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Reformulating the Costeira-Kanade algorithm as a pure mathematical theorem, we
present a robust segmentation procedure, which we call subspace separation, by incorpo-
rating model selection using the geometric AIC. We then study the problem of estimating
the number of independent motions using model selection. Finally, we present criteria
for evaluating the reliability of individual segmentation results. Again, model selection
plays an important role. We confirm the effectiveness of our method by experiments
using synthetic and real images.
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1. Introduction

Segmenting individual objects from backgrounds is one of the most important of
computer vision tasks. A significant clue is provided by motion; humans can easily
discern independently moving objects by seeing their motions without knowing their
identities. To solve this problem, Costeira and Kanade1 presented a segmentation
algorithm based on feature tracking. Since then, various extensions have been
proposed: Gear2 used the reduced row echelon form and graph matching; Ichimura3

applied the discrimination criterion of Otsu4 and the QR decomposition for feature
selection5; Inoue and Urahama6 introduced fuzzy clustering.

Costeira and Kanade1 attributed their algorithm to the Tomasi-Kanade
factorization.7 In this paper, we show that their principle is a simple fact of linear
algebra: the image motion of points that belong to an object moving rigidly in the
scene is constrained to be in a four-dimensional subspace.2,8 We then present a new
segmentation procedure that directly exploits this fact and demonstrate that our
method, which we call subspace separation, far outperforms the Costeira-Kanade
algorithm1 and Ichimura’s method.5 Our method can also be used for analyzing the
effect of illumination on moving objects.9,10
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The subspace separation method assumes that the number of independent mo-
tions is given. It has been known that estimating the number of motions is more
difficult than segmentation itself.1,2 Gear2 attempted a complicated statistical anal-
ysis for estimating the number of motions and concluded that individual points were
likely to be judged as independently moving. This is a natural consequence, because
saying that each point is moving independently (but coincidentally in unison) is, as
long as the judgment is based on statistical likelihood alone, always a more likely
interpretation than saying that the motions of different points are constrained. It
follows that we need a criterion that favors a small number of motions. In this pa-
per, we show that the problem can be solved by model selection without introducing
any empirical thresholds.

Once the number m of motions is given, the subspace separation algorithm
segments the points into m groups, but the result may not always be correct. In this
paper, we also study the method for evaluating the correctness of the segmentation
a posteriori . Again, model selection plays an important role.

Sec. 2 describes the mathematical structure of the problem. The details of the
segmentation procedure are given in Sec. 3. In Sec. 4, we discuss the problem of
estimating the number of independent motions. In Sec. 5, we present criteria for
evaluating the reliability of individual segmentation results. In Sec. 6, we give our
conclusion.

2. Subspace Separation

2.1. Motion subspaces

We track N rigidly moving feature points over M images and let (xκα, yκα) be the
image coordinates of the αth point in the κth frame. If all the image coordinates
are stacked vertically into a 2M -dimensional vector in the form

pα =
(

x1α y1α x2α y2α · · · yMα

)>
, (1)

the image motion of the αth point is represented by a single point pα in a 2M -
dimensional space R2M .

The XY Z camera coordinate system is regarded as the world coordinate system
with the Z-axis taken along the optical axis. Fix an arbitrary object coordinate
system to the object, and let tκ and {iκ, jκ, kκ} be, respectively, its origin and
orthonormal basis in the κth frame. Let (aα, bα, cα) be the object coordinates of
the αth point. Its position in the κth frame with respect to the world coordinate
system is given by

rκα = tκ + aαiκ + bαjκ + cαkκ. (2)

If orthographic projection is assumed, we have
(

xκα

yκα

)
= t̃κ + aαĩκ + bαj̃κ + cαk̃κ, (3)
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where t̃κ, ĩκ, j̃κ, and k̃κ are the two-dimensional vectors obtained from tκ, iκ, jκ,
and kκ, respectively, by chopping off the third components. If the vectors t̃κ, ĩκ,
j̃κ, and k̃κ are stacked over the M frames vertically into 2M -dimensional vectors
m0, m1, m2, and m3, respectively, the vector pα has the form

pα = m0 + aαm1 + bαm2 + cαm3. (4)

This implies that the N points {pα} should belong to the four-dimensional sub-
space spanned by the vectors {m0, m1, m2, m3}. This constraint holds for all
affine camera models including weak perspective and paraperspective,11 because
Eq.(2) holds irrespective of the metric condition7,11 that demands {iκ, jκ, kκ} be
orthonormal.

