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We study the problem of thresholding the residual of template matching as a preprocess
for selecting the correct matches between feature points in two images. In order to
determine the threshold dynamically, we introduce a statistical model of the residual
and compute an optimal threshold according to that model. The model parameters are
estimated from the histogram of the residuals of candidate matches. Using real images,
we show that our method can substantially upgrade the quality of the initial matches
by simply adjusting the threshold.
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1. Introduction

Establishing point correspondences over multiple images is the first step of many
video processing applications. Two approaches exist for this purpose: tracking cor-
respondences over successive frames, and direct matching between separate frames.
This paper focuses on the latter.

The basic principle is local correlation measurement by template matching.
Detecting feature points in the first and second images separately using a corner
detector,2,4,8,10,11 we measure the correlation between the neighborhoods of the two
points for each candidate pair and match those that have a high correlation.

To do so, we need to set an appropriate threshold for distinguishing the correct
matches from the incorrect ones. This problem has not been considered fully in the
past, chiefly because template matching alone is insufficient for establishing point
correspondences; an outlier removal technique based on voting, such as LMedS9
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and RANSAC,3 needs to be applied thereafter. The thresholding task is usually
passed on to the outlier removal stage.1,12

However, most outlier removal techniques do not work if the outlier ratio is as
high as 50%. Hence, setting a good threshold at the template matching stage for re-
moving incorrect matches is essential for the subsequent outlier removal procedure
to be effective. If the threshold is too high, however, a lot of correct matches will
be lost, which will reduce the number of final matches, making subsequent com-
putations less reliable. Hence, we need a good balance between removing incorrect
matches and retaining correct ones.

This paper presents an optimal thresholding method based on a statistical
analysis. We introduce a parametric model of the template matching residual and
compute an optimal threshold according to that model. The model parameters are
estimated from the histogram of the residuals of the candidate matches. Since only
the threshold is adjusted, our method should not be regarded as a stand-alone
matching scheme. Rather, it is intended as a preprocess for subsequent outlier re-
moval procedures. Using real images, we show that our method can substantially
upgrade the quality of the initial matches by simply adjusting the threshold.

2. Template Matching

After feature points are detected from the two images using a corner detector, the
similarity between point P in the first image and point Q in the second is measured
by the following residual (sum of squares):

J(P, Q) =
∑

(i,j)∈N
|TP (i, j)− TQ(i, j)|2 , (1)

where TP (i, j) and TQ(i, j) are the intensity values of the templates obtained by
cutting out an n × n pixel region N from around P and Q. If we normalize them
to
∑

(i,j)∈N TP (i, j)2 = 1 and
∑

(i,j)∈N TQ(i, j)2 = 1, Eq. (1) is equivalent to the
use of the normalized correlation.

Basically, each point P in the first image is matched to the point Q in the second
for which J(P, Q) is the smallest, but overlaps and conflicts must be resolved. So,
we apply the following uniqueness enforcing procedure. We first choose the pair
(P, Q) that has the smallest residual J(P, Q). Then, we remove from among the
candidate pairs those that involve P and Q. From the remaining pairs, we choose
the pair (P ′, Q′) that has the smallest residual J(P ′, Q′). We repeat this procedure
until all pairs are exhausted.

3. Thresholding the Residual

If the above uniqueness enforcing procedure is applied to all the pairs, we may match
those points for which no counterparts exist. So, we need to remove beforehand
those pairs for which the residual is very large. For this, the threshold is usually
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set empirically.1,12 For example, Zhang et al.12 accepted those pairs for which the
normalized correlation is larger than 0.8.

However, the threshold cannot be fixed, because the residual J(P, Q) is deter-
mined not only by the image intensity fluctuations but also by the relative distortion
of the two images. For example, if rotation and scale change exist between the two
images, the residual J(P, Q) is not zero even when no image noise exists. It fol-
lows that the threshold should depend on the magnitude of the rotation and scale
change, which is unknown and different from image to image.

