̄ . (29)

Thus, E[∆∗
1MM̄

−∆1Mu] is finally

E[∆∗
1MM̄

−∆1Mu]

= 8σ2
N∑

α=1

(M̄−
V0[ξα]u, M̄M̄

−
ξ̄α)ξ̄α

(u, V0[ξα]u)2

= 8σ2
N∑

α=1

(V0[ξα]u,M̄
−

M̄M̄
−

ξ̄α)ξ̄α

(u, V0[ξα]u)2

= −8σ2
N∑

α=1

(V0[ξα]u, M̄
−

ξ̄α)ξ̄α

(u, V0[ξα]u)2
. (30)

The expectation of ∆∗
2Mu is

E[∆∗
2Mu]

= −2
N∑

α=1

E[(∆1u, V0[ξα]u)ξ̄α(∆ξα, u)]
(u, V0[ξα]u)2

= 2
N∑

α=1

E[(M̄−∆1Mu, V0[ξα]u)(∆ξα, u)ξ̄α]
(u, V0[ξα]u)2

†The symbol δαβ is the Kronecker delta, taking on 1 for
α = β and 0 otherwise.
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= 2
N∑

α=1

(M̄−
V0[ξα]u, E[∆1Mu∆ξ>α u])ξ̄α

(u, V0[ξα]u)2
, (31)

where E[∆1Mu∆ξ>α u] is evaluated as follows:

E[∆1Mu∆ξ>α u] = E
[ N∑

β=1

(∆ξβ , u)ξ̄β∆ξ>α u

(u, V0[ξβ ]u)

]

=
N∑

β=1

ξ̄β(u, E[∆ξβ∆ξ>α ]u)
(u, V0[ξβ ]u)

= 4σ2 ξ̄α(u, V0[∆ξα]u)
(u, V0[ξα]u)

= 4σ2ξ̄α. (32)

Thus, E[∆∗
2Mu] is finally

E[∆∗
2Mu] = 8σ2

N∑
α=1

(M̄−
V0[ξα]u, ξ̄α)ξ̄α

(u, V0[ξα]u)2

= 8σ2
N∑

α=1

(V0[ξα]u,M̄
−

ξ̄α)ξ̄α

(u, V0[ξα]u)2
. (33)

The expectation of ∆2L is

E[∆2L] = E
[ N∑

α=1

(∆ξα, u)2V0[ξα]
(u, V0[ξα]u)2

]

=
N∑

α=1

(u, E[∆ξα∆ξ>α ]u)V0[ξα]
(u, V0[ξα]u)2

= 4σ2
N∑

α=1

V0[ξα]
(u, V0[ξα]u)

= 4σ2N . (34)

The expectation of M̄
−∆∗

2Lu is

E[M̄−∆∗
2Lu]

= M̄
−

N∑
α=1

ξ̄
>
α E[∆1u∆1u

>]ξ̄αV0[ξα]u
(u, V0[ξα]u)2

+2M̄
−

N∑
α=1

ξ̄
>
α E[∆1u∆ξ>α ]uV0[ξα]u

(u, V0[ξα]u)2
, (35)

where E[∆1u∆1u
>] is evaluated as follows:

E[∆1u∆1u
>]

= E[(M̄−∆1Mu)(M̄−∆1Mu)>]

= M̄
−

E[(∆1Mu)(∆1Mu)>]M̄−

= M̄
−

E[
N∑

α=1

(∆ξα,u)ξ̄α

(u, V0[ξα]u)

N∑

β=1

(∆ξβ , u)ξ̄>β
(u, V0[ξβ ]u)

]M̄−

= M̄
−

N∑

α,β=1

(u, E[∆ξα∆ξ>β ]u)ξ̄αξ̄
>
β

(u, V0[ξα]u)(u, V0[ξβ ]u)
M̄

−

= 4σ2M̄
−

N∑
α=1

(u, V0[ξα]u)ξ̄αξ̄
>
α

(u, V0[ξα]u)2
M̄

−

= 4σ2M̄
−

N∑
α=1

ξ̄αξ̄
>
α

(u, V0[ξα]u)
M̄

− = 4σ2M̄
−

M̄M̄
−

= 4σ2M̄
−

. (36)