For planar motions, i.e., when the object translates only in the X and Y direc-
tions and rotates only around the Z-axis, the vector k̃κ vanishes if iκ, jκ, and kκ

are taken to be in the X, Y , and Z directions, respectively. This means that the N

points {pα} belong to the three-dimensional subspace spanned by {m0, m1, m2}.

2.2. Subspace separation theorem

It follows that the motions of the feature points are segmented into independently
moving objects if the N points in Rn (n = 2M) are grouped into distinct four-
dimensional subspaces (or three-dimensional subspaces for planar motions). In-
spired by the Tomasi-Kanade factorization,7 Costeira and Kanade1 found that this
can be done by zero/nonzero discrimination of the elements of a matrix computed
from the data. We reiterate this fact from a new viewpoint.8

Let {pα} be N points that belong to an r-dimensional subspace L ⊂ Rn. Define
the N ×N metric matrix G = (Gαβ) by

Gαβ = (pα, pβ), (5)

where (a, b) denotes the inner product of vectors a and b. Let λ 1 ≥ · · · ≥ λN be
the eigenvalues of G, and {v1, ..., vN} the orthonormal system of the corresponding
eigenvectors. Define the N ×N interaction matrix Q = (Qαβ) by

Q =
r∑

i=1

viv
>
i . (6)

Divide the index set I = {1, ..., N} into m disjoint subsets Ii, i = 1, ..., m, and
let Li be the subspace defined by the ith set {pα}, α ∈ Ii. If the m subspaces Li,
i = 1, ..., m, are linearly independent, we have the following:

Theorem 1 The (αβ) element of Q = (Qαβ) is zero if the αth and βth points
belong to different subspaces:

Qαβ = 0, α ∈ Ii, β ∈ Ij , i 6= j. (7)
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This theorem is the essence of the principle on which the Costeira-Kanade
algorithm1 is built. Costeira and Kanade described this result in reference to the
Tomasi-Kanade factorization,7 but this can be proved purely mathematically as
follows. For N (> n) vectors {pα}, there exist infinitely many sets of numbers {c1,
..., cN}, not all zero, such that

∑N
α=1 cαpα = 0, but if the points {pα} belong to

two subspaces L1 and L2 such that L1 ⊕ L2 = Rn, the set of such “annihilating
coefficients” {cα} (the “null space” to be precise) is generated by those for which∑

pα∈L1
cαpα = 0 and those for which

∑
pα∈L2

cαpα = 0. A formal proof is given
in the Appendix.

3. Separation Procedure

3.1. Basic principle

In the presence of noise, all the elements of Q are nonzero in general. But if
we progressively group points pα and pβ for which |Qαβ | is large and interchange
the corresponding rows and columns of Q, we should end up with an approximately
block-diagonal matrix. Costeira and Kanade1 proposed this type of strategy, known
as the greedy algorithm.

Whatever realigning strategy is taken, however, all such algorithms1,2,3,5,6 are
severely vulnerable to noise, because segmentation is based on zero/nonzero dis-
crimination of matrix elements, for which we do not know how small the nonzero
elements might be in the absence of noise, yet small nonzero elements and large
nonzero elements have the same meaning as long as they are nonzero.

In the presence of noise, a small error in one datum can affect all the elements of
the matrix in a complicated manner, so finding a suitable threshold is difficult even
if the noise is known to be Gaussian with a known variance.2 This difficulty can
be avoided if we work in the original data space, rather than the matrix elements
derived from it.

3.2. Subspace merging

Initially regarding individual points as groups consisting of one element, we suc-
cessively merge two groups by fitting a d-dimensional subspace to them (d = 4
for general motions and d = 3 for planar motions). Let Li and Lj be candidate
subspaces to merge, and Ni and Nj the respective numbers of points in them.