Our strategy is that we introduce a statistical model of the residual and compute
an optimal threshold according to that model. The model parameters are estimated
from the histogram of the residual. In the following, we assume that rotation and
scale change may exist to a certain unknown degree between the two images but not
to such an extent that local correlations between matching points are completely
lost; in that case, template matching should not be used in the first place.

4. Statistical Model of the Residual

If the match (P, Q) is correct, the image intensity difference

∆Tij = TP (i, j)− TQ(i, j) (2)

in Eq. (1) is due to the relative distortion in the neighborhoods of P and Q, as well
as small fluctuations of image intensity. We model such randomness by a Gaussian
distribution of mean 0 and standard deviation σ0. Then, J/σ2

0 for a correct match
should be subjected to a χ2 distribution with n2 degrees of freedom, provided that
the intensity difference is independent of the pixel (n is the template size).

If the match (P, Q) is incorrect, the difference ∆Tij is due to the inhomogeneity
of the intensity within the image of that scene. We assume that ∆Tij is subjected
to a Gaussian distribution of mean 0 and standard deviation σ1. Then, J/σ2

1 for
an incorrect match should be subjected to a χ2 distribution with n2 degrees of
freedom, provided that the intensity difference is independent of the pixel.

Let f0(J) be the probability density of the residual J for correct matches, and
f1(J) for incorrect ones. According to the above model, we have

f0(J) =
1
σ2

0

φn2

(
J

σ2
0

)
, f1(J) =

1
σ2

1

φn2

(
J

σ2
1

)
, (3)

where φd(x) denotes the probability density of the χ2 distribution with d degrees
of freedom. It has the form

φd(x) =
e−x/2xd/2−1

2d/2Γ(d/2)
, (4)

where Γ(x) is the Gamma function. This distribution has expectation d and variance
2d.
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5. Effective Template Size

The assumption that the image intensity difference is independent of the pixel is
not realistic. However, exact modeling of this correlation is difficult, so we introduce
the following approximation.

If there are N points in the first image and M points in the second, the number
of correct matches is at most min(N, M), which is much smaller than the number
NM of all possible pairs. Since most of the matches are incorrect, the probability
density of the residual J for all the matches is approximately f1(J), which has an
expectation of n2σ2

1 and a variance of 2n
2σ4

1 . It follows that if we compute the mean
µJ and the variance σ2

J of J from the histogram of J , we should have

µJ ≈ n2σ2
1 , σ2

J ≈ 2n2σ4
1 , (5)

provided that each pixel value is independent. Eliminating σ1 from these, we obtain
n2 ≈ 2µ2

J/σ2
J . However, n2 should be much smaller than this due to correlations.

So, we define the effective template size by

n =
√
2µJ

σJ
. (6)

In other words, we regard each pixel value as if independent within the template of
this size, which need not be an integer.

6. Model Parameter Estimation

Let p and q (= 1− p) be the fractions of the correct and incorrect matches, respec-
tively. The probability density of the residual J for all the matches is

f(J) = pf0(J) + qf1(J) =
Jn2/2−1

2n2/2Γ(n2/2)

(
pe−J/2σ2

0

σn2

0

+
qe−J/2σ2

1

σn2

1

)
. (7)

We determine the model parameters σ0 and σ1 by a maximum likelihood estimation.
Let J1 ≤ J2 ≤ · · · ≤ JNM be all the NM residual values sorted in ascending order.
From Eq. (7), their likelihood is

NM∏
i=1

f(Ji) =
∏NM

i=1 J
n2/2−1
i

2n2NM/2Γ(n2/2)NM

NM∏
i=1

(
pe−Ji/2σ2

0

σn2

0

+
qe−Ji/2σ2

1

σn2

1

)
. (8)

Differentiating the logarithm of this with respect to σ2
0 and σ2

1 and letting the
results be zero, we obtain

σ2
0 =

∑NM
i=1 AiJi

n2
∑NM

i=1 Ai

, σ2
1 =

∑NM
i=1 BiJi

n2
∑NM

i=1 Bi

, (9)

where we define

Ai =
1

1 + q
p (

σ0
σ1
)n2e

Ji
2 ( 1

σ2
0
− 1

σ2
1
)
, Bi =

1

1 + p
q (

σ1
σ0
)n2e

Ji
2 ( 1

σ2
1
− 1

σ2
0
)
. (10)
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The values of σ0 and σ1 are obtained by iterations: guessing the initial values to
be, for example,

σ0 =

√∑�pNM�
i=1 Ji

n2	pNM
 , σ1 =
σJ√
2µJ

, (11)

and substituting them into the right-hand sides of Eqs. (9), we obtain their updated
values. This process is repeated until σ0 and σ1 converge. The first of Eqs. (11) is
the value of σ0 we would have if the 	pNM
 matches with the smallest residuals
were all correct. The second of Eqs. (11) is obtained by eliminating n2 from Eqs. (5).

The fractions p and q (= 1− p) are set empirically. Since the number of correct
matches between N points and M points is at most min(N, M), we let pmax =
min(N, M)/NM and set, for example, p = 0.6pmax if no knowledge is available
about the correctness of the matches. The estimate of p need not be precise, as we
will show later.

7. Detection Ratio Versus Inlier Ratio

Suppose we set a threshold Jc for the residual J and accept those matches with
J ≤ Jc as correct. Let α be the ratio of the accepted correct matches among all
the correct ones; we call it the detection ratio. A correct match with residual J is
accepted with the probability

α = P0[J < Jc] = P0

[
J

σ2
0

<
Jc

σ2
0

]
, (12)

where P0[ · ] denotes the probability for correct matches. Let χ2
n2(α) be the αth

percentile of the χ2 distribution with n2 degrees of freedom. Since J/σ2
0 for a correct

match should be subjected to a χ2 distribution with n2 degrees of freedom, Eq. (12)
implies that Jc/σ2

0 equals χ2
n2(α). Hence, the threshold Jc is given by

Jc = σ2
0χ

2
n2(α) . (13)

Some incorrect matches are necessarily accepted by this thresholding. An incorrect
match with residual J is accepted with the probability

γ = P1[J ≤ Jc] = P1

[
J

σ2
1

≤
(

σ0

σ1

)2
χ2

n2(α)

]
, (14)

where P1[ · ] denotes the probability for incorrect matches. Let Φn2(X) (=∫X

0 φn2(x)dx) be the accumulated probability function of the χ2 distribution with
n2 degrees of freedom. Since J/σ2

1 for an incorrect match should be subjected to a
χ2 distribution with n2 degrees of freedom, Eq. (14) implies

γ = Φn2

((
σ0

σ1

)2
χ2

n2(α)

)
. (15)

Among the NM possible matches, the numbers of correct and incorrect matches
are pNM and qNM , respectively. After the thresholding, we obtain αpNM correct
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inlier ratio detection ratio
1

0 J Jc

Fig. 1. Determining the threshold that balances the inlier ratio and the detection ratio.

matches and γqMN incorrect ones on average. Hence, the inlier ratio, i.e. the ratio
of correct matches among the accepted matches, is approximately

β =
αpNM

αpNM + γqMN
=

αp

αp + γq
. (16)

8. Threshold Selection

The threshold Jc is determined by the detection ratio α in the form of Eq. (13), but
how should we set α? It should be large if we want to collect many correct matches,
but the number of incorrect matches also increases, lowering the inlier ratio β as a
result.

Here, we determine the threshold Jc so that the detection ratio α equals the
inlier ratio β. This balances the probability 1− α of rejecting correct matches and
the probability 1−β of accepting incorrect ones (Fig. 1). Substituting Eq. (16) into
Eq. (15) and letting β = α, we obtain

α = 1− q

p
Φn2

((
σ0

σ1

)2
χ2

n2(α)

)
, (17)

from which α is obtained by Newton iterations.

9. Real Image Examples

Figures 2(a) and (b) show two real images of a distant scene. We detected 100 fea-
ture points from each image using the Harris operator,4 as marked there. Figure 2(c)
is the histogram of the residuals of a 9×9 template for all candidate matches. Letting
p/pmax = 0.6, we estimated the effective template size n, the model parameters σ0

and σ1, and the optimal detection ratio α (= the inlier ratio β) as listed in Fig. 2(d).
We see that n is much smaller than the actual size 9 due to correlations. The density
f(J) of the residual J estimated by Eq. (7) is superimposed onto the histogram in
Fig. 2(c). The estimated density agrees with the histogram very well.

Figures 2(e) and (f) superimpose the densities f0(J) and f1(J) of correct and
incorrect matches estimated by Eqs. (3) onto the histograms of correct and incorrect
matches, separately. Here, we checked the correctness of the matches as follows.
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n = 2.65 (pixels)

σ0 = 61.4, σ1 = 280.1, α = β = 87.8(%)

Detection Inlier
Ratio Ratio

Proposed Thresholding 59.0 95.3

No Thresholding 87.2 34.0

Otsu Criterion 87.2 36.6

Zhang et al. 87.2 36.6
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Fig. 2. (a), (b) Input images and detected feature points. (c) The residual histogram of all
the matches. (d) The model parameters, the detection ratio (%), and the inlier ratio (%). (e) The
residual histogram of correct matches and their estimated density. (f) The residual histogram of in-
correct matches and their estimated density. (g) Matches resulting from the proposed thresholding.
(h) Matches without thresholding. (i) Matches resulting from the Otsu thresholding. (j) Matches
resulting from the method of Zhang et al. The vertical solid lines in (c), (e), and (f) indicate
the threshold determined from the computed detection ratio α. The vertical dotted lines indicate
thresholds obtained by the Otsu criterion.
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(c)

n = 3.44 (pixels)

σ0 = 118.9, σ1 = 311.6, α = β = 79.1(%)

Detection Inlier
Ratio Ratio

Proposed Thresholding 74.0 72.5

No Thresholding 86.0 43.0

Otsu Criterion 86.0 44.8

Zhang et al. 72.1 69.2
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Fig. 3. (a), (b) Input images and detected feature points. (c) The residual histogram of all
the matches. (d) The model parameters, the detection ratio (%), and the inlier ratio (%). (e) The
residual histogram of correct matches and their estimated density. (f) The residual histogram of in-
correct matches and their estimated density. (g) Matches resulting from the proposed thresholding.
(h) Matches without thresholding. (i) Matches resulting from the Otsu thresholding. (j) Matches
resulting from the method of Zhang et al. The vertical solid lines in (c), (e), and (f) indicate
the threshold determined from the computed detection ratio α. The vertical dotted lines indicate
thresholds obtained by the Otsu criterion.
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(c)

n = 3.09 (pixels)

σ0 = 71.7, σ1 = 255.6, α = β = 89.5(%)

Detection Inlier
Ratio Ratio

Proposed Thresholding 39.5 28.3

No Thresholding 39.5 15.0

Otsu Criterion 39.5 16.1

Zhang et al. 34.2 21.3
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Fig. 4. (a), (b) Input images and detected feature points. (c) The residual histogram of all
the matches. (d) The model parameters, the detection ratio (%), and the inlier ratio (%). (e) The
residual histogram of correct matches and their estimated density. (f) The residual histogram of in-
correct matches and their estimated density. (g) Matches resulting from the proposed thresholding.
(h) Matches without thresholding. (i) Matches resulting from the Otsu thresholding. (j) Matches
resulting from the method of Zhang et al. The vertical solid lines in (c), (e), and (f) indicate
the threshold determined from the computed detection ratio α. The vertical dotted lines indicate
thresholds obtained by the Otsu criterion.
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Since two images of a distant scene are related by a homography, we optimally
computed the homography H by renormalizationa 5 from a large number of corre-
sponding points selected by hand. For each candidate match (P, Q), we mapped
the point P to the second image by the computed homography H and judged the
match as correct if the point Q is within three pixels from its ideal position HP .
The result agrees very well with our prediction.

The vertical solid lines in Figs. 2(c), (e) and (f) indicate the computed thresh-
old Jc. A well known scheme for automatic thresholding is the Otsu discrimination
criterion.7 The vertical dotted lines in Figs. 2(c), (e) and (f) indicate the corre-
sponding threshold.

Figure 2(g) shows the final matches obtained by applying the computed thresh-
old Jc followed by the uniqueness enforcing procedure; they are displayed as “optical
flow” (line segments connecting the matching positions). For comparison, Fig. 2(h)
shows the result without thresholding; Fig. 2(i) is the result using the Otsu crite-
rion; Fig. 2(j) is the result thresholded by the normalized correlation 0.8 according
to Zhang et al.12 The actual detection ratio α and the inlier ratio β for these results
are listed in Fig. 2(d).

We can see that without thresholding we can collect many correct matches but
we also pick out many incorrect ones. As a result, the inlier ratio significantly
drops. Our thresholding scheme balances the conflicting goals of collecting as many
correct matches as possible and rejecting as many outliers as possible. The Otsu
criterion shows little effect. The method of Zhang et al.12 gives an intermediate
result between the Otsu criterion and our method.

Figures 3 and 4 show other examples with corresponding results, and we can
observe similar effects. From these, we can confirm that our method substantially
upgrades the quality of the matches by simply adjusting the threshold.

10. Validation of Our Model

From the above experiments, we can see that the residual distribution of correct
matches is included in the residual distribution of incorrect matches to a large ex-
tent with a long tail (Fig. 5). Therefore, if we want to pick out a large number
of correct matches, we need a high threshold, which inevitably accepts many in-
correct matches. Our analysis determines an optimal threshold by analyzing the
distribution shapes. In this paper, we approximated the distributions by the χ2

distribution density, adjusting the effective template size n and the parameters σ0

and σ1. As long as the approximation is good, the underlying statistical hypotheses
(independent Gaussian distributions, etc.) are not so very essential.

Theoretically, the fraction p of correct matches could be estimated from the
histogram, using the EM-algorithm, for example. Most often, however, we would end

aThe program is available from http://www.ail.cs.gunma-u.ac.jp/Labo/programs-e.html.
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JcO J

incorrect matches

correct matches

Fig. 5. The residual distribution of correct matches is included in the residual distribution of
incorrect matches to a large extent.

up concluding that all matches are incorrect, because interpretation is statistically
very likely. This is unavoidable unless we impose the constraint that a certain
fraction of matches should be correct. This is the reason why we introduced the
fraction p heuristically, rather than estimating it from the histogram.

We set the ratio p/pmax to 0.6, but this value need not be precise. Figure 6
shows the final results for p/pmax = 0.4, 0.6, 0.8, 1.0 for the images in Figs. 2, 3
and 4, and the results are not so different, as we can see. Hence, we may safely set
p/pmax to be around 0.6 if no prior information is given.

p/pmax = 0.4 p/pmax = 0.6 p/pmax = 0.8 p/pmax = 1.0

Fig. 6. Matches resulting from different estimates of the fraction p of correct matches for the

images in Figs. 2, 3 and 4 (from above).



December 8, 2003 14:2 WSPC/164-IJIG 00127

32 K. Kanatani & Y. Kanazawa

11. Conclusion

We have studied the problem of thresholding the residual of template matching for
selecting correct matches between feature points detected in two separate images.
We dynamically determined the threshold by introducing a statistical model of the
residual and computed an optimal threshold according to that model. The model
parameters were estimated from the histogram of the residual of candidate matches.

Since only the threshold is adjusted, our method alone cannot establish exact
matches. Rather, it should be regarded as a preprocess for outlier removal based
on voting. Using real images, we have shown that our method can substantially
upgrade the quality of initial matches by simply adjusting the threshold. It has been
confirmed that our method is very effective as a preprocess for automatic image
mosaicing generation using LMedS9 and RANSAC,3 as demonstrated in Ref. 6.
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