On the other hand, E[∆1u∆ξ>α ]u is

E[∆1u∆ξ>α ]u

= −E[M̄−∆1Mu∆ξ>α ]u

= −M̄
−

E
[ N∑

β=1

(∆ξβ , u)ξ̄β∆ξ>α
(u, V0[ξβ ]u)

]
u

= −M̄
−

N∑

β=1

ξ̄β(u, E[∆ξβ∆ξ>α ]u)
(u, V0[ξβ ]u)

= −4σ2M̄
− ξ̄α(u, V0[ξα]u)

(u, V0[ξα]u)
= −4σ2M̄

−
ξ̄α. (37)

Thus, E[M̄−∆∗
2Lu] is finally

E[M̄−∆∗
2Lu]

= 4σ2M̄
−

N∑
α=1

(ξ̄α,M̄
−

ξ̄α)V0[ξα]u
(u, V0[ξα]u)2

−8σ2M̄
−

N∑
α=1

(ξ̄α, M̄
−

ξ̄α)V0[ξα]u
(u, V0[ξα]u)2

= −4σ2M̄
−

N∑
α=1

(ξ̄α, M̄
−

ξ̄α)V0[ξα]u
(u, V0[ξα]u)2

. (38)

From Eqs. (25)∼(38), the bias of the second order error
∆2u

⊥ in Eq. (23) is

E[∆2u
⊥]=4σ2M̄

−
N∑

α=1

(M̄−
ξ̄α,V0[ξα]u)ξ̄α

(u, V0[ξα]u)2
. (39)

6. Hyperaccuracy Correction

The above analysis implies that we can obtain a hyper-
accurate estimator by subtracting an estimate of the
bias E[∆2u

⊥] from the ML estimator û in the form

ũ = N [û−∆cu], (40)

where N [ · ] denotes normalization into a unit vector.
The correction term ∆cu is given by

∆cû = 4σ̂2M−
N∑

α=1

(M−ξ̄α, V0[ξα]û)ξ̄α

(û, V0[ξα]û)2
, (41)

where u and M̄ in Eq. (39) are replaced by the ML
estimator û and the matrix M defined from {ξα}, re-
spectively. The variance σ2 is estimated by

σ̂2 =
(û,Mû)
4(N − 5)

. (42)

7. Experiments

We defined N = 20 points {(x̄α, ȳα)} on the ellipse
shown in Fig. 2(a) with equal intervals. From them, we
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Fig. 2 (a) 20 points on an ellipse. (b) Noise level vs. RMS error: LS (broken line), ML
(thick solid line), hyperaccuracy correction (thin solid line), KCR lower bound (dotted
line).

generated data points {(xα, yα)} by adding Gaussian
noise of mean 0 and standard deviation σ to the x and
y coordinates independently. Then, we fitted an ellipse
by different methods. For computing ML, we used the
FNS of Chojnacki et al. [5].

Figure 2(b) plots for different σ the fitting error
evaluated by the following RMS (root mean square)
error over 10,000 independent trials:

D =

√√√√ 1
10000

10000∑
a=1

‖P uû(a)‖2. (43)

Here, û(a) is the ath value of û. The thick solid line is
for ML; the thin solid line is the result of our hyperac-
curate correction. For comparison, we also plot the LS
solution ûLS by the broken line. The dotted line is the
RMS error derived from Eq. (7):

DKCR = 2σ

√√√√tr
( N∑

α=1

ξ̄αξ̄
>
α

(u, V0[ξα]u)

)−
. (44)

Intuitively, [0, D] and [0, DKCR] indicate the empirical
and theoretical “one-sigma” ranges of the error fluctu-
ations in all directions in R6 averaged.

As we can see from Fig. 2(b), LS has very low ac-
curacy, while ML is very accurate; it almost achieves
the KCR lower bound when the noise is small. As
the noise increases, however, a small gap appears be-
tween the RMS error and the KCR lower bound. After
adding the hyperaccurate correction, the RMS error ap-
proaches closer to the KCR lower bound†.

Figure 3(a) shows one instance of ellipse fitting (σ
= 0.015). The dotted line shows the true ellipse; the
broken line is for LS; the thick solid line is for ML; the
thin solid line is for our hyperaccurate correction. We
can see that the fitted ellipse is closer to the true shape
after the correction. Figure 3(b) is another instance
(σ = 0.015). In this case, the ellipse given by ML is
already very accurate, and it slightly deviates from the
true shape after the correction.

Thus, the accuracy sometimes improves and some-
times deteriorates. Overall, however, the cases of im-
provement are the majority; on average we observe

†The hyperaccuracy correction of ellipse fitting was first
presented in [16], but the term ∆∗

2L was not taken into
account.

(a) (b)

Fig. 3 Two instances of ellipse fitting: LS (broken line), ML
(thick solid line), hyperaccuracy correction (thin solid line), true
ellipse (dotted line).

slight improvement as shown in Fig. 2(b). Closely ex-
amining many examples, we have observed that the ac-
curacy drop occurs almost always when the ML fitted
ellipse falls inside the true shape. However, the ma-
jority of the fitted ellipses are outside the true shape.
Thus, the correction is effective on average.

We infer that ML is likely to produce ellipses out-
side the true shape because it is parameterized in the
form of Eq. (1). In fact, if the major or minor axis of
the ellipse is a, the coefficient of x2 or y2 is proportional
to 1/a2. If 1/a2 is “unbiased”, then a is biased to be
larger than the true value, as can be easily seen from
the shape of the graph of y = 1/x2.

8. Conclusions

We have demonstrated for the first time the existence of
“hyperaccurate” ellipse fitting which outperforms ML.
This is made possible by error analysis of ML followed
by subtraction of high-order bias terms. However, ML
nearly achieves the KCR lower bound, meaning that
even if the bias is eliminated, the solution still fluc-
tuates with the magnitude corresponding to the KCR
lower bound, which is theoretically impossible to re-
duce. Thus, the accuracy gain by our method is almost
unnoticeable in practice, compared to which remov-
ing outliers and stabilizing the computation have far
more practical significance. Nevertheless, our analysis
has theoretical significance, illuminating the relation-
ship between ML and the KCR lower bound.
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Appendix: Perturbation Analysis of ML

Equating terms of O(σ) on both sides of Eq. (19), we
obtain

M̄∆1u + ∆1Mu + ∆∗
1Mu = 0. (45)

From Eq. (20), we see that

∆∗
1Mu

= −2
N∑

α=1

((∆1u,V0[ξα]u)+O(σ2))ξα(ξα,u)
(u, V0[ξα]u)2
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= 0. (46)

Hence, multiplication of M̄
− on both sides of Eq. (45)

from left yields

P u∆1u + M̄
−∆1Mu = 0, (47)

where P u is the projection matrix defined in Eq. (6).
Note that M̄

−
M̄ = P u. Since u is constrained to be

a unit vector, the error ∆u should be orthogonal to u
to a first approximation. Hence, P u∆1u = ∆1u, from
which we obtain Eq. (22).

Equating terms of O(σ2) on both sides of Eq. (19),
we obtain

M̄∆2u + ∆1M∆1u + ∆∗
1M∆1u

+∆2Mu + ∆∗
2Mu = ∆2Lu + ∆∗

2Lu. (48)

Multiplication of M̄
− on both sides of Eq. (48) from

left yields

M̄
−

M̄∆2u + M̄
−∆1M∆1u + M̄

−∆∗
1M∆1u

+M̄
−∆2Mu + M̄

−∆∗
2Mu = M̄

−∆2Lu

+M̄
−∆∗

2Lu. (49)

Noting that M̄
−

M̄∆2u = Pu∆2u = ∆2u
⊥, and sub-

stituting Eq. (22) for ∆1u, we obtain Eq. (23).
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