Let Ji and Jj be the individual residuals, i.e., the sums of the squared distances
of the data points to the fitted subspaces Li and Lj . Let Ji⊕j be the residual that
would result if a single subspace is fitted to the Ni +Nj points. It is reasonable not
to merge the two groups if Ji⊕j is much larger than Ji + Jj . But how large should
Ji⊕j be for this judgment? In fact, we always have Ji⊕j ≥ Ji + Jj because a single
subspace has fewer degrees of freedom to adjust than two subspaces. It follows that
we need to balance the increase in the residual against the decrease in the degrees
of freedom. For this purpose, we use the geometric AIC .12,13
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We assume that the tracked feature points are perturbed from their true posi-
tions by independent Gaussian noise of mean zero and standard deviation ε, which
we call the noise level . Since a d-dimensional subspace in Rn has d(n− d) degrees
of freedom,a the geometric AIC has the following form13:

G-AICi⊕j = Ji⊕j + 2d
(
Ni + Nj + n− d

)
ε2. (8)

If two d-dimensional subspaces are fitted to the Ni points and the Nj points sepa-
rately, the degree of freedom is the sum of those for individual subspaces. Hence,
the geometric AIC is given as follows13:

G-AICi,j = Ji + Jj + 2
(
3(Ni + Nj) + 8(n− 3)

)
ε2. (9)

Merging Li and Lj is reasonable if G-AICi⊕j < G-AICi,j . However, this criterion
can work only for Ni +Nj > d. Also, all the subspaces are included in subspaces of
higher dimensions, so the interaction matrix Q still provides information about the
possibility of merging. Here, we integrate these two criteria to define the following
similarity measure between the subspaces Li and Lj :

sij =
G-AICi,j

G-AICi⊕j
max

pα∈Li,pβ∈Lj

|Qαβ |. (10)

Two subspaces with the largest similarity are merged successively until the number
of subspaces becomes a specified number m. If some of the resulting subspaces
contain less than d elements, they are taken as first candidates to be merged.

To evaluate the geometric AIC, we need to estimate the noise level ε. This can
be done if we note that the points {pα} should belong to an r-dimensional subspace
in Rn in the absence of noise (r = md). Let Jt be the residual after fitting an
r-dimensional subspace to {pα}. Then, Jt/ε2 is subject to a χ2 distribution with
(n− r)(N − r) degrees of freedom,13 so we obtain the following unbiased estimator
of ε2:

ε̂2 =
Jt

(n− r)(N − r)
. (11)

3.3. Dimension correction and robust fitting

We also incorporate two further techniques which prove very effective. The first is
dimension correction: as soon as more than d elements are grouped together, we
optimally fit a d-dimensional subspace to them and replace the points with their
projections onto the fitted subspace for computing the matrix Q (the projection is
done always using the original data at each merging stage). This effectively reduces
the noise in the data if the local grouping is correct. Continuing this process, we
end up with an exact block-diagonal matrix Q.
aIt is specified by d points in Rn, but they can move within that subspace into d directions. So,
the degree of freedom is dn− d2.
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The second technique is an a posteriori reallocation. Since a point that is
misclassified in the course of merging never leaves that class, we attempt to remove
outliers from the m resulting classes L1, ..., Lm by robust fitting. Points near the
origin may be easily misclassified, so we select from each class Li half (but not less
than d) of the elements that have large norms. We fit d-dimensional subspaces L′1,
..., L′m to them again and select from each class Li half (but not less than d) of
the elements whose distances to the closest subspace L ′j , j 6= i, are large. We fit
d-dimensional subspaces L′′1 , ..., L′′m to them again and allocate each data point to
the closest one. Finally, we fit d-dimensional subspaces L′′′1 , ..., L′′′m to the resulting
point sets by LMedS .14 Each data point is reallocated to the closest one.

3.4. Accuracy bound

Whatever method we use, we cannot reach 100% accuracy as long as noise exists in
the data. For objective evaluation of an algorithm, we should compare its perfor-
mance with an ideal method. Suppose we know by an “oracle” the true subspaces
L̄1, ..., L̄m, from which the observed data were perturbed by independently and
identically distributed Gaussian noise. Evidently, each point should be grouped
into the closest subspace from it. Of course we cannot do this using real data, but
we can do simulations, for which the true solution is known, and can regard the
performance of this oracle method as a bound on the accuracy.

3.5. Experiments

Figure 1 is a sequence of five consecutive simulated images (512× 512 pixels) of 20
points in the background and nine points in an object. The background and the ob-
ject are independently moving in two dimensions. We added Gaussian noise of mean
zero and standard deviation ε to the coordinates of the 29 points independently and
classified them into two groups.

