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Statistical Optimization for 3-D Reconstruction
from a Single View

Kenichi KANATANI†a) and Yasuyuki SUGAYA†, Members

SUMMARY We analyze the noise sensitivity of the focal
length computation, the principal point estimation, and the or-
thogonality enforcement for single-view 3-D reconstruction based
on vanishing points and orthogonality. We point out that due to
the nonlinearity of the problem the standard statistical optimiza-
tion is not very effective. We present a practical compromise for
avoiding the computational failure and preserving high accuracy,
allowing a consistent 3-D shape in the presence of however large
noise.
key words: 3-D reconstruction, statistical optimization, van-
ishing point, vanishing line, principal point

1. Introduction

Given two or more views of a scene, we can reconstruct
its 3-D structure based on triangulation [5], [8]. How-
ever, 3-D reconstruction is possible using only a single
view if we have sufficient knowledge about the scene
[1], [2], [8]. For example, if there are parallel lines in
the scene, their projections define their vanishing point,
which constrains the orientation of these lines in the
scene. If we can detect three vanishing points of mu-
tually orthogonal sets of parallel lines in the scene, we
can compute the camera focal length and the principal
point, from which we can compute the orientations of
the lines in the scene.

This type of single-view 3-D reconstruction is
widely used not only in industrial environments such as
robotic manufacturing and navigation but also for en-
tertainment, education, and scholastic research through
3-D reconstruction from paintings and historical pho-
tographs [2]–[4].

The major disadvantage of such single-view recon-
struction is that because it is based on the perspective
projection geometry, according to which objects further
away look smaller, we cannot reconstruct 3-D if there
are no perspective effects. Even if there are, the compu-
tation often fails when the perspective effects are small.
A typical symptom is that the inside of the square root
becomes negative when we estimate the camera focal
length, resulting in an imaginary value.

The purpose of this paper is twofold: We 1) an-
alyze in detail the effects of noise on the focal length
computation, the principal point estimation, and the
orthogonality enforcement and 2) present a practical
compromise for avoiding computational failure and pre-
serving high accuracy.
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First, we apply the standard statistical optimiza-
tion procedure [9]: we evaluate covariances of inter-
mediate quantities by cascading Jacobian matrices and
minimize the final covariance. Then, we point out
that the results are not very satisfactory because of
the strong nonlinearity of the problem. To cope with
them, we incorporate a practical remedy and show that
our method can avoid computational failure for how-
ever large noise, yet maintains nearly optimal accuracy.
We evaluate its performance by simulation and show
that our method is relatively insensitive to the princi-
pal point position. We give a geometric interpretation
to our observations.

Finally, we describe a procedure that can recon-
struct a consistent 3-D shape in the presence of how-
ever large noise, incorporating orthogonality enforce-
ment and image correction techniques.

2. Camera Model

We define an XY Z coordinate system with the origin
O at the center of the camera lens (the viewpoint) and
the Z-axis along the optical axis and regard the camera
imaging geometry as perspective projection: a point in
the scene is projected onto the intersection of the plane
Z = f (the image plane) with the line (the line of sight)
starting from the view point O and passing through
that point (Fig. 1). The constant f is called the focal
length.

The input image is identified with the plane Z =
f , on which we define an xy coordinate system with the
image origin at the point on the Z-axes (the principal
point) and the x- and y-axes parallel to the camera X-
and Y -axes, respectively. The image coordinate system
is assumed to have zero skew with aspect ratio 1. For
the time being, the principal point is assumed to be
known, typically at the center of the image frame (we
later consider its estimation).

We represent an image point (x, y) by the following
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Fig. 1 Perspective projection.
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3-D vectors:

x =

(
x/f0

y/f0

1

)
, m =

1√
x2 + y2 + f2

0

(
x
y
f0

)
.

(1)

Here, f0 is a default focal length† measured in pixels.
The two vectors x and m are transformed to each other
as follows:

x = Z[m], m = N [x]. (2)

Throughout this paper, Z[ · ] designates normalization
to make the third component 1, and N [ · ] normalization
into a unit vector. We call x and m their Z-vector and
N-vector, respectively [8].

A line in the image is written as ax + by + c = 0.
Since the coefficients a, b, and c can be specified only up
to multiplication by a nonzero constant, we normalize
them to a2 + b2 + (c/f0)2 = 1. We call the unit vector

n = N
[( a

b
c/f0

)]
(3)

the N-vector of the line [8]. Using the vector notation
of Eqs. (1), we can write the equation of the line as
(n, x) = 0. Throughout this paper, we denote the inner
product of two vectors a and b by (a, b).

Let n be the N-vector n of the line passing through
two points with Z-vectors x1 and x2, and let x be the Z-
vector x of the intersection of two lines with N-vectors
n1 and n2. They are given as follows [8]:

n = N [x1 × x2], x = Z[n1 × n2]. (4)

3. Vanishing Point Estimation

The first step of 3-D reconstruction is to compute the
vanishing point of parallel lines in the scene: it is de-
fined as the intersection of their projections on the im-
age (Fig. 2). The orientation of the lines in the scene
coincides with the direction toward the vanishing point
on the image plane Z = f seen from the viewpoint O
[5], [8].

If we observe non-parallel coplanar lines in the
scene, their vanishing points are collinear in the image,
defining the vanishing line (Fig. 2). The orientation of
the supporting plane coincides with that of the plane
passing through the viewpoint O and intersecting the
image plane Z = f along the vanishing line [5], [8].

Fig. 2 Vanishing points and vanishing line.

In the presence of noise, the projections of parallel
lines do not necessarily intersect at a single point in
the image. An optimal procedure for estimating the
true intersection, called renormalization, was presented
by Kanazawa and Kanatani [10]. It is summarized as
follows [9]:

The reliability of a line in the image is evaluated
by the following normalized covariance matrix†† [9]:

V0[n] =
P n(x×P k×x + y×P k×y)P n

‖x×y‖ . (5)

Here, x and y are the Z-vectors of the endpoints that
define the line, and n is the N-vector of that line. We
define

P n = I − nn>, P k = I − kk>, (6)

where I is the unit matrix and k = (0 0 1)>. The
superscript > denotes transpose. The matrices P n and
P k, respectively, define projections along n and k onto
the planes perpendicular to them.

In Eq. (5), the product u × A of vector u and
matrix A is a matrix whose columns are the vector
products of u and the columns of A, while the product
A × v of matrix A and vector v is a matrix whose
rows are the vector products of v and the rows of A.
The product u × A × v is unambiguously defined by
associativity [9].

Let n1, ..., nN be the N-vectors of lines that have
a common intersection, and V0[n1], ..., V0[nN ] their
normalized covariance matrices. Vanishing points are
usually located very far away from the center of the
image, so we represent it by its N-vector m. It can be
optimally computed together with its normalized co-
variance matrix V0[m] as follows [9]:

1. Let c = 0 and Wα = 1, α = 1, ..., N .
2. Compute the following matrices:

M =
1
N

N∑
α=1

Wαnαn>α ,

N =
1
N

N∑
α=1

WαV0[nα]. (7)

3. Compute the three eigenvalues λ1 ≥ λ2 ≥ λ3 and
the corresponding orthonormal system of eigenvec-
tors {m1, m2, m3} of the matrix

M̂ = M − cN . (8)

4. If |λ3| ≈ 0, return m = m3 and

V0[m] =
1
N

(m1m
>
1

λ1
+

m2m
>
2

λ2

)
. (9)

†In theory, its value is arbitrary. In our experiment, we
set f0 = 600 (pixels).

††The covariance matrix of the N-vector n of the line con-
necting two points, whose x and y coordinates are perturbed
by independent Gaussian noise of mean 0 and standard de-
viation σ (pixels) is σ2V0[n] [9]. Since multiplication by a
positive constant does not affect the subsequent computa-
tion, we normalize σ2 to 1 and call Eq. (5) the “normalized”
covariance matrix.
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5. Else, update c and Wα by

c ← c +
λ3

(m3,Nm3)
,

Wα ← 1
(m3, V0[nα]m3)

, (10)

and go back to Step 2.

4. Focal Length Estimation

Suppose the vanishing points of three sets of parallel
lines with mutually orthogonal directions are located
in the image. Let m1, m2, and m3 be their N-vectors,
and V0[m1], V0[m2], and V0[m3] their normalized co-
variance matrices (computed by the renormalization
procedure; see Eq. (9)). The unit vectors m̂1, m̂2, and
m̂3 starting from the viewpoint O and pointing toward
these vanishing points are given by

m̂i = N [Ifmi], i = 1, 2, 3, (11)

where

If ≡ diag
(
1, 1,

f

f0

)
. (12)

The symbol diag( · · · ) denotes the diagonal matrix with
· · · as the diagonal elements in that order. Since the
three vanishing point orientations should be mutually
orthogonal, we have the constraints,

e1 ≡ (m̂2, m̂3) = (m2, I
2
fm3) = 0,

e2 ≡ (m̂3, m̂1) = (m3, I
2
fm1) = 0,

e3 ≡ (m̂1, m̂2) = (m1, I
2
fm2) = 0. (13)

from which the focal length f can be solved. This fact
has been well known [5], [8].

These do not necessarily hold strictly in the pres-
ence of noise, so many researchers use a naive least-
squares method [5], [8]. According to the standard sta-
tistical optimization theory, however, an optimal esti-
mate f is obtained by minimizing the following function
[9]:

J =
3∑

i,j=1

Wijeiej . (14)

Here, we define the matrix W = (Wij) by

W =

(
V11 V12 V13

V21 V22 V23

V31 V32 V33

)−1

, (15)

where Vij is the covariance of ei and ej (Vii is the vari-
ance of ei). Using Eq. (11), we obtain

V11=(m3, I
2
fV0[m2]I2

fm3)+(m2, I
2
fV0[m3]I2

fm2),

V22=(m1, I
2
fV0[m3]I2

fm1)+(m3, I
2
fV0[m1]I2

fm3),

V33=(m2, I
2
fV0[m1]I2

fm2)+(m1, I
2
fV0[m2]I2

fm1),

V23=V32 = (m2, I
2
fV0[m1]I2

fm3),

V31=V13 = (m3, I
2
fV0[m2]I2

fm1),

V12=V21 = (m1, I
2
fV0[m3]I2

fm2). (16)

The matrix W = (Wij) weights the three con-
straints of Eqs. (13) according to the reliability of the
three vanishing points evaluated in terms of their nor-
malized covariance matrices V0[mi]. If the uncertainty
of each vanishing point were the same and indepen-
dent of each other, the matrix W would be a con-
stant times the unit matrix I, so the minimization of
Eq. (14) would reduce to the least-squares method that
minimizes

∑3
i=1 e2

i .
Equation (14) can be minimized as follows. Al-

though the matrix W depends on f through the matrix
If , the dependence is very small if the default value f0

is chosen so that f/f0 ∼ 1. So, we tentatively regard W
approximately as a constant matrix by substituting f
= f0 into W . Then, Eq. (14) is a quadratic polynomial
in

α =
( f

f0

)2

, (17)

so the value α that minimizes Eq. (14) can be ana-
lytically obtained. We update W by substituting this
value, recompute α, and iterate this until it converges.
The focal length f is given by

f = f0

√
α. (18)

5. Composite Method

5.1 Motivations

The optimality of the above procedure is based on lin-
ear analysis. Specifically, the covariance matrix V [m]
is defined as the expectation E[∆m∆m>] for the devi-
ation ∆m of m evaluated to a first approximation via
Taylor expansion for small noise [9]. This means that if
noise is zero-mean Gaussian, the errors in the computed
vanishing point are also zero-mean Gaussian, having an
elliptic equiprobability contours around it.

In reality, the vanishing point computation is
highly nonlinear, particularly so when it is located very
far a way from the frame center. Hence, even if noise in
the feature points is zero-mean, the errors in the vanish-
ing point may have large bias, and the equiprobability
contours can be parabolic or hyperbolic, diverging to-
ward infinity. In such a case, the covariance analysis
based on first approximation is unable to capture the
error behavior. Hence, the guarantee that the mini-
mizer of Eq. (14) is optimal no longer holds. A typical
symptom is that the value α computed by Eq. (14) be-
comes negative, resulting in an imaginary focal length
f .

Since points and lines are represented by unit vec-
tors, no computational failure occurs if the vanishing
point is at infinity. However, the uncertainty of the
final output is independent of the mathematical repre-
sentations of intermediate quantities.
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Fig. 3 (a) Simulated image of a box. (b) The percentage (%) of computational failure.
Solid line: optimal computation. Dotted line: least squares. (c) Accuracy of focal length
computation. Solid line: composite method. Dashed line: optimal computation. Dotted
line: least squares.

The reason why a real solution does not exist while
geometrically there should be one is that some of the
necessary geometric constraints are violated. To be spe-
cific, the three vanishing points cannot be anywhere but
should be at the vertices of a triangle whose orthocen-
ter is at the principal point [1], [5], [8], implying that the
directions toward any two of them from the principal
point make an obtuse angle.

However, the vanishing point locations can be per-
turbed to a large extent even by slight noise due to the
nonlinearity, and these conditions may be violated. For
such an inadmissible configuration, a real focal length
solution may no longer exist.

5.2 Procedure

From the above considerations, we take a strategy of
complementing the insufficiency of linear analysis by
checking to what extent the necessary geometric condi-
tions are violated. We consider the following four cases
for the angles made by the directions toward the com-
puted vanishing points from the principal point:

Case 1: Three obtuse angles. We regard the three
vanishing points as sufficiently reliable and do the
optimal computation as described in Sect. 4.

Case 2: One acute angle. We remove from among
the three constraints in Eqs. (13) the one involving
the two directions that make an acute angle and
minimize Eq. (14) subject to the remaining two
constraints.

Case 3: Two acute angles. We retain from among
the three constraints in Eqs. (13) only the one in-
volving the two directions that make an obtuse an-
gle, removing the others as unreliable. In this case,
we need not minimize Eq. (14): the solution that
makes Eq. (14) (quadratic in α) zero can be ana-
lytically obtained.

Case 4: Three acute angles. We regard no vanish-
ing points as reliable and formally returns f = ∞
(a sufficiently large value in practice).

Our strategy can be viewed as reducing the influ-
ence of the principal point estimation, since if some
of the three angles are close to 90◦ or 180◦, a small
displacement of the principal point significantly affects

the focal length (often resulting in an imaginary value).
This sensitivity to the principal point position agrees
with the analysis of Hartley and Kauric [6].

An alternative approach may be to displace the
principal point so that the three angles become all ob-
tuse. To determine the displacement optimally, we
need an empirical distribution of the possible principal
point positions (the Bayesian approach), as Hartley and
Silpa-Anan [7] did for two-view analysis, but the result
strongly depends on the choice of the prior, and there
is no good way to define it. So, we adopt the above
non-Bayesian approach.

5.3 Experiments

Figure 3(a) is a simulated image of a rectangular box.
The image size is supposed to be 300 × 400 (pixels),
and the focal length is set to f = 1000 (pixels). We
added Gaussian noise of mean 0 and standard deviation
σ (pixels) to the x and y coordinates of all the vertex
positions independently and estimated the focal length.

Figure 3(b) plots the percentage (%) of computa-
tional failures (resulting in an imaginary focal length or
no convergence†) of the optimal computation of Sect. 4
(solid line) over 1000 trials using different noise for each
σ. The dotted line shows the corresponding result by
least squares (Eq. (14) is replaced by

∑3
i=1 e2

i ). The
composite computation is not plotted because it did
not fail. We can see that the rate of computational
failures increases as noise increases. It is larger for the
optimal computation than for the least squares. This
indicates that pursuit for high accuracy is generally not
compatible with computational robustness.

We evaluated the relative accuracy of the compos-
ite method by the root-mean-square

D =

√√√√ 1
1000

1000∑
a=1

(f (a) − f

f (a)

)2

, (19)

where f (a) is the ath instance of the 1000 trials. We
let f (a) = ∞ if the computation failed, so that D is

†We regarded the iterations as convergent when the in-
crement in f is less than 1 pixel and as divergent when the
number of iterations exceeds 10.
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defined even if the computation fails: (f (a) − f)/f (a)

= 1 − f/f (a) = 1 for f (a) = ∞. Figure 3(c) plots the
value D for the noise standard deviation σ. The solid
line is for the composite method; the dashed line is for
the optimal computation; the dotted line is for the least
squares.

We can immediately see that the least-squares
method, which ignores the statistical error behavior,
yields poor results. The optimal computation indeed
achieves high accuracy when noise is small, but the er-
ror irregularly fluctuates as noise increases. The com-
posite method retains high accuracy for small noise and
preserves the accuracy expected of the optimal compu-
tation even for large noise.

6. Principal Point Estimation

6.1 Procedure

So far, we have assumed that the principal point is
known and taken to be the image origin. Now, we
consider the case where it is unknown. As mentioned
earlier, it should be at the orthocenter of the triangle
defined by the vanishing points of three sets of parallel
lines with mutually orthogonal directions [5], [8].

Let m1, m2, and m3 be the N-vectors of the three
vanishing points. The intersection of the line of sight
of mi with the plane Z = 1 is at mi/miz, where miz

is the Z component of mi. The condition that vec-
tor h represents the orthocenter of the triangle defined
m1/m1z, m2/m2z, and m3/m3z is

( m1

m1z
− h,

m2

m2z
− m3

m3z

)
= 0,

( m2

m2z
− h,

m3

m3z
− m1

m1z

)
= 0,

( m3

m3z
− h,

m1

m1z
− m2

m2z

)
= 0. (20)

Although any two of these are sufficient†, we use all of
them to retain symmetry. Let

u1 = (m2zm3z)m1, u2 = (m3zm1z)m2,

u3 = (m1zm2z)m3, g = (m1zm2zm3z)h, (21)

Multiplying Eqs. (20) by m1zm2zm3z and noting that
hz = 1, we can rearrange Eqs. (20) in the form

A>g = b, (22)

where

A = ( u2 − u3 u3 − u1 u1 − u2 k ) , (23)

b =




(u1, u2 − u3)
(u2, u3 − u1)
(u3, u1 − u2)
m1zm2zm3z


 . (24)

(We put k = (0 0 1)> as before.) Eq. (22) can be solved
by least squares as follows:

g = (AA>)−1Ab, h = Z[g]. (25)

The principal point (xc, yc) is at (f0hx, f0hy).

6.2 Experiments

The above procedure produces the orthocenter for
whatever vanishing point configuration, but it can be
the principal point only if it is inside the triangle defined
by the vanishing points. However, even small noise can
shift the principal point out of the triangle.

Using the simulated image of Fig. 3(a), we esti-
mated the principal point after adding Gaussian noise
to the vertices. We evaluated its accuracy by the root-
mean-square distance from its true position over 1000
trials

E =

√√√√ 1
1000

1000∑
a=1

(
(x(a)

c )2 + (y(a)
c )2

)
, (26)

where (x(a)
c , y

(a)
c ) is the ath estimates. The solid line

(left scale) in Fig. 4(a) plots E in pixels vs. σ. The
dashed line (right scale) shows the percentage (%) of
the computed principal point being outside the triangle
of the vanishing points.

We also computed the focal length by the com-
posite method described in Sect. 5 using the estimated
principal point. The solid line in Fig. 4(b) shows the
accuracy of the computed focal length measured in D in
Eq. (19). The dashed line is for using the true principal
point.

Fig. 4(c) shows the accuracy of the focal length
computed by assuming that the principal point is at
the image origin, while the true principal point is hor-
izontally away from by 0 pixels (solid line), 50 pixels
(dashed line), and 100 pixels (dotted line) from the im-
age origin.

6.3 Observations

Fig. 4(a) shows that the principal point is very sensi-
tive to noise; it is perturbed to an extraordinary de-
gree by very small noise. This implies that estimating
the principal point is not realistic unless the vanish-
ing points can be estimated with very high accuracy.
If the principal point is known to be somewhere near
the center of the image, we can stably obtain better
results using its approximate position, as we can see
from Fig. 4(b), which shows that the accuracy signif-
icantly deteriorates if principal point estimation is in-
corporated. Fig. 4(c) shows that the focal length is not
significantly affected even if the principal point is as-
sumed to be several dozens of pixels away from its true
position.

This seems to contradict Hartley and Kauric [6],
who maintained after theoretical analysis that the fo-
cal length can be significantly affected by the principal
point position, particularly so when it is close to the
horizon. It turns out, however, that such critical con-
figurations exactly coincide with the situations in which
estimation of the three vanishing points and the focal

†As is well known, the orthocenter is at the intersection
of two lines, each passing through one vertex and perpen-
dicularly intersecting the opposite side; the remaining line
automatically passes through the orthocenter.
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Fig. 4 (a) Accuracy of principal point estimation. Solid line (left scale): root-mean-
square error (pixels). Dashed line (right scale): percentage (%) of being outside the
triangle of the vanishing points. (b) Accuracy of focal length estimation. Solid line:
estimating the principal point. Dashed line: using the true principal point. (c) Accuracy
of focal length computation using a default principal point. The true principal point is
displaced from it by 0 pixels (solid line), 50 pixels (dashed line), and 100 pixels (dotted
line).

length from them is very unreliable, since in such con-
figurations, some of the three obtuse angles mentioned
in the preceding section are close to 90◦ or 180◦.

Our conclusion is that as long as the focal length
is stably computed from vanishing points, its accuracy
is not much affected by the principal point position,
while if the focal length cannot be accurately deter-
mined from vanishing points, it is already inaccurate
whether the principal point is correct or not . Since our
composite method selectively avoids the use of angles
close to 90◦ or 180◦, it effectively reduces the influence
of the principal point position on the computed focal
length.

If we want to analyze exiting photographs and
paintings without any information about the princi-
pal point, our experiments suggest that it suffices to
assume an appropriate principal point rather than es-
timating it. The possible distortions resulting from the
use of a wrong principal point can be compensated for
by correcting the image itself so that it conforms to
the estimated parameters. That should result in 3-D
shapes that better agree with human impression. We
now describe such a procedure.

7. Orthogonality Correction

The three directions from the viewpoint to the vanish-
ing points may not be strictly orthogonal even though
the focal length is optimally computed. So, we correct
them to be strictly orthogonal with respect to the com-
puted focal length. This process is necessary for lines
that should be orthogonal in the scene to be strictly
orthogonal after 3-D reconstruction.

First, we convert the N-vectors {m1, m2, m3} of
the three vanishing points into {m̂1, m̂2, m̂3} for the
computed focal length f , using Eqs. (11) and (12). A
well known method for computing an orthonormal sys-
tem {e1, e2, e3} that best approximates a given set of
vectors {m̂1, m̂2, m̂3} is the least squares minimizing

‖e1 − m̂1‖2 + ‖e2 − m̂2‖2 + ‖e3 − m̂3‖2. (27)

The solution that minimizes this subject to the con-
straint that {e1, e2, e3} be orthonormal is analytically
obtained as follows [8], [9]. First, we compute the singu-
lar value decomposition (SVD) of the matrix that has

{m̂1, m̂2, m̂3} as its columns:

( m̂1 m̂2 m̂3 ) = V diag(σ1, σ2, σ3)U>. (28)

Here, V and U are orthogonal matrices, and σ1, σ2,
and σ3 the singular values. The solution {e1, e2, e3}
is given by

( e1 e2 e3 ) = V U>. (29)

However, this solution treats the three vanishing
points equally without considering the difference in
their reliability. In order to account for this, we need
to introduce appropriate weights to Eq. (27). As is well
known in statistics, the optimal weights are given by

Wi =
1

trV0[mi]
, (30)

where V0[mi] is the normalized covariance matrix of
the ith vanishing point computed by Eq. (9), and tr
denotes the trace†. The optimal solution is obtained
by minimizing

W1‖e1−m̂1‖2+W2‖e2−m̂2‖2+W3‖e3−m̂3‖2(31)

instead of Eq. (27). The solution is still given by
Eq. (29) if the left-hand side of Eq. (28) is replaced
by

(
W1m̂1 W2m̂2 W3m̂3

)
[9].

Using the simulated image of Fig. 3(a), we con-
ducted the orthogonality correction after computing
the focal length by the composite method of Sect. 5
1000 times using different noise each time. We evalu-
ated the average discrepancy of the corrected directions
{e1, e2, e3} from the true directions {m̄1, m̄2, m̄3} by

F =

√√√√ 1
1000

1000∑
a=1

3∑

i=1

‖e(a)
i − m̄i‖2, (32)

where {e(a)
i } is the ath value. Since the orientation of

an N-vector is indeterminate, we adjusted the sign so
†From the definition of the normalized covariance matrix

V0[mi], the trace trV0[mi] is the mean square E[‖∆mi‖2]
scaled so that the noise standard deviation σ is 1.
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that (ei, m̄i) ≥ 0 before evaluating Eq. (32).
Figure 5 plots F vs. the noise standard deviation

σ (pixels). The solid line is for the optimal solution
(minimization of Eq. (31)); the dashed line is for the
minimization of Eq. (27). For comparison, the dotted
line shows the value of F for ei = m̂i (with no cor-
rections). We can see that the optimal solution indeed
achieves the lowest error.

8. Image Data Correction

If we modify the vanishing point locations, the projec-
tions of parallel lines no longer pass through them in
the image. So, we correct all lines so that they pass
through their respective vanishing points. In contrast
to vanishing points, the deviations of lines are small
when noise in the feature points that define them is
small, so the optimal correction can be done using the
covariance matrix of Eq. (5) [9].

Let n be the N-vector of the line in question, and
V0[n] its normalized covariance matrix. Let m̄i be the
N-vector of the corrected vanishing point. The opti-
mal correction ∆n of n is obtained by minimizing the
squared Mahalanobis distance (∆n, V0[n]−∆n) subject
to the constraint (n−∆n, m̄i) = 0, where V0[n]− is the
Moore-Penrose generalized inverse of V0[n]. The final
correction is given as follows [9]:

n̄ = N
[
n− (n, mi)V0[n]mi

(mi, V0[n]mi)

]
. (33)

If lines are corrected in this way, the Z-vectors
of their intersections are replaced by the second of
Eqs. (4). Points on these lines but not at the intersec-
tions with other lines are orthogonally displaced onto
the nearest position on the corrected lines. If x and n̄
are the Z-vectors of the initial point and the N-vector
of the displaced line, respectively, the vector x is cor-
rected into x̄ as follows [9]:

x̄ = Z[x− (n̄, x)n̄] (34)

The N-vectors of the lines passing through displaced
points are replaced by the first of Eqs. (4), the Z-vectors
of the intersections of the displaced lines are replaced
by the second of Eq. (4), and this process is propagated.

9. 3-D Shape Reconstruction

A plane in the scene is represented by AX + BY + CZ

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1σ

Fig. 5 Accuracy of orthogonality correction. Solid line: opti-
mal computation. Dashed line: least squares. Dotted line: no
corrections.

= h. To remove the scale indeterminacy, we normal-
ize the coefficients into A2 + B2 + C2 = 1. Thus, ν
= (A B C)> is the unit surface normal, and h is the
(signed) distance of the plane from the origin O (posi-
tive in the ν direction). If we write r = (X Y Z)>, the
equation of the plane is written as

(ν, r) = h. (35)

If a point r on the plane (35) is projected onto a
point in the image with Z-vector x, the point r is at
the intersection of the plane (35) with the line of sight
starting from the origin O and extending in the direc-
tion x. Hence, the position r is given by the following
backprojection of x (Fig. 6):

r =
hx

(ν, x)
. (36)

If two non-parallel lines on a plane in the scene are
projected onto the image and define vanishing points
with N-vectors m1 and m2, the unit surface normal ν
to that plane is give by

ν = N [m1 ×m2]. (37)

The distance of this plane from the origin O is
computed in the following three ways.
Case 1: Distance known

If we know that the backprojections of particular
two points with Z-vectors x1 and x2 should have dis-
tance d12 in the scene, the absolute distance |h| to the
plane is determined as follows:

|h| = d12

/∥∥∥ x1

(ν, x1)
− x2

(ν, x2)

∥∥∥ . (38)

The equation of the plane is (±ν, r) = |h|, and the
choice of the sign depends on whether the image origin
is inside the projection of that plane or outside it. In
the former case, ν is signed so that its Z-component is
positive; in the latter, negative (the former is the case
in the usual shooting condition†).
Case 2: Intersecting with a plane

O

Y

X

Z

o
y

x

m

r

h

ν

(x, y)

(ν, r)=0

f

Fig. 6 Backprojection of image points.

†The sign is indeterminate if the image origin happens
to be exactly on the vanishing line of the plane. Such a case
is exceptional, so we can ignore it.
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(a) (b) (c) (d)

Fig. 7 Input image (short-range view) and its 3-D reconstruction.

(a) (b) (c) (d)

Fig. 8 Input image (distant view) and its 3-D reconstruction.

If the plane (ν, r) = h intersects with another
plane (ν0, r) = h0 whose position and orientation are
already computed, the backprojection of a point on
their intersection should be the same whichever plane is
used. Hence, if we let x be the Z-vector of an arbitrary
point on the intersection, we obtain

h =
(ν, x)
(ν0, x)

h0. (39)

Case 3: Intersecting with two planes
If the plane (ν, r) = h intersects with two planes

whose positions and orientations are already computed,
we can determine both the orientation ν and the po-
sition h. First, we can compute the 3-D positions of
points on the intersections with the two known planes
by the backprojection (36) using the known planes. If
we take points r1 and r2 on one intersection and points
r3 and r4 on the other, we have (x1 − x2,ν) = 0 and
(x3 − x4, ν) = 0. Hence, we have

ν = N [(r1 − r2)× (r3 − r4)]. (40)

The distance h can be computed by Eq. (39) using ei-
ther of the two planes.

10. Real Image Examples

Thus, we can determine the positions and orientations
of all visible planes by specifying the distance between
two points on one plane and propagating that informa-
tion to the remaining planes by the above procedure.
If the distance of the initial two points is not known,
we can set it to an arbitrary value; the 3-D shape is
determined up to a scale factor.

Figure 7(a) is a short-range view of a building with
a strong perspective effect (300 × 400 pixels). The se-
lected feature points are marked in it. Using the three

orthogonal directions drawn in Fig. 7(b), we estimated
the focal length to be 416 pixels by least squares and
431 pixels by the optimal computation. In this case, the
three angles defined by the vanishing points are all ob-
tuse, so the composite method reduces to the optimal
computation. Figure 7(c),(d) are views of the recon-
structed 3-D shape seen from two different angles.

Figure 8(a) is a distant view of a building with
little perspective effect (300 × 400 pixels); the projec-
tion is almost orthographic. Using the feature points
marked there and the three orthogonal directions drawn
Fig. 8(b), we estimated the focal length to be 812 pixels
by least squares and 2825 pixels by the optimal com-
putation. In this case, only one of the three angles
defined by the vanishing points is obtuse, and the com-
posite method yields 3103 pixels. Our image correction
procedure reconstructs a consistent 3-D shape, as dis-
played in the two right images in Fig. 8(c),(d). Lines
that should be parallel are indeed strictly parallel, and
lines that should be orthogonal are strictly orthogonal.

We conducted a simple camera calibration after
shooting the images in Figs. 7 and 8, using a refer-
ence pattern. The focal length was computed to be 457
and 4060 pixels, respectively. These values do not so
well agree with the above estimates, but our proposed
method gives the closest values to them.

11. Concluding Remarks

In this paper, we analyzed the noise sensitivity of the
focal length computation, the principal point estima-
tion, and the orthogonality enforcement for single-view
3-D reconstruction. We pointed out that due to the
nonlinearity of the problem the standard statistical op-
timization is not very effective. We presented a prac-
tical compromise between avoiding the computational
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failure and preserving high accuracy. We evaluated its
performance by simulation and showed that our method
is relatively insensitive to the principal point position.
We gave a geometric interpretation to our observations.
Finally, we described a procedure for reconstructing a
consistent 3-D shape in the presence of however large
noise, incorporating orthogonality enforcement and im-
age correction techniques.
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