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PAPER

Multi-Stage Unsupervised Learning for Multi-Body
Motion Segmentation

Yasuyuki SUGAYA† and Kenichi KANATANI†, Members

SUMMARY Many techniques have been proposed for seg-
menting feature point trajectories tracked through a video se-
quence into independent motions, but objects in the scene are
usually assumed to undergo general 3-D motions. As a result,
the segmentation accuracy considerably deteriorates in realistic
video sequences in which object motions are nearly degenerate.
In this paper, we propose a multi-stage unsupervised learning
scheme first assuming degenerate motions and then assuming
general 3-D motions and show by simulated and real video ex-
periments that the segmentation accuracy significantly improves
without compromising the accuracy for general 3-D motions.
key words: motion segmentation, unsupervised learning, EM
algorithm, affine camera model, degenerate motion

1. Introduction

Segmenting feature point trajectories tracked through
a video sequence into independent motions is the first
step of many video processing applications. Already,
many techniques have been proposed for this task.

Costeira and Kanade [1] proposed a segmentation
algorithm based on the shape interaction matrix. Gear
[3] used the reduced row echelon form and graph match-
ing. Ichimura [4] used the discrimination criterion of
Otsu [12]. He also used the QR decomposition [5].
Inoue and Urahama [6] introduced fuzzy clustering.
Kanatani [8]–[10] incorporated model selection using
the geometric AIC [7]. Wu et al. [19] introduced or-
thogonal subspace decomposition.

However, all these methods assume that objects
in the scene undergo general 3-D motions relative to
the camera. As a result, segmentation fails when the
motions are degenerate, e.g., all the objects are sim-
ply translating independently. This type of degeneracy
frequently occurs in real scenes.

At first sight, segmenting simple motions may seem
easier than segmenting complicated motions. In reality,
however, the opposite is the case, because complicated
motions have sufficient cues for mutual discrimination.
In fact, many methods that exhibit high accuracy for
complicated simulations perform very poorly for real
video sequences. To cope with this, we introduced
a scheme for automatically selecting the best motion
model using the geometric AIC [15], [16], but the im-
provement was very much limited.

In this paper, we introduce unsupervised learning
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[14] assuming degenerate motions followed by unsuper-
vised learning assuming general 3-D motions and show
that the segmentation accuracy significantly improves
without compromising the accuracy for general 3-D mo-
tions.

In Sec. 2, we describe the geometric constraints
that underlie our method. In Sec. 3, we introduce un-
supervised learning of the non-Bayesian and Bayesian
types. Our multi-stage learning scheme is described in
Sec. 4. In Sec. 5, we show synthetic and real video
examples. Section 6 concludes this paper.

2. Geometric Constraints

2.1 Trajectory of Feature Points

Suppose we track N feature points over M frames. Let
(xκα, yκα) be the coordinates of the αth point in the
κth frame. Stacking all the coordinates vertically, we
represent the entire trajectory by the following 2M -D
trajectory vector :

pα = (x1α y1α x2α y2α · · · xMα yMα)>. (1)

For convenience, we identify the frame number κ with
“time” and refer to the κth frame as “time κ”.

We regard the XY Z camera coordinate system as
the world frame, relative to which multiple objects are
moving. Consider a 3-D coordinate system fixed to one
moving object, and let tκ and {iκ, jκ,kκ} be, respec-
tively, its origin and basis vectors at time κ. If the
αth point has coordinates (aα, bα, cα) with respect to
this coordinate system, its position with respect to the
world frame at time κ is

rκα = tκ + aαiκ + bαjκ + cαkκ. (2)

2.2 Affine Camera Model

We assume an affine camera, which generalizes ortho-
graphic, weak perspective, and paraperspective projec-
tions [13]: the 3-D point rκα is projected onto the image
position

(
xκα

yκα

)
= Aκrκα + bκ, (3)

where Aκ and bκ are, respectively, a 2×3 matrix and a
2-D vector determined by the position and orientation
of the camera and its internal parameters at time κ.
Substituting Eq. (2), we have
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(
xκα

yκα

)
= m̃0κ + aαm̃1κ + bαm̃2κ + cαm̃3κ, (4)

where m̃0κ, m̃1κ, m̃2κ, and m̃3κ are 2-D vectors de-
termined by the position and orientation of the camera
and its internal parameters at time κ. From Eq. (4),
the trajectory vector pα in Eq. (1) can be written in
the form

pα = m0 + aαm1 + bαm2 + cαm3, (5)

where m0, m1, m2, and m3 are the 2M -D vectors ob-
tained by stacking m̃0κ, m̃1κ, m̃2κ, and m̃3κ vertically
over the M frames, respectively.

2.3 Constraints on Image Motion

Equation (5) implies that the trajectories of the feature
points that belong to one object are constrained to be
in the 4-D subspace spanned by {m0, m1, m2, m3} in
R2M . It follows that multiple moving objects can be
segmented into individual motions by separating the
trajectories vectors {pα} into distinct 4-D subspaces.
This is the principle of the method of subspace separa-
tion [8], [9].

In addition, the coefficient of m0 in Eq. (5) is iden-
tically 1 for all α. This means that the trajectories are
in a 3-D affine space within that 4-D subspace†. It fol-
lows that multiple moving objects can be segmented
into individual motions by separating the trajectory
vectors {pα} into distinct 3-D affine spaces. This is
the principle of the method of affine space separation
[10].

Theoretically, the segmentation accuracy should
be higher if we use stronger constraints. According to
simulations, the affine space separation indeed performs
better than the subspace separation except in the case
in which perspective effects are very strong and the
noise is small [10]. For real video sequences, however,
the affine space separation accuracy is often lower than
that of the subspace separation [15], [16]. The cause
of this inconsistency will be clarified in the subsequent
analysis.

2.4 Number of Motions

We assume that the number m of motions is specified by
the user. For example, if a single object is moving in a
static background, both moving relative to the camera,
we have m = 2.

Many studies have been done for estimating the
number of motions automatically [1], [3], [6], but none
of them seems successful enough. This is because the
number of motions is not well-defined [9], [11]: one mov-
ing object can also be viewed as multiple objects mov-
ing similarly, and there is no rational way to unify sim-
ilarly moving objects into one except using heuristic
thresholds or ad-hoc criteria. If we use model selection,
for example, the resulting number of motions depends
on criteria‡ such as the geometric AIC and the geomet-
ric MDL [9], [11]. We conclude that the number m of
motions should be input by the user and the unification
process should be left to each application.

(a) (b)

Fig. 1 Segmentation criterion: (a) non-Bayesian type; (b)
Bayesian type.

2.5 Outlier Removal

The feature point trajectories tracked through video
frames are not necessarily correct, so we need to re-
move outliers. If the trajectories were segmented into
individual classes, we could remove, for example, those
that do not fit to the individual affine spaces. In the
presence of outliers, however, we cannot do correct seg-
mentation, and hence we do not know the affine spaces.

This difficulty can be resolved if we note that if
the trajectory vectors {pα} belong to m d-D subspaces,
they should be constrained to be in a dm-D subspace
and if they belong to m d-D affine spaces, they should
be in a ((d + 1)m− 1)-D affine space. So, we robustly
fit a dm-D subspace or a ((d + 1)m− 1)-D affine space
to {pα} by RANSAC and remove those that do not
fit to it [17]. Thus, outliers can be removed without
knowing the segmentation results.

Theoretically, the resulting trajectories may not
necessarily be all correct. However, we observed that
all apparent outliers were removed by this method†††,
although some inliers were also removed for safety [17].

3. Unsupervised Learning

3.1 Non-Bayesian Type

Segmentation by the subspace or affine space separa-
tion is not always correct. Here, we consider optimiz-
ing the segmentation a posteriori by fitting a 3-D affine
space (or a 4-D subspace) to each class and reclassifying
each trajectory to the closest affine space (or subspace)
(Fig. 1(a)). This process is iterated until the classifica-
tion converges.

If the noise in the coordinates of the feature points
is an independent Gaussian random variable of mean 0

†Customarily, m0 is identified with the centroid of
{pα}, and Eq. (5) is written as ( p′1 · · · p′N ) =

( m1 m2 m3 )

(
a1 · · · aN
b1 · · · bNc1 · · · cN

)
orW =MS, where

p′α = pα−m0. However, our formulation is more convenient
for the subsequent analysis.

††The program is available at:
http://www.suri.it.okayama-u.ac.jp/e-program.html
†††The program is available at:

http://www.suri.it.okayama-u.ac.jp/e-program.html
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and a constant variance, this procedure can be viewed
as unsupervised learning based on maximum likelihood
estimation, since minimizing the distance of points from
the fitted space is equivalent to maximizing their like-
lihood under our noise model.

3.2 Bayesian Type

We may also model the data distributions inside the
fitted spaces (Fig. 1(b)). This is the standard approach
to unsupervised learning for pattern recognition. How-
ever, the existence of geometric constraints complicates
the likelihood computation. For the affine space con-
straint, the actual procedure becomes as follows (the
procedure for the subspaces constraint goes similarly).

Let n = 2M . Suppose N n-D trajectory vectors
{pα} are already segmented into m classes by some
means. Initially, we define the weight W

(k)
α of the vector

pα by

W (k)
α =

{
1 if pα belongs to class k
0 otherwise . (6)

Then, we iterate the following procedures A and B in
turn until all the weights {W (k)

α } converge†.

A. Do the following computation for each class k = 1,
..., m.

1. Compute the fractional size of the class k

w(k) =
1
N

N∑
α=1

W (k)
α . (7)

2. Compute the centroid p
(k)
C of the class k:

p
(k)
C =

∑N
α=1 W

(k)
α pα∑N

α=1 W
(k)
α

. (8)

3. Compute the n× n moment matrix of the class k:

M (k) =
∑N

α=1 W
(k)
α (pα − p

(k)
C )(pα − p

(k)
C )>

∑N
α=1 W

(k)
α

.

(9)

4. Let λ1 ≥ λ2 ≥ λ3 be the largest three eigenvalues
of the matrix M (k), and u

(k)
1 , u

(k)
2 , and u

(k)
3 the

corresponding unit eigenvectors.
5. Compute the n× n projection matrices

P (k) =
3∑

i=1

u
(k)
i u

(k)>
i , P

(k)
⊥ = I − P (k), (10)

where I denotes the n× n unit matrix.
6. Estimate the noise variance in the direction orthog-

onal to the kth affine space by

σ̂2
k = max

[
tr[P (k)

⊥ M (k)P
(k)
⊥ ]

n− 3
, σ2

]
, (11)

where tr[ · ] denotes the trace and σ is an estimate
of the tracking accuracy‡.

7. Compute the n× n covariance matrix of the class
k by

V (k) = P (k)M (k)P (k) + σ̂2
kP

(k)
⊥ . (12)

B. Do the following computation for each trajectory
vector pα, α = 1, ..., N .

1. Compute the conditional likelihood P (α|k), k = 1,
..., m, by

P (α|k) =
e−(pα−p(k)

C
,V (k)−1(pα−p(k)

C
))/2

√
detV (k)

. (13)

2. Recompute the weights W
(k)
α , k = 1, ..., m, by

W (k)
α =

w(k)P (α|k)∑m
l=1 w(l)P (α|l) . (14)

After the iterations of A and B have converged, pα

is classified into the class k that maximizes W
(k)
α , k =

1, ..., m.

3.3 Interpretation

In the above iterations, we fit a Gaussian distribution
of mean p

(k)
C (Eq. (8)) and the rank 3 covariance matrix

P (k)M (k)P (k) (Eqs. (9), (10)) to the data distribution
inside each 3-D affine space. For the outside deviations,
we fit a Gaussian distribution of mean 0 and a constant
variance σ̂2

k (Eq. (11)).
Using this probabilistic interpretation, we compute

the probability P (α|k) of the trajectory vector pα con-
ditioned to be in the class k (Eq. (13)). Since the
fraction w(k) (Eq. (7)) can be interpreted to be the
a priori probability of the class k, we apply Bayes’ the-
orem (Eq. (14)) to compute the a posterior probability
W

(k)
α , according which all the trajectories are reclas-

sified. Note that W
(k)
α is generally a fraction, so one

trajectory belongs to multiple classes with fractional
weights until the final classification is made. If we con-
sider only the outside deviations, the above procedure
reduces to the non-Bayesian type.

This type of learning††† is widely used for pat-
tern recognition, and the likelihood is known to in-
crease monotonously by iterations [14]. It is also well
known, however, that the iterations are very likely to
be trapped at a local maximum. So, correct segmenta-
tion cannot be obtained by this type of iterations alone
unless we start from a very good initial value.

4. Multi-Stage Learning

Now, we model degenerate motions and derive an as-
sociated learning procedure, from which we construct
our multi-stage learning procedure.

†We stopped the iterations when the increments in W
(k)
α

are all smaller than 10−10.
††We found σ = 0.5 (pixels) a reasonable value [17].
†††This scheme is often referred to as the EM algorithm

[2], because the mathematical structure is the same as esti-
mating parameters from “incomplete data” by maximizing
the logarithmic likelihood marginalized by the posterior of
the missing data specified by Bayes’ theorem.
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Fig. 2 If the motions of the objects and the background are
degenerate, their trajectory vectors belong to mutually parallel
2-D affine spaces.

4.1 Degenerate Motions

The motions we most frequently encounter are such
that the objects and the background are translating
and rotating 2-dimensionally in the image frame with
varying sizes.

For such a motion, we can choose the basis vector
kκ in Eq. (2) in the Z direction (the camera optical axis
is identified with the Z-axis). Under the affine camera
model, motions in the Z direction do not affect the pro-
jected image except for its size. Hence, the vector m̃3κ

in Eq. (4) can be taken to be 0; the scale changes of
the projected image are absorbed by the scale changes
of m̃1κ and m̃2κ over time κ. It follows that the tra-
jectory vector pα in Eq. (5) belongs to the 2-D affine
space passing through m0 and spanned by m1 and m2

[15], [16].
All existing segmentation methods based on the

shape interaction matrix of Costeira and Kanade [1] as-
sume that the trajectories of different motions belong to
independent 3-D subspaces [8], [9]. Hence, degenerate
motions cannot be correctly segmented.

If, in addition, the objects and the background do
not rotate, we can fix the basis vectors iκ and jκ in
Eq. (2) to be in the X and Y directions, respectively.
Thus, the basis vectors iκ and jκ are common to the
objects and the background, so the vectors m1 and
m2 in Eq. (5) are also common. Hence, the 2-D affine
spaces of all the motions are parallel (Fig. 2).

Note that parallel 2-D affine spaces can be included
in a 3-D affine space. Since the affine space separation
method attempts to segment the trajectories into dif-
ferent 3-D affine spaces, it does not work if the objects
and the background undergo this type of degenerate
motions. This explains why the accuracy of the affine
space separation is not as high as expected for real video
sequences.

4.2 Unsupervised Learning for Degenerate Motions

Since many motions we encounter in practice are de-
generate, we can expect that the segmentation accuracy
increases by learning based on such degenerate motions.

This is done as follows. Initializing the weight
W

(k)
α by Eq. (6), we iterate the following procedures

A, B, and C in turn until all {W (k)
α } converge†:

A. Do the following computation for each class k = 1,
..., m.

1. Compute the fraction w(k) by Eq. (7).

2. Compute the centroid p
(k)
C of the class k by Eq. (8).

3. Compute the n × n moment matrix M (k) by
Eq. (9).

B. Do the following computation.

1. Compute the total n× n moment matrix

M =
m∑

k=1

w(k)M (k). (15)

2. Let λ1 ≥ λ2 be the largest two eigenvalues of the
matrix M , and u1 and u2 the corresponding unit
eigenvectors.

3. Compute the n× n projection matrices

P =
2∑

i=1

uiu
>
i , P⊥ = I − P . (16)

4. Estimate the noise variance in the direction orthog-
onal to all the affine spaces by

σ̂2 = max[
tr[P⊥MP⊥]

n− 2
, σ2]. (17)

5. Compute the n× n covariance matrix of the class
k by

V (k) = PM (k)P + σ̂2P⊥. (18)

C. Do the following computation for each trajectory
vector pα , α = 1, ..., N .

1. Compute the conditional likelihood P (α|k), k = 1,
..., m, by Eq. (13).

2. Recompute the weights {W (k)
α }, k = 1, ..., m, by

Eq. (14).

The computation is the same as in Sec. 3.2 ex-
cept that 2-D affine spaces with the same orientation
are fitted. The common basis vectors u1 and u2 and
the common outside noise variance are estimated in the
procedure B.

4.3 Multi-Stage Procedure

If we know that degeneracy exists, we can apply the
above procedure for improving the segmentation. How-
ever, we do not know if degeneracy exists. If the trajec-
tories were segmented into individual classes, we might
detect degeneracy by checking the dimensions of the in-
dividual classes, but we cannot do correct segmentation
unless we know whether or not degeneracy exists.

We resolve this difficulty by the following multi-
stage learning. First, we use the affine space separa-
tion assuming 2-D affine spaces, which effectively as-
sumes planar motions with varying sizes. Then, we
optimize the resulting segmentation by using the de-
generate model.

The resulting solution should be very accurate if
such a degeneracy really exists. However, rotations
may exist to some extent. So, we relax the constraint
and optimize the solution again, assuming general 3-D

†See the footnote † in Section 3.2.
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(a)

(b)

(c)

Fig. 3 Simulated image sequences of 14 object points and 20 background points: (a)
almost degenerate motion; (b) nearly degenerate motion; (c) general 3-D motion.
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(a) (b) (c)

Fig. 4 Misclassification ratio for the sequences (a), (b), and (c) in Fig. 3: 1) Costeira-
Kanade; 2) Ichimura; 3) optimized subspace separation; 4) optimized affine space separa-
tion; 5) multi-stage learning.

motions. This is motivated by the fact that if the mo-
tions are really degenerate, the solution optimized by
the degenerate model is not affected by the subsequent
optimization using the general model, because the de-
generate constraints also satisfy the general constraints.

In sum, our scheme consists of the following three
stages:

1. Initial segmentation by the affine space separation
using 2-D affine spaces.

2. Unsupervised learning of the Bayesian type based
on degenerate motions.

3. Unsupervised learning of the Bayesian type based
on general 3-D motions.

5. Experiments

5.1 Simulations

Fig. 3 shows three sequences of five synthetic images
(supposedly of 512×512 pixels) of 14 object points and
20 background points; the object points are connected
by line segments for the ease of visualization. To sim-
ulate real circumstances better, all the points are per-
spectively projected onto each frame with 30◦ angle of

view, although the underlying theory is based on the
affine camera model without perspective effects.

In all the three sequences, the object moves toward
the viewer in one direction (10◦ from the image plane),
while the background moves away from the viewer in
another direction (10◦ from the image plane). In (a),
the object and the background are simply translating in
different directions. In (b) and (c), they are addition-
ally rotating by 2◦ per frame in opposite senses around
different axes making 10◦ from the optical axis in (b)
and 60◦ in (b). Thus, all the three motions are not
strictly degenerate (with perspective effects), but the
motion is almost degenerate in (a), nearly degenerate
in (b), and a general 3-D motion in (c).

Adding independent Gaussian random noise of
mean 0 and standard deviation σ to the coordinates
of all the points, we segmented them into two groups
(m = 2). Fig. 4 plots the average misclassification ratio
over 500 trials using different noise. We compared 1)
the Costeira-Kanade method [1], 2) Ichimura’s method
[4], 3) the subspace separation [8], [9] followed by un-
supervised learning of the Bayesian type (we call this
optimized subspace separation for short), 4) the affine
space separation [10] followed by unsupervised learning
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Fig. 5 Comparison of misclassification ratios: 1) subspace sep-
aration; 2) subspace separation followed by unsupervised learning
of the non-Bayesian type; 3) subspace separation followed by un-
supervised learning of the Bayesian type; 4) affine space separa-
tion; 5) affine space separation followed by unsupervised learning
of the non-Bayesian type 6) affine space separation followed by
unsupervised learning of the Bayesian type.

of the Bayesian type (optimized affine space separation
for short), and 5) our multi-stage learning.

For the almost degenerate motion in Fig. 3(a), the
optimized subspace and affine space separations do not
work very well. Also, the latter is not superior to the
former (Fig. 4(a)). Since our multi-stage learning is
based on this type of degeneracy, it achieves 100% ac-
curacy over all the noise range.

For the nearly degenerate motion in Fig. 3(b), the
optimized subspace and affine space separations work
fairly well (Fig. 4(b)). However, our method still at-
tains almost 100% accuracy.

For the general 3-D motion in Fig. 3(c), the op-
timized subspace and affine space separations exhibit
relatively high performance (Fig. 4(c)), but our method
performs much better with nearly 100% accuracy again.

Although the same learning procedure is used in
the end, the multi-stage learning performs better than
the optimal affine space separation, because the former
starts from a better initial value than the latter.

For all the motions, the Costeira-Kanade method
performs very poorly. The accuracy is not 100% even in
the absence of noise (σ = 0) because of the perspective
effects. Ichimura’s method is not effective, either. It
works to some extent for the general 3-D motion in
Fig. 3(c), but it does not compare with the optimized
subspace or affine space separation, much less with our
multi-stage optimization method.

5.2 Effects of Learning

Fig. 5 shows the effects of learning for Fig. 3(c). We
see that both the non-Bayesian and the Bayesian types
work effectively but that the latter is slightly better.
However, our multi-stage learning is far better.

Fig. 6 shows the stage-wise effects of our multi-
stage learning for Fig. 3(c). For this general 3-D mo-
tion, the learning based on degenerate motions does not
perform so very well indeed, but the subsequent learn-
ing based on general 3-D motions successfully restores
the accuracy up to almost 100%.
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Fig. 6 Stage-wise misclassification ratios of multi-stage learn-
ing: 1) affine space separation using 2-D affine spaces; 2) un-
supervised learning of the Bayesian type assuming degenerate
motions; 3) unsupervised learning of the Bayesian type assuming
general 3-D motions.

The interesting fact is that the accuracy increases
as the noise increases. This is because the discrepancy
between the assumed affine camera model and the ac-
tual perspective projection is more conspicuous when
the noise is smaller [10].

5.3 Real Video Examples

Fig. 7 shows five decimated frames from three video
sequences A, B, and C (320× 240 pixels). For each se-
quence, we detected feature points in the initial frame
and tracked them using the Kanade-Lucas-Tomasi al-
gorithm [18]. The marks 2 indicate their positions.

Table 1 lists the number of frames, the number
of inlier trajectories, and the computation time for our
multi-stage learning. We reduced the computation time
by compressing the trajectory data into 8-D vectors
[15]. We used Pentium 4 2.4GHz for the CPU with
1GB main memory and Linux for the OS.

Table 2 lists the accuracies of different methods
(“opt” stands for “optimized”) measured by (the num-
ber of correctly classified points)/(the total number of
points) in percentage (m = 2). Except for the Costeira-
Kanade and Ichimura methods, the percentage is aver-
aged over 50 trials, since the subspace and affine space
separations internally use random sampling for robust
estimation and hence the result is slightly different for
each trial.

As we see, the Costeira-Kanade method fails to
produce meaningful segmentation. Ichimura’s method
is effective for sequences A and B but not so effective for
sequence C. For sequence A, the affine space separation
is superior to the subspace separation. For sequence B,
the two methods have almost the same performance.
For sequence C, the subspace separation is superior to
the affine space separation, suggesting that the motion
in sequence C is nearly degenerate.

The effect of learning is larger for sequence A than
for sequences B and C, for which the accuracy is already
high before the learning. Thus, the effect of learning
very much depends on the quality of the initial seg-
mentation. For all the three sequences, our multi-stage
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A:

B:

C:

Fig. 7 Three video sequences and successfully tracked feature points.

Table 1 The computation time for the multi-stage learning of
the sequences in Fig. 7.

A B C

number of frames 30 17 100
number of points 136 63 73
computation time (sec) 2.50 0.51 1.49

Table 2 Segmentation accuracy (%) for the sequences in
Fig. 7.

A B C

Costeira-Kanade 60.3 71.3 58.8
Ichimura 92.6 80.1 68.3
subspace separation 59.3 99.5 98.9
affine space separation 81.8 99.7 67.5

opt. subspace separation 99.0 99.6 99.6
opt. affine space separation 99.0 99.8 69.3
multi-stage learning 100.0 100.0 100.0

learning achieves 100% accuracy.

6. Concluding Remarks

In this paper, we proposed a multi-stage learning
scheme first assuming degenerate motions and then as-
suming general 3-D motions. Doing simulations and
real video experiments, we confirmed that our method
is superior to all existing methods in realistic circum-
stances.

The reason for this superiority is that our method
is tuned to realistic circumstances, where the motions
of objects and backgrounds are almost degenerate,
whereas most existing methods implicitly assume that
objects and backgrounds undergo general 3-D motions.
As a result, they perform very poorly for simple mo-
tions such as in Fig. 7, while our method† has very
high performance without compromising the accuracy
for considerably non-degenerate motions.

†The program is available at:
http://www.suri.it.okayama-u.ac.jp/e-program.html
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