Figure 2(a) plots the average misclassification ratio over 500 independent trials
for different ε: we compare (i) the method using the greedy algorithm only, (ii) the
method with dimension correction added, (iii) the method with model selection in
addition, and (iv) the method with robust fitting further added. We can see that
each added technique reduces the error further.

Fig. 1. An image sequence of points in planar motion.
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Fig. 2. Misclassification ratio for segmenting the planar motion of Fig. 1. (a) (i) Greedy algorithm.
(ii) With dimension correction. (iii) With model selection. (iv) With robust fitting. (b) (i) Greedy
algorithm. (ii) Ichimura’s method. (iii) Our method. (iv) Lower bound.

Fig. 3. An image sequence of points in 3D motion.

In Fig. 2(b), we compare (i) the greedy algorithm, (ii) our method with all the
techniques combined, (iii) Ichimura’s method3 that uses the discrimination criterion
of Otsu,4 and (iv) the bound given by the oracle method. We observe that Ichimura’s
method is slightly better than the greedy algorithm but inferior to our method. This
is because the Otsu criterion classifies elements in the least-squares sense and hence
nonzero elements |Qαβ | that are close to zero are judged to be zero in the presence
of noise.

Figure 3 is a sequence of five consecutive simulated images (512×512 pixels) of 20
points in the background and 14 points in an object. The background and the object
are independently moving in three dimensions. Figure 4 shows the classification
results corresponding to Fig. 2. Again, we can see that our method dramatically
improves the classification accuracy.

Figure 5 shows a sequence of real images (above) and feature points manually
selected from them (below). Three objects are fixed in the scene, so they are moving
rigidly with the scene, while one object is moving relative to the scene. The image
size is 512× 768 pixels.

For this data set, the greedy algorithm and our method both correctly separated
an independent 3D motion from the background motion, whereas Ichimura’s method
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Fig. 4. Misclassification ratio for segmenting the 3D motion of Fig. 3. (a) (i) Greedy algorithm.
(ii) With dimension correction. (iii) With model selection. (iv) With robust fitting (b) (i) Greedy
algorithm. (ii) Ichimura’s method. (iii) Our method. (iv) Lower bound.

Fig. 5. Real images of moving objects (above) and the selected feature points (below).

failed. We added independent Gaussian noise of mean zero and standard deviation
ε = 0, 1, 2, 3, ... (pixels) to the coordinates of the feature points and applied our
method ten times for each ε, using different noise each time. The greedy algorithm
and Ichimura’s method caused misclassifications, but our method was always correct
up to ε = 5 (pixels)

4. Estimating the Number of Motions

4.1. What is the true number of motions?

We now turn to the problem of estimating the “number of motions”. Here, a very
subtle problem arises: what is the “true” number of motions?

Suppose six objects are moving in the scene in three ways, say, objects 1 and
2 are moving rigidly as a whole, and so are objects 3 and 4 and objects 5 and 6.
What is the correct answer for the number of motions? Obviously, we expect it to
be 3, but if we say that it is 6, what is wrong? After segmenting the points into six
groups, we can compute their 3D motions by a structure-from-motion algorithm.
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We may find a posteriori that the motions of some groups are very similar to others,
concluding that there are three motions in total. This 3D interpretation is correct.

By the same token, saying that the number of motions is five is also correct, and
so are the answers four and three. But the answer two is wrong. In other words, the
correct answers form a spectrum, the lower bound being three and the upper bound
being the number of points observed. The surest answer is the upper bound, but
the 3D reconstruction becomes more vulnerable to noise as the number of feature
points in one group becomes smaller. So, we want to minimize the overestimation,
but at the same time some “safety margin” is desired. We must take this into
consideration in estimating the “number of motions”.

4.2. Rank estimation

From the argument in Sec. 2.1, the number m of independent motions can be inferred
from the rank r of the data vectors {pα}, i.e., the dimension of the subspace they
span: r = 4m for general motions; r = 3m for planar motions. Since M images
define a 2M -dimensional space, discerning m independent motions requires more
than 2m images for general motion and more than 1.5m images for planar motions.

Mathematically, there are basically three ways for computing the rank r of a set
{pα} of N n-dimensional vectors.

• Define the n× n moment matrix M by

M =
N∑

α=1

pαp>α . (12)

Let λ 1 ≥ · · · ≥ λn be its eigenvalues, and {u1, ..., un} the corresponding
orthonormal set of eigenvectors. The rank r equals the number of positive
eigenvalues, i.e., the rank of M .

• Define the N ×N metric matrix G = (Gαβ) by

Gαβ = (pα, pβ). (13)

Let λ 1 ≥ · · · ≥ λN be its eigenvalues, and {v1, ..., vN}, the corresponding
orthonormal set of eigenvectors. The rank r equals the number of positive
eigenvalues,b i.e., the rank of G.

• Define the n×N observation matrix W by

W =
(

p1 · · · pN

)
. (14)

Let its singular value decomposition be

W = Un×Ndiag(σ1, σ2, ..., σN )V >
N×N , (15)

where Un×N and V N×N are, respectively, n×N and N ×N matrices having
orthonormal columns. The symbol diag( · · · ) designates the diagonal matrix

bThe positive eigenvalues of G are also positive eigenvalues of M .



188 K. Kanatani

with · · · as its diagonal elements in that order. The rank r equals the number
of positive singular values,c i.e., the rank of W .

However, all these are in theory only : they can be applied only when no noise exists
in the data and the computation can be done with infinite accuracy. In the presence
of noise and with finite computation accuracy, all eigenvalues and singular values
are nonzero in general. Hence, we need to truncate small eigenvalues and singular
values, but it is difficult to set an appropriate threshold.

4.3. Model selection for rank estimation

A naive idea for estimating the rank of a set {pα} of N n-dimensional vectors is to fit
subspaces of different dimensions to them and adopt the dimension of the subspace
having the smallest residual. This does not work, as we pointed out in Sec. 3.2,
because the residual becomes smaller as we fit a higher dimensional subspace. In
particular, the residual is zero if we fit the n-dimensional subspace (= the entire
space). Also, the residual becomes smaller if the subspace to fit has more parameters
to adjust. Again, we need to balance the residual against the dimension and the
degree of freedom of the subspace. First, we consider the geometric AIC 13 and the
geometric MDL.15,16

As mentioned in Sec. 3.2, an r-dimensional subspace in Rn has r(n− r) degrees
of freedom, and we are assuming independent Gaussian noise of mean zero and
variance ε2. Hence, the geometric AIC and the geometric MDL are respectively
given as

G-AIC = Jr + 2r(m + n− r)ε2,

G-MDL = Jr − r(m + n− r)ε2 log
( ε

L

)2

. (16)

Here, L is a reference length for the data16; we can use for it an arbitrary value
whose order is approximately the same as the data,16 say the image size. Let ν =
min(n,m). The residual Jr is given by

Jr =
ν∑

i=r+1

σ2
i , (17)

where {σi} are the singular values, in descending order, of the observation matrix
W defined by Eq.(14). Evaluating Eqs.(16) for r = 1, 2, ..., we choose the value
r that minimizes them. If an upper bound rmax on the rank r is known, the noise
variance ε2 is estimated as follows (see Eq.(11)):

ε̂2 =
Jrmax

(n− rmax)(N − rmax)
. (18)

cThe squares of the positive singular values are the positive eigenvalues of M and G.
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The geometric AIC and the geometric MDL effectively truncate the eigenvalues
and singular values without using any threshold. A well known automatic thresh-
olding scheme is the discrimination criterion of Otsu,4 which Ichimura3 used for
thresholding the interaction matrix Q. Applying it to threshold the singular val-
ues {σi} of W , we obtain the following criterion, which we call the Otsu-Ichimura
criterion:

OIC =
r(ν − r)(µ1 − µ2)2∑r

i=1(σi − µ1)2 +
∑ν

i=r+1(σi − µ2)2
. (19)

Here, we define

µ1 =
1
r

r∑

i=1

σi, µ2 =
1

ν − r

ν∑

i=1+r

σi. (20)

The number r that maximizes Eq.(19) is chosen as the rank.

4.4. Experiments

We defined a 10×20 matrix with random elements uniformly generated over [−1, 1].
We computed its singular value decomposition in the form V diag(σ1, ..., σ10)U>.
The nonzero singular values σ1, ..., σ5 are 3.81, 3.58, 3.09, 2.98, and 2.75, respec-
tively. Then, we defined the matrix

A = V diag(σ1, ..., σ5, γσ5, 0, ..., 0)U>. (21)

We added Gaussian noise of mean zero and standard deviation 0.05 to each element
of A independently and estimated its rank with rmax = 6. Figure 6 plots the average
number of the rank over 200 trials for each γ. We used the reference length L = 1.

