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Outlier Removal for Motion Tracking

by Subspace Separation

Yasuyuki SUGAYA† and Kenichi KANATANI†, Regular Members

SUMMARY Many feature tracking algorithms have been
proposed for motion segmentation, but the resulting trajectories
are not necessarily correct. In this paper, we propose a technique
for removing outliers based on the knowledge that correct trajec-
tories are constrained to be in a subspace of their domain. We
first fit an appropriate subspace to the detected trajectories us-
ing RANSAC and then remove outliers by considering the error
behavior of actual video tracking. Using real video sequences, we
demonstrate that our method can be applied if multiple motions
exist in the scene. We also confirm that the separation accuracy
is indeed improved by our method.
key words: feature tracking, outlier removal, subspace separa-
tion, robust estimation, RANSAC

1. Introduction

Segmenting individual objects from backgrounds is one
of the most important techniques of video processing.
For images taken by a stationary camera, many seg-
mentation algorithms based on interframe subtraction
have been proposed. For images taken by a moving
camera, however, the segmentation is very difficult be-
cause the objects and the backgrounds are both moving
in the images.

While most existing methods for multi-body seg-
mentation combine such information as optical flow,
color, and texture along with miscellaneous heuristics,
Costeira and Kanade [1] presented a segmentation al-
gorithm based only on the image motion of feature
points. Since then, various modifications and exten-
sions of their method have been proposed.

Gear [3] used the reduced row echelon form and graph
matching. Ichimura [5] applied the discrimination cri-
terion of Otsu [18]. He also used the QR decompo-
sition for feature selection [6]. Inoue and Urahama
[9] introduced fuzzy clustering. Kanatani [12]–[14] in-
troduced model selection and robust estimation based
on a new interpretation of the Costeira-Kanade algo-
rithm. Maki and Wiles [17] and Maki and Hattori [16]
used Kanatani’s method for analyzing the effect of il-
lumination on moving objects. Wu, et al. [23] intro-
duced orthogonal subspace decomposition. Sugaya and
Kanatani [20] proposed model selection for automatic
camera model selection.
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For all these methods, two issues need to be resolved.
One is the estimation of the number of independent
motions. Many authors set an appropriate threshold
for this, but it has been reported that estimating the
number of motions is often more difficult than the seg-
mentation itself [3]. To cope with this problem, the use
of model selection criteria has been proposed [13], [15].

The other issue is the feature tracking. Most authors
use the Kanade-Lucas-Tomasi algorithm [21], but the
resulting trajectories are not always correct. In order
to improve the tracking results, Ichimura and Ikoma [8]
and Ichimura [7] introduced nonlinear filtering. Huynh
and Heyden [4], motivated by 3-D reconstruction ap-
plications, showed that outlier trajectories in an image
sequence of a static scene taken by a moving camera
can be removed by fitting a 4-dimensional subspace to
them by LMedS.

In this paper, we extend the idea of Huynh and Hey-
den [4] to multiple motions and introduce a more realis-
tic criterion. Adopting Kanatani’s geometric interpre-
tation [12]–[14], we fit an appropriate subspace to the
detected trajectories using RANSAC and remove out-
liers by considering the error behavior of actual video
tracking.

Section 2 summarizes the subspace constraint intro-
duced by Kanatani [12], [13]. Sections 3 and 4 describe
our procedure. In Sec. 5, we show real video examples
and demonstrate that our method is superior to the
method of Huynh and Heyden [4] and can be applied
if multiple motions exist in the scene. We also confirm
that the separation accuracy is indeed improved by our
method. Section 6 gives our conclusion.

2. Subspace Constraint

We track N rigidly moving feature points over M
frames and let (xκα, yκα) be the image coordinates of
the αth point in the κth frame. We stack all the image
coordinates vertically and represent the entire trajec-
tory by the following 2M -dimensional trajectory vector :

pα = (x1α y1α x2α y2α · · · xMα yMα)>. (1)

Regarding the XY Z camera coordinate system as the
world coordinate system, we fix a 3-D object coordinate
system to the moving object. Let tκ and {iκ, jκ, kκ}
be, respectively, its origin and 3-D orthonormal basis in
the κth frame. If we let (aα, bα, cα) be the 3-D object
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coordinates of the αth point, its 3-D position in the κth
frame is

rκα = tκ + aαiκ + bαjκ + cαkκ (2)

with respect to the world coordinate system.
If an affine camera model (e.g., orthographic, weak

perspective, or paraperspective projection) is assumed,
the 2-D position of rα in the image is given by

(
xκα

yκα

)
= Aκrκα + bκ, (3)

where Aκ and bκ are, respectively, a 2× 3 matrix and
a 2-dimensional vector determined by the position and
the orientation of the camera and its internal param-
eters in the κth frame. From Eq. (2), we can write
Eq. (3) as

(
xκα

yκα

)
= m̃0κ + aαm̃1κ + bαm̃2κ + cαm̃3κ, (4)

where m̃0κ, m̃1κ, m̃2κ, and m̃3κ are 2-dimensional vec-
tors determined by the position and orientation of the
camera and its internal parameters in the κth frame.
From Eq. (4), the trajectory vector pα in Eq. (1) can
be written in the form

pα = m0 + aαm1 + bαm2 + cαm3, (5)

where m0, m1, m2 and m3, are the 2M -dimensional
vectors obtained by stacking m̃0κ, m̃1κ, m̃2κ, and m̃3κ

vertically over the M frames, respectively.
Equation (5) implies that the trajectory vectors

for the same object are constrained to be in the 4-
dimensional subspace spanned by {m0, m1, m2,m3}.
Huynh and Heyden [4] proposed a procedure for re-
moving outlier trajectories from an image sequence of
a static scene taken by a moving camera. They fitted
a 4-dimensional subspace to the trajectories by LMedS
and removed outliers using a criterion introduced for
mathematical convenience; not much consideration was
given to real video processing characteristics.

In this paper, we introduce a statistically consistent
criterion by considering the error behavior of actual
video tracking. We also extend our method to multiple
motions.

3. Outlier Removal Procedure

We assume that the maximum number m of indepen-
dent motions in the scene is known. Assuming too large
a number m is likely to deteriorate the performance of
our algorithm, but we do not go into the details, which
involve a lot of subtleties [15]. In the following, we are
mainly concerned with the case for m = 1 or 2, which
occurs in most practical applications (though theoreti-
cally m can be any number).

We note that if m motions exist, the trajectory vec-
tors {pα} should belong to a 4m-dimensional subspace.

Exploiting this knowledge, we fit a 4m-dimensional sub-
space to the detected trajectory vectors using RANSAC
[2], [10] and remove outliers by setting an appropriate
threshold for the residual (Fig. 1).

In order that a 4m-dimensional subspace can be fit-
ted, we assume that more than 4m feature points are
tracked throughout the sequence. Let n = 2M and
d = 4m. Our procedure is as follows:

1. Randomly choose d vectors q1, q2, . . ., qd from
{pα}, α = 1, . . ., N .

2. Define an n× n matrix

Md =
d∑

i=1

qiq
>
i . (6)

3. Let λ1 ≥ λ2 ≥ . . . ≥ λd be the d eigenvalues of
matrix Md, and {u1, u2, . . ., ud} the orthonormal
system of corresponding eigenvectors.

4. Define an n× n projection matrix

P n−d = I −
d∑

i=1

uiu
>
i . (7)

5. Let S be the number of points pα that satisfy

‖P n−dpα‖2 < (n− d)σ2, (8)

where ‖P n−dpα‖2, which we call the residual , is
the squared distance of point pα from the fitted
d-dimensional subspace. The constant σ is an es-
timate of the noise standard deviation.

6. Repeat the above procedure a sufficient number of
times†, and determine the projection matrix P n−d

that maximizes S.
7. Remove those pα that satisfy

‖P n−dpα‖2 ≥ σ2χ2
n−d;99, (9)

where χ2
r;a is the ath percentile of the χ2 distribu-

tion with r degrees of freedom.

If the noise in the coordinates of the feature points
is an independent Gaussian random variable of mean
0 and standard deviation σ, the residual ‖P n−dpα‖2

O

Fig. 1 Removing outliers by fitting a subspace.

†In our experiment, we stopped if S did not increase 200
times consecutively.
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Fig. 2 (a) Five decimated frames from a 100 frame sequence of a static scene with
126 feature points successfully tracked. (b) The residuals of the trajectories (× indicates
apparently incorrect trajectories). (c) The subspace similarity of Huynh and Heyden [4]
(× corresponds to the trajectories with × in (b)). (d) The trajectories of detected outliers.
(e) The trajectories of detected inliers. (f) The detected outlier locations.

divided by σ2 should be subject to a χ2 distribution
with n − d degrees of freedom. Hence, its expecta-
tion is (n − d)σ2, provided pα is an inlier. The above
procedure effectively fits a d-dimensional subspace that
maximizes the number of the trajectories whose resid-
uals are smaller than (n− d)σ2. After determining the
subspace, we remove those trajectories which cannot be
regarded as inliers with significance level 1%.

Huynh and Heyden [4] used a similarity measure be-
tween the subspace defined by inliers and the subspace
that may contain outliers. Their measure was intro-
duced for mathematical convenience without much con-
sideration about statistic characteristics of real video
tracking. Then, they used LMedS and applied the cri-
terion of Rousseeuw and Leroy [19], which was derived
by assuming that the inlier noise is Gaussian. No jus-
tification was given to that assumption.

Our χ2-based method is statistically consistent, re-
flecting the real image noise characteristics. However,
the crucial element is a realistic choice of the thresh-

old σ, for which we need to observe the noise behavior
in real video tracking. We describe this in the next
section.

4. Experiments

Figure 2(a) shows five frames decimated from a 100
frame sequence (320 × 240 pixels) of a static scene
taken by a moving camera. We tracked 126 points as
indicated by the symbol 2 in the images.

Figure 2(b) plots the residuals of the 126 trajectories;
they are enumerated on the horizontal axis in the order
of the residual. We visually inspected all the trajec-
tories frame by frame to see if they are really correct.
The trajectories we found incorrect are marked with ×
in the plot. From Fig. 2(b), we see that the value σ
= 0.5 can correctly separate incorrect trajectories from
correct ones. The horizontal line indicates the thresh-
old determined by Eq. (9).

For comparison, we applied the method of Huynh
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Fig. 3 (a) Five decimated frames of a 100 frame sequence of a static scene with 155
feature points successfully tracked. (b) The residuals of the trajectories (× indicates
apparently incorrect trajectories). (c) The subspace similarity of Huynh and Heyden [4]
(× corresponds to the trajectories with × in (b)). (d) The trajectories of detected outliers.
(e) The trajectories of detected inliers. (f) The detected outlier locations.

and Heyden [4] to the same data. Figure 2(c) plots
the subspace similarity resulting from the separation
procedure of Huynh and Heyden [4]. The numbering
of the trajectories is the same as in Fig. 2(a). The
horizontal line in the figure indicates the LMedS-based
threshold used by Huynh and Heyden [4].

We see that many trajectories with large residuals
have very small subspace similarity. As a result, some
incorrect trajectories are classified as inliers. We con-
clude that the subspace similarity of Huynh and Hey-
den [4] is not appropriate for this example.

Figures 2(d) and (e) show the trajectories of the out-
liers and inliers, respectively, detected by our method.
Figure 2(f) shows the locations of the outliers in the
first frame. We find that many of them are on the
occluding contours of objects. We also find that some
correct trajectories are also rejected as outliers. A close
examination revealed that they correspond to points
fluctuating around their expected positions by a few
pixels throughout the sequence. In practice, removing

them is a reasonable choice, since inclusion of such un-
reliable trajectories would lower the reliability of the
subsequent segmentation or 3-D reconstruction.

Figure 3(a) shows another sequence of a static scene.
The results are arranged in the same way in Figs. 3(b)–
(f). We tracked 155 feature points over 100 frames.
From Fig. 3(b), we see that the value σ = 0.5 can detect
conspicuous outliers, although some of unstable inliers
are also removed. Figure 3(c) shows that one conspic-
uous outlier with a very large residual has a small sub-
space similarity. As a result, it is incorrectly classified
to be an inlier by the method of Huynh and Heyden [4].
For this sequence, the number of outliers is relatively
small, probably because the scene is a planar surface
without occluding contours.

In the sequence shown in Fig. 4(a), an object (a
human body) is moving independently of the back-
ground, which is also moving in the images. Figure 4(b)
shows the residuals of the 107 feature points success-
fully tracked over 100 frames. Again, the value σ =
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Fig. 4 (a) Five decimated frames of a 100 frame image sequence of a static scene and
a moving object with 107 feature points successfully tracked. (b) The residuals of the
trajectories (× indicates apparently incorrect trajectories). (c) The locations of the out-
liers in the first frame. (d) The segmentation with outliers (× for object points; 2 for
background points). (e) The segmentation without outliers (× for object points; 2 for
background points). (f) The correctness of segmentation and the classification details. (g)
The trajectories of detected outliers. (h) The trajectories of detected background points.
(i) The trajectories of detected object points.

0.5 can correctly separate outliers from inliers. We
confirmed by visual inspection that the rejected tra-
jectories are all incorrect and the remaining ones are
all correct. Figure 4(c) shows the locations of the de-
tected outliers in the first frame. As can be seen, many
of them are on the occluding contours of the moving
object.

In order to see the effect of outliers on segmenta-

tion, we applied the subspace separation algorithm†

of Kanatani [12], [13] to this sequence. Figure 4(d)
shows the segmentation result without removing out-
liers; Fig. 4(e) shows the result after removing outliers.
The symbol 2 indicates points classified to the back-

†The source program is publicly available from:
http://www.suri.it.okayama-u.ac.jp/e-program.html
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Fig. 5 (a) Five decimated frames of a 30 frame image sequence of a static scene and
a moving object with 140 feature points successfully tracked. (b) The residuals of the
trajectories (× indicates apparently incorrect trajectories). (c) The locations of the out-
liers in the first frame. (d) The segmentation with outliers (× for object points; 2 for
background points). (e) The segmentation without outliers (× for object points; 2 for
background points). (f) The correctness of segmentation and the classification details. (g)
The trajectories of detected outliers. (h) The trajectories of detected background points.
(i) The trajectories of detected object points.

ground; the symbols × indicates points classified to the
moving object. In Fig. 4(d) some inliers are incorrectly
classified, while in Fig. 4(e) all inliers are correctly clas-
sified.

In the table in Fig. 4(f), the second column lists
the correctness of the segmentation: (the number of
correctly classified trajectories)/(the total number of
trajectories) in percentage for Figs. 4(d) and (e), re-

spectively. The third column lists (the number of cor-
rect object points)/(the number of points classified to
the object) and (the number of correct background
points)/(the number of points classified to the back-
ground). Figures 4(g), (h), and (i) show, respectively,
the trajectories of the detected outliers, the inliers clas-
sified to the background, and the inliers classified to the
moving object.
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Table 1 Computation time (sec).

Fig. 2 Fig. 3 Fig. 4 Fig. 5

Number of frames 100 100 100 30

Number of points 126 155 107 140
Computation time 33.17 36.83 32.57 1.95

Figure 5 shows another example similarly arranged.
We successfully tracked 140 feature points over 30
frames. In this case, only one outlier can be found by
visual inspection. Figure 5(b) shows that the value σ =
0.5 can detect that outlier, although some unstable tra-
jectories are also removed. We can see that some inliers
are incorrectly classified when outliers are included as
shown in Fig. 5(d), while all inliers are correctly classi-
fied after outliers are removed as shown in Fig. 5(e).

Figure 5(b) clearly indicates that correct trajectories
consist of those with very small residuals and those with
relatively large residuals. This clear distinction implies
that the detected feature points are divided into two
types: unambiguous and ambiguous. An unambigu-
ous point is correctly tracked throughout the sequence,
while an ambiguous point is always ambiguous in the
course of the tracking. This phenomenon can be ob-
served more or less in all the previous examples but is
particularly strong for this sequence. This is probably
because the scene is very far away and the range of the
gray levels is relatively narrow.

This is also the reason why the threshold cannot be
set automatically as Huynh and Heyden [4] did. If the
noise in the coordinates of the feature points were Gaus-
sian and independent for each point and each frame,
we could use LMedS [19] and estimate the noise level σ
from the estimated median (although we cannot use the
formula of Rousseeuw and Leroy [19], because the resid-
ual is subject to a χ2, not Gaussian, distribution). In
reality, however, it is difficult to set the threshold auto-
matically because of to the existence of strong temporal
correlations.

We adopted the value σ = 0.5 from careful observa-
tions of the noise characteristics of actual video track-
ing. We have confirmed that this value can work very
well for all image sequences that we tested including
those not shown here.

The computation time for the examples of Figs. 2, 3,
4, and 5 is summarized in Table 1. It mainly depends
on the number of frames. We used Pentium IV 1.8GHz
for the CPU and Linux for the OS.

5. Concluding Remarks

In this paper, we have proposed a technique for remov-
ing outliers from the trajectories of feature points de-
tected over a video sequence. Our algorithm fits a sub-
space to the trajectories by RANSAC and removes out-
liers by considering the error behavior of actual video
tracking. Using real video sequences, we have demon-
strated that our method is superior to the method of

Huynh and Heyden [4] and can also be applied if multi-
ple motions exist in the scene. We have also confirmed
that the separation accuracy is indeed improved by our
method.

Our method is based on an affine camera model.
Also, feature points must be tracked throughout the
sequence. These limit the use of our method to a rel-
atively short sequence of images. For a long sequence,
we must divide it into overlapping segments and apply
our method separately. The affine camera model is a
good approximation only when the depth of the scene
does not vary very much. How to cope with strong per-
spective effects, if they exist, is left for future research.

Our approach is based on the geometric constraint
that the image motion should be interpreted to be rigid
motions in the scene. In contrast, the use of nonlinear
filtering proposed by Ichimura [7] and Ichimura and
Ikoma [8] is based on the stochastic constraint that the
image motion should be “smooth” with a strong tempo-
ral coherence. Since these two approaches are comple-
mentary in nature, it is expected that the segmentation
accuracy will be further increased by combining them.
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