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We present a new method for automatically detecting circular objects in images: we de-
tect an osculating circle to an elliptic arc using a Hough transform, iteratively deforming
it into an ellipse, removing outlier pixels, and searching for a separate edge. The voting
space for the Hough transform is restricted to one and two dimensions for efficiency,

and special weighting schemes are introduced to enhance the accuracy. We demonstrate
the effectiveness of our method using real images. Finally, we apply our method to the
calibration of a turntable for 3-D object shape reconstruction.
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1. Introduction

Since a circle in the scene is projected into an ellipse in the image, circular
objects in the scene can be detected by finding ellipses in the image. Recently,
many algorithms have been proposed for fitting an ellipse to edge pixels with high
precision4,5,13,14. Using the equation of the fitted ellipse, the 3-D position and
orientation of the circular object can be computed analytically8,19.

However, finding correct edge pixels to fit an ellipse is still a very difficult task.
One approach is to segment digital curves into linear and curved parts, fitting lines
to the linear parts, and ellipses to the curved parts6,16. The segmentation is based
on the digital curvature, the residual of fitting, and miscellaneous heuristics, but the
accuracy of the fit depends very much on segmentation. This may not be a great
problem for visual applications but is crucial for precise measurement in robotics
applications, with which we are concerned.

Another popular approach is to search for an ellipse directly using the Hough
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transform. Since an ellipse is specified by five parameters, we can find it by voting in
a quantized 5-dimensional Hough space the parameters of the ellipses that could pass
through each edge pixel, and picking out the value that wins the maximum number
of votes. However, directly computing this would require a long computation time
and a memory space proportional to the fifth power of the quantization levels.
Various techniques have been proposed for reducing the computation time and
memory space. For example, the computation is divided into a cascade: voting is
done in a 2-dimensional Hough space with the remaining three parameters fixed,
and this is repeated for all quantized values of the three parameters. In this process,
one can introduce various constraints for pruning unnecessary search, hierarchically
change the resolution of the image and the Hough space, and do random sampling
instead of exhaustive search, a variant of this being the genetic algorithm. Instead of
using edge pixels alone, one can also use complex primitives and extra information
such as point pairs, triplets, edge segments, and their orientations.

Although many extensions and variations have been proposed in the
past1,3,10,11,12,15,17,18,21,22,23,24, the Hough transform alone is not efficient enough,
while the use of digital curves alone does not warrant sufficient accuracy. In this
paper, we integrate these two: we detect a circle osculating to an edge segment by
the Hough transform, find edge pixels tangent to it, fit an ellipse to them, update
the edge pixels tangent to it, and repeat this process. We call these iterations ellipse
growing .

A closely related method to ours is the work of Asayama and Shiono1, who
detected via the 5-dimensional Hough transform the two circles osculating to an
ellipse from both sides, from which they computed the parameters of the ellipse.
Their method works only when the entire ellipse is visible without occlusion, and
a long computation time and a large memory space are required for the Hough
transform. In contrast, our method is able to fit an ellipse to a partially occluded
image of a circular object very efficiently with high precision.

The Hough transform we propose for detecting an osculating circle is made effi-
cient by using, instead of the standard 3-dimensional Hough space, a 2-dimensional
array for the center and a 1-dimensional array for the radius. We also introduce
special weight functions for enhancing the vote peaks. We then iteratively deform
the osculating circle into an ellipse. We also remove outlier edge pixels by LMedS,
and search for another edge segment to combine. Figure 1 shows the flow chart of
the procedure.

Our system is not intended to have universal merits, whose pursuit is rather
unrealistic. We have in mind robotics environments where

(i) only a small number of circular objects exist in the field of view, and
(ii) the circular objects we are looking at have an appreciable size in the image

(see the real image examples shown later).

We do not consider such complicated scenes as aggregates of circular and elliptic
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edge detection

↓
voting for the center of the circle

↓
voting for the radius of the circle

↓
ellipse growing

↓
outlier detection by LMedS

↓
ellipse fitting

↓
Does the edge segment mostly cover the ellipse?

| |
no yes
↓ ↓

search for another segment −→ end

Fig. 1. Flow chart of the procedure.

particles or cells; our method is strengthened by specifically exploiting this situation.
Still, it is impossible to cope with all possible scenes, so some kind of tuning is
unavoidable. In this respect, there is still room for further improvement.

In the following, we describe each step separately and confirm the effectiveness
of our method using real images. Finally, we apply our method to the calibration
of a turntable for 3-D object shape reconstruction.

2. Procedure

2.1. Edge detection

From among many edge detection techniques available, we adopt the following
method for obtaining long edge segments without branches. First, we cut out
from the zero-crossing edges of one-pixel width those parts with high Sobel values.
Starting from an arbitrary pixel of the resulting edges, we trace the 8-connected
neighbors in both directions until we arrive at an end-point or a branch point,
defining a connected edge segment without branches. This process is repeated until
all the edge pixels are exhausted. Among the resulting edge segments, we discard
short ones (less than 60 pixels in our experiment) and register the remaining ones
in an edge segment list.

2.2. Voting for the center

Among the registered edge segments, we first look for those to which circles can
fit well, at least locally, as a first approximation to ellipses. We begin by estimating
their centers by voting.

For an exactly circular arc, its center is easily estimated by voting along all lines
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Fig. 2. The evolute of an ellipse and its singularities.

normal to the arc7. However, the lines normal to an ellipse envelop a star-like curve
with four cusps, known as the evolute of the ellipse (Fig. 2). An osculating circle
whose center is on the evolute is generally of second degree contact to the curve,
but if the center is at one of the four singularities, the degree is three2. Hence, if
we vote along all lines normal to an elliptic arc, we obtain ridges along the evolute
and peaks at its singularities. However, the peaks are less conspicuous than for a
circular arc. So, we directly vote on the evolute as follows.

For each pixel P on the edge segment, we compute the center C and the radius
r of the circle that passes through P and two points on the segment k pixels away
from it on both sides (we exclude the k end points of the segment). Then, we
vote around C with Gaussian smoothing of standard deviation γr in all directions
(Fig. 3(a)). We also weight each vote by 1/

√
r to give preference to edge segments

of higher curvature if the length is the same and of larger radii if the central angle
is the same. In our experiment, we set k = 30 and γ = 1/10. Since it is difficult
to derive theoretically optimal values for the parameters and weights, we set them
heuristically.

We do this for all the edge segments in the lista and detect peaks of the votes (a

(a) (b) (c)

Fig. 3. (a) Voting around the center of the circle passing through P and the two points away

from it by k pixels on both sides. (b) A pixel away from the estimated center C by distance R

votes the value R with weight e−R2/2s2
cos φ. (c) Fitting an ellipse to the longest edge segment

inside the region within distance δ from the estimated ellipse.

aIn our experiment, we voted every three pixels for efficiency. We also introduced various approx-
imations such as limiting the voting region to a parallelogram with one edge orthogonal to the
edge segment and the other parallel to one of the coordinate axes.
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real image example is given in Fig. 5; the details are described in Sec. 3). Considering
the fact that the evolute of an ellipse has at most four singularities (Fig. 2), we take
as candidates the four pixels that win the largest numbers of votes.

2.3. Voting for the radius

For each center C thus detected, we estimate the corresponding radius by voting
the distance R from C to each edge pixel and adopting the value that wins the
maximum number of votes. This may be obvious for a circular arc7, but for an
elliptic arc the number of false peaks increases. So, we adopt the following strategies.

First, instead of casting one vote to the distance R to each edge pixel P , we
cast a positive/negative real value e−R2/2s2

cos φ, where φ is the angle between the
line CP and the normal direction to P (Fig. 3(b)), which is computed from the
output of the Sobel operator. Second, we vote not merely for an integer obtained
by rounding R but also the two integers on both sides by ±1 with the weight e−1/2

(i.e., the Gaussian weight of standard deviation 1).
The valueb e−R2/2s2

effectively limits the voting to approximately within distance
s from C (in our experiment, we empirically set s to be 1/4 of the image size). Due
to cos φ, those edge segments that make large angles from the circumference are
given small weights. In particular, the weight is 0 if the segment is in the radius
direction. Since edge segments with opposite gray-level gradients have weights
of opposite signs, the contributions from closed loops that do not surround P are
mutually canceled, enhancing only the contributions from the edge segment to which
the circle osculates (see Fig. 6 for this effect; the details are described in Sec. 3).

After this voting, we choose the value that wins the maximum number of votes.
We do this for each of the four candidates for the center and pick out the one that
wins the largest number of votes.

2.4. Ellipse growing

Regarding the detected osculating circle as the initial ellipse, we make it grow
into an ellipse that better fits the segment. For the current ellipse, we define a
ring region around it by expanding and contracting the major and minor axes by
δ pixels (Fig. 3(c)). From among the registered edge segments, we choose the one
that has the largest number of consecutive pixels inside this region and fit an ellipse
to it. For this, we used a technique called renormalizationc, which is known to
attain the highest possible accuracy in the first order9. Around the fitted ellipse,
we recompute a ring region, to which the same procedure is applied and repeated
until no new pixels are added.

bWe used a polynomial approximation of e−x2
for efficiency.

cThe program is publicly available from http://www.ail.cs.gunma-u.ac.jp/Labo/programs-e.html
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The ring region is defined as follows. Quadratic curves (including ellipses, hy-
perbolas, and parabolas) have equations of the form

Ax2 + 2Bxy + Cy2 + 2f(Dx + Ey) + f2F = 0, (1)

where f is an arbitrarily fixed constant (e.g., the image size). The condition that
this equation describes an ellipse (i.e., not a hyperbola or a parabola) is8

AC − B2 > 0 (2)

If we define the vector x and the matrix Q

x =

 x/f
y/f
1

 , Q =

 A B D
B C E
D E F

 , (3)

Eq. (1) is rewritten in the form

(x, Qx) = 0, (4)

where (a, b) denotes the inner product of vectors a and b (see Ref. 8 for the general
analysis of quadratic curves). The matrices {Q(+), Q(−)} of the expanded and
contracted ellipses are computed as follows (Appendix A):

1 Compute the matrix S, the vector c, and the scalar c as follows:

S =
(

A B
B C

)
, c =

(
D
E

)
, c = (c, S−1c) − F. (5)

2 Compute the eigenvalues {λ1, λ2} of S and the corresponding unit eigenvec-
tors {u1, u2}.

3 Compute λ
(±)
1 and λ

(±)
2 as follows:

λ
(±)
1 =

c

(
√

c/λ1 ± δ/f)2
, λ

(±)
2 =

c

(
√

c/λ2 ± δ/f)2
. (6)

4 Compute the matrices S(+) and S(−) by

S(±) = U

(
λ

(±)
1

λ
(±)
2

)
U>, (7)

where U is the 2× 2 matrix consisting of vectors u1 and u2 as its columns in
that order.

5 Compute the matrices {Q(+), Q(−)} as follows:

Q(±) =
(

S(±) S(±)S−1c

(S(±)S−1c)> F + (c, S−1(S(±) − S)S−1c)

)
. (8)
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Then, the ring region is define by

(x,Q(+)x)(x, Q(−)x) < 0. (9)

The renormalization method fits a general quadratic curve of the form of Eq. (1), so
it sometimes fits a hyperbola or a parabola when the segment is very short. In that
case, we progressively increment δ from its initial value (4 pixels in our experiment)
by one pixel at a time until Eq. (2) is satisfied. If δ reaches 10 pixels but Eq. (1)
is still not satisfied, we return the initial circle and go on to the next process (see
Fig. 7 for a real image example; the details are described in Sec. 3).

2.5. Outlier removal

The edge pixels to which the ellipse is thus fitted may not be part of an ellipse.
So, we remove “outliersd ” by LMedS 20. Let {xα}, α = 1, ..., N , be the vector
representations (see Eq. (3)) of the pixels to fit an ellipse. Initializing the matrix
Qm = O and the scalar Sm = ∞, we repeat the following computation until it
converges:

1 Randomly choose five points from {xα}.

# Five points can uniquely determine an ellipse.

2 Compute an ellipse Q that passes through them.

# We solve simultaneous linear equations in A, B, ..., F in the form of
Eq. (1) up to a constant factor.

3 Go back to Step 1 if Eq. (3) is not satisfied.

# This excludes hyperbolas and parabolas.

4 Compute the following median:

S = medN
α=1

(xα, Qxα)2

‖P kQxα‖2
. (10)

# Here, P k = diag(1, 1, 0), i.e., the diagonal matrix with 1, 1, and 0 as the
diagonal elements in that order.

# The quotient on the right-hand side equals the squared distance of the
αth pixel to the fitted ellipse to a first approximation9:

5 If S < Sm, update Qm ← Q and Sm ← S.

# The value Sm records the maximum median obtained so far. The matrix
Qm designates the corresponding ellipse.

# We stopped the iterations when S ≥ Sm for 10 consecutive times.

dIn the statistical literature, “outliers” are the data generated by unmodeled random
fluctuations 20. Here, they are contiguous pixels on non-elliptic edge segments. In other words,
“outlier removal” actually means “segmentation” of elliptic parts.
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Fig. 4. Judging if the edge segment covers more than half of the ellipse.

After convergence, we selected inliers by the criterion

(xα, Qxα)2

‖P kQxα‖2
< 10Sm, (11)

which can be obtained by estimating the data standard deviation σ according to
the formula σ̂ ≈ 1.4826

√
Sm given in Ref. 20 and setting the threshold to (2.13σ̂)2.

Finally, an ellipse Q is refitted to the detected inliers by renormalization, and the
longest segment e that covers all the inliers is cut out.

2.6. Search for another segment

We now find ellipses consisting of multiple segments. First, we check if the
detected segment e covers more than half of the entire ellipse. This is done by
checking if the end parts of e are in converging orientations (Fig. 4). If so, we
stop and return the ellipse Q. Otherwise, we expand Q by 1 + γ. This is done by
replacing Eqs. (6) by

λ
(+)
1 =

λ1

(1 + γ)2
, λ

(+)
2 =

λ2

(1 + γ)2
. (12)

(We let γ = 1.2). We randomly choose a segment e′ that is within the expanded
ellipse and is not too short (we ignored those of less than 20 pixels). Randomly
choosing four pixels from e and one from e′, we fit an ellipse by LMedS as de-
scribed earlier. This time, we evaluate, instead of Eq. (10), the sum of the medians
computed for e and e′. We repeat this until the sum of the medians converges (we
stopped if no update occurred 100 consecutive times). We return the initial Q if the
resulting sum of medians is larger than four times the initial median for e (this cri-
terion is heuristically introduced). Otherwise, we detect inliers by applying Eq. (11)
to e and e′ separately and fit an ellipse to the detected inliers by renormalization.

We could find more segments by repeating this procedure. However, the chance
to pick out wrong segments will increase. Also, finding two segments is usually
sufficient for robustly fitting an ellipse. So, we stop the search after one separate
segment is found. Since it is difficult to derive a theoretically optimal strategy for
searching and voting, the above procedure was introduced empirically.

3. Real Image Examples

Figure 5(a) shows the detected osculating circle and the final ellipse superim-
posed onto the original image. Figure 5(b) is the initial edge image, onto which the
votes for potential centers of osculating circles are superimposed in gray levels. For
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comparison, Fig. 5(c) shows the result obtained by the standard Hough transform:
we vote along the normal line to each edge pixel with Gaussian smoothing of one-
pixel standard deviation on both sides7. As we can see, our scheme concentrates
more votes along the evolute of the ellipse, in particular at its singularities.

Figure 6(a) plots the absolute value (recall that we vote positive and negative
values) of the number of votes (ordinate) for the radius R (abscissa) from the
detected center. For comparison, Fig. 6(b) shows the plot obtained by the standard
Hough transform: the distance from the estimated center to each edge pixel is voted
with Gaussian smoothing of one-pixel standard deviation7. We adjusted the scale so
that the total number of votes is equal for both. As we can see, our scheme reduces
the contributions from clustered edges to almost zero because of the cancellation of
the signs, enhancing only the contributions from isolated arcs.

Figure 7(a) shows an edge image of a partially occluded ellipse. For this image, a
hyperbola was fitted in the ring region along the initial circle even for δ = 10. So, we
fitted an ellipse by LMedS and went on to search for another segment. Figure 7(b)
shows (1) the initial circle, (2) the hyperbola resulting from the ellipse growing,

(a) (b)

(c)

Fig. 5. Estimation of the center of the osculating circle. (a) The detected osculating circle and
the final ellipse. (b) Voting for the candidates of the center. (c) Standard Hough transform.
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0 100 200 300 400R 0 100 200 300 400R

(a) (b)

Fig. 6. The number of votes (ordinates) for the radius R of the initial circle (abscissa). (a)
Proposed method. (b) Standard Hough transform.

(a) (b)

Fig. 7. (a) The edge image used. (b) (1) The initial circle, (2) the hyperbola resulting from the

ellipse growing, (3) the ellipse fitted by LMedS, and (4) the ellipse fitted after detecting another
segment.

(3) the ellipse fitted by LMedS, and (4) the ellipse fitted after detecting another
segment.

Figure 8 shows various examples, showing the edge images (upper rows) and
the initial circles and the final ellipses superimposed onto the original images (lower
rows). In all cases, one or two iterations of the ellipse growing produced almost
satisfactory shapes. The iterations terminated after four or five runs. As we see,
we have obtained good fits even from very short edge segments.

We used Pentium III for the CPU and Linux for the OS. For 500 × 333-pixel
images, the average computation time was 18 seconds, about half of which was spent
on the preprocess of edges. As a result, computation time is nearly proportional to
the number of edge segments. There is still room to increase efficiency by refining
the program code.
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Fig. 8. Examples of ellipse fitting: the edge images (upper rows); the initial circles and the final
ellipses superimposed onto the original images (lower rows).
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(a) (b)

Fig. 9. Calibration of a turntable. (a) The edge image used. (b) The initial circle and the final

ellipse superimposed onto the original image.

As a final example, we applied our method to the calibration of a turntable. One
of the widely used methods for 3-D shape reconstruction is to place an object on
a rotating turntable and take its images. This is equivalent to rotating the camera
around the object, so the object shape can be reconstructed by triangulation. To do
this, we need to calibrate the position of the turntable relative to the camera. For
a circular turntable, this is easily done using its camera image alone if we measure
its radius (Appendix B).

Figure 9 (a) is an edge image of a circular turntable. Fig 9(b) shows the initial
circle and the final ellipse superimposed onto the original image (768× 512 pixels).
The focal length was calibrated to be 700 pixels. The radius of the turntable was
measured to be 6.45cm. Using the procedure described in Appendix B, we found
the angle between the camera optical axis and the turntable axis to be 59.4◦, and
the distance between the lens center to the turntable center to be 27.3cm. The
accuracy of this computation depends on the accuracy of the camera parameters.
Here, however, we focus only on image processing and do not go into the details of
reliability analysis.

4. Concluding Remarks

With the motivation of obtaining accurate 3-D measurement of circular objects,
we presented a new method for automatically detecting ellipses in images: we detect
an osculating circle using a Hough transform, iteratively improve the fit, remove
outlier pixels by LMedS, and search for separate arcs. We limited the Hough space
to be one and two dimensions for efficiency and introduced special weighting schemes
for enhancing accuracy. Using real images, we demonstrated that our method can
detect partially occluded circular objects within a reasonable time. We also showed
an example of turntable calibration for 3-D object shape reconstruction.

Our method relies on numerous empirically set parameters. This is inevitable in
a sense: since it is impossible to cope with all possible scenes, some kind of tuning
is unavoidable. In this respect, there is still room for further improvement.
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In our real image experiments, we detected only one ellipse per image. If mul-
tiple ellipses exist in one image, our algorithm finds them one by one from larger
to smaller, eliminating detected ones and searching for the remaining ones (our
algorithm gives precedence to larger ellipses). However, our algorithm sometimes
fails to distinguish two partly occluded concentric ellipses separated at a very short
distance. Also, it is very difficult to find ellipses of which only tiny fractions are
visible. These limitations seem inevitable as long as only edge segments are used.
In order to resolve these, we need some contextual information about the scene.
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Appendix A. Canonical Form of a Quadratic Curve

The following is a brief summary of the canonical form of a quadratic curve (see
Refs. 8 and 9 for the details).

Suppose Eq. (1), or Eq. (4) in matrix form, defines an ellipse. Using the matrix
S and the vector c defined in Eqs. (5), we can write the matrix Q in Eqs. (3) as

Q =
(

S c
c> F

)
. (A.1)

Letting ~x = (x, y)>, we can rewrite Eq. (4) in the form

(~x,S~x) + 2f(c, ~x) + f2F = 0. (A.2)

If the coordinate system is translated by fS−1c, Eq. (A.2) is rewritten as

(~x′,S~x′) = f2c, (A.3)

where we let ~x′ = ~x−fS−1c and c is the scalar defined in Eqs. (5). Let {λ1, λ2} be
the eigenvalues of S, and U the orthogonal matrix having the corresponding unit
eigenvectors u1 and u2 as its columns. Then,

S = U

(
λ1

λ2

)
U>. (A.4)

If the coordinate system is rotated by U , Eq. (A.2) has the form

λ1x
′′2 + λ1y

′′2 = f2c, (A.5)
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where we let (x′′, y′′)> = U>~x′. Eq. (A.5) reduces to the following canonical form:

x′′2

a2
+

y′′2

b2
= 1, a = f

√
c

λ1
, b = f

√
c

λ2
. (A.6)

The ring region of width δ around the ellipse of Eq. (1) can be defined if we let a

← a± δ and b ← b± δ and reconstruct the matrix Q(±) by tracing back the above
derivation.

From this analysis, we can see that Eq. (1) defines an ellipse if and only if λ1,
λ2, and c have the same sign. Suppose the sign of the matrix Q is so chosen that
det Q < 0. It is easily seen that λ1, λ2, and c have the same sign if and only if
AC −B2 > 0 and A+C > 0. If AC −B2 > 0 but A+C < 0, no real points satisfy
Eq. (1), so the condition A+C > 0 need not be considered as long as a real curve is
observed. If AC −B2 = 0, Eq. (1) defines a parabola; if AC −B2 < 0, it defines a
hyperbola. If detQ = 0, Eq. (1) defines two lines or their degeneracies (one double
line, one point, or an empty set).

Appendix B. 3-D Interpretation of an Ellipse

The following is a well known procedure for computing the position and orientation
of a circle in the scene from its projection image (see Refs. 8 and 9 for the details).

Let the constant f in Eqs. (1) and (3) be the focal length (in pixels) of the
camera. We define an image xy coordinate system such that the origin is at the
principal point (the point through which the optical axis passes). Taking the x-
axis pointing up and the y-axis pointing right, we define the z-axis in the depth
orientation. Let r be the radius of the turntable, and Q its observed image. In
order to remove the scale indeterminacy of Q, we normalize it to det Q = −1 (if
det Q = 0, we have non-elliptic figures as mentioned in Appendix A).

Let λ1, λ2, and λ3 be the eigenvalues of Q, and {u1, u2, u3} the orthonormal
system of the corresponding eigenvectors. The eigenvalues are ordered in such a
way that λ3 < 0 < λ1 ≤ λ2. The unit normal to the surface of the turntable is
computed as follows:

n = N [
√

λ2 − λ1

λ2 − λ3
u2 ±

√
λ1 − λ3

λ2 − λ3
u3]. (B.1)

Here, N [ · ] designates normalization to a unit vector. We obtain two solutions,
because looking down on the turntable and looking up at it would result in the
same ellipse image. In the usual setup, we pick out the looking-down solution, so
we select the sign for which n1n3 ≤ 0. The orthogonal distance of the turntable
surface from the lens center is given by

d =
√

λ3
1r. (B.2)
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The center of the turntable is projected onto the image at the position

xC = Z[Q−1n], (B.3)

where Z[ · ] designates normalization to make the z component 1. The 3-D position
of the center of the turntable is

rC =
dxC

(n, xC)
(B.4)

with respect to the camera coordinate system. The angle between the optical axis
of the camera and the rotation axis of the turntable is give by

θ = cos−1 |n3|. (B.5)
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