The geometric AIC predicts the rank to be six with some probability even when
the true rank is five (γ = 0), and it mostly predicts the rank to be six for a small
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Fig. 6. Average estimated rank. The solid lines are for the geometric AIC; the broken lines are
for the geometric MDL; the dotted lines are for the OIC.
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value of γ. The geometric MDL almost always guesses the rank to be five when the
true rank is five (γ = 0), but it keeps guessing the rank to be five for a wide range
of γ. The OIC is likely to threshold smaller singular values to zero and predict the
rank to be five up to a fairly large value of γ.

Figure 7 is a sequence of five consecutive simulated images (512 × 512 pixels)
of 20 background points, nine object points, and another nine object points, each
independently moving rigidly within the image plane. We added Gaussian noise of
mean zero and standard deviation ε to the coordinates of the 38 points indepen-
dently and estimated the number of independent motions. In this case, we only
need to decide if the rank is 3, 6, 9, ... corresponding to 1, 2, 3, ... motions.

Figure 8 plots the average number of detected motions over 500 trials for each
ε with the upper bound mmax = 4. We used the reference length L = 600. The
geometric AIC (solid line) tends to overestimate the number of motions but is stable.
The geometric MDL (broken line) estimates the correct number of motions when
the noise is very small but tends to underestimate it as the noise increases. The
OIC (dotted lines) always estimates the number of motions to be unity.

Fig. 7. Points moving two-dimensionally.
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Fig. 8. Average estimate number of motions. The solid lines are for the geometric AIC; the
broken lines are for the geometric MDL; the dotted lines are for the OIC.
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We then applied our criteria to the image sequence of Fig. 5. Lettingd mmax = 2,
we found that the number m of independent motions was two according to both the
geometric AIC and the geometric MDL but was one according to the OIC. Using
the subspace separation method with m = 2, we obtained a correct segmentation.

The five images Fig. 5 were actually decimated from a motion sequence. Insert-
ing five intermediate images, we estimated the number of motions with mmax = 3,
4. The geometric AIC and the geometric MDL both predicted m = 3, while the
OIC predicted m = 1. Using the subspace separation algorithm with m = 3, we de-
tected the independently moving object correctly. In this sense, the estimations by
the geometric AIC and the geometric MDL are both correct, while the estimation
by the OIC cannot be correct (see Sec. 4.1).

From the above results, we can conclude that the geometric AIC tends to be
faithful to noise and overestimate the rank, while the geometric MDL tends to ignore
noise and slightly underestimate the rank. The OIC inadmissibly underestimates
the rank.

In doing these experiments, we have found that if we use a large upper bound
for rmax, the residual Jrmax in Eq.(18) becomes so small that the lack of significant
digits causes underestimation of ε̂2, often regarding it as zero. In fact, the irregular
behavior at the left end of the plot of Fig. 8 is due to the lack of significant digits
for computing very small residuals. Hence, the upper bound rmax should be taken
to be as small as possible.

5. Reliability Evaluation for Segmentation

Although the subspace separation algorithm performs very well, there is no guar-
antee that a particular segmentation is correct. So, we need some means for an a
posteriori reliability evaluation.

5.1. F test

Suppose the N points {pα} that represent the feature motion history are segmented
into m groups having Ni points, i = 1, ..., m. Let Ji be the residual of fitting a
d-dimensional subspace Li to the ith group, and Jt the residual of fitting an md-
dimensional subspace Lt to the entire N points {pα}. As argued in Sec. 3.2, Ji/ε2

should be subject to a χ2 distribution with

φi = (n− d)Ni − d(n− d) = (n− d)(Ni − d) (22)

degrees of freedom if the segmentation is correct . On the other hand, Jt/ε2 should
be subject to a χ2 distribution with

φt =
m∑

i=1

(n−md)Ni −md(n−md) = (n−md)(N −md) (23)

degrees of freedom irrespective of the correctness of the segmentation.
dIn order to let mmax = 3, we need seven or more images, cf. Sec. 4.2.
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Fig. 9. The residual of subspace fitting.

The residual Ji is the sum of squared distances of the points of the ith group
to the subspace L i, which is the sum of their squared distances to the subspace L t

and the squared distances of their projections onto L t to the subspace L i (Fig. 9).
Let us call the former the external distances, and the latter the internal distances.
The sum of the squared internal distances for all the points is

∑m
i=1 Ji−Jt; the sum

of the squared external distances is Jt.
If the segmentation is correct (the null hypothesis), (

∑m
i=1 Ji − Jt)/ε2 should

also be subject to a χ2 distribution. The noise that contributes to the internal
distances and the noise that contributes to the external distances are orthogonal to
each other and hence independent. So, (

∑m
i=1 Ji − Jt)/ε2 has

m∑

i=1

φi − φt = (m− 1)d(N −md) (24)

degrees of freedom.13 It follows that

F =
(
∑m

i=1 Ji − Jt)/(m− 1)d(N −md)
Jt/(n−md)(N −md)

(25)

should be subject to an F distribution with (m−1)d(N−md) and (n−md)(N−md)
degrees of freedom. If this segmentation is not correct (the alternative hypothesis),
the internal distances will increase on average while the external distances are not
affected. It follows that if

F
(m−1)d(N−md)
(n−md)(N−md)(α) < F, (26)

this segmentation is rejected with significance level α, where F
(m−1)d(N−md)
(n−md)(N−md)(α)

is the upper αth percentile of the F distribution with (m − 1)d(N − md) and
(n−md)(N −md) degrees of freedom.

5.2. Model selection

The result of an F test depends on the significance level, which we can arbitrarily
set. Model selection can dispense with any thresholds.



Motion Segmentation by Subspace Separation 193

The geometric AIC and the geometric MDL for the model that the segmentation
is correct are, respectively,

∑m
i=1 G-AICi and

∑m
i=1 G-MDLi, where G-AICi and

G-MDLi are given as

G-AICi = Ji + 2
(
dNi + d(n− d)

)
ε2,

G-MDLi = Ji −
(
dNi + d(n− d)

)
ε2 log

( ε

L

)2

. (27)

The geometric AIC and the geometric MDL for the model that the points {pα} can
be somehow segmented into m motions are given as

G-AICt = Jt + 2
(
mdNi + md(n−md)

)
ε2,

G-MDLt = Jt −
(
mdNi + md(n−md)

)
ε2 log

( ε

L

)2

. (28)

Since the latter model is correct irrespective of the segmentation result, we can
estimate the squared noise level ε2 from it, using

ε̂2 =
Jt

(n−md)(N −md)
. (29)

The condition that the segmentation is not correct is given by G-AICt <∑m
i=1 G-AICi or G-MDLt <

∑m
i=1 G-MDLi, which are rewritten, respectively, as

2 < F, − log
( ε

L

)2

< F, (30)

where F is the F statistic given by Eq.(25). Thus, model selection reduces to the F

test, the difference being that the threshold F
(m−1)d(N−md)
(n−md)(N−md)(α) is given automati-

cally without specifying any significance level. When the noise is small, − log(ε/L)2

is usually larger than two. This implies that the geometric AIC is more conservative
than the geometric MDL, which is more confident of the particular result.

5.3. Experiments

We evaluated the reliability of the segmentation of the image sequence of Fig. 5. The
F statistic of Eq.(25) was computed to be F = 0.893. The upper 5th percentile
is 1.346 in this case, so the correctness of the segmentation is not rejected with
significance level 5%. The geometric AIC also selects this segmentation. Using the
reference length L = 600, we have − log(ε/L)2 = 13.5, so the geometric MDL also
selects this segmentation, but it allows a much wider margin than the geometric
AIC.

6. Concluding Remarks

In this paper, we first reformulated the Costeira-Kanade algorithm as a pure math-
ematical theorem independent of the Tomasi-Kanade factorization and presented a
robust segmentation procedure, named subspace separation, by incorporating model
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selection using the geometric AIC. We demonstrated by experiments using synthetic
and real images that our algorithm dramatically improves the classification accu-
racy over existing methods. Our algorithm does not involve any parameters which
need to be adjusted empirically.

Then, we studied the problem of estimating the number of independent mo-
tions. We elucidated the mathematical structure of the problem and presented an
estimation method using model selection. We conclude that the use of geometric
AIC seems to be a good practical choice.

Finally, we presented criteria for evaluating the reliability of individual segmen-
tation results a posteriori , using the standard F test and model selection. The use
of model selection has the advantage that no significance level needs to be assigned.
Again, the geometric AIC seems to be a feasible choice.
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Appendix A

Appendix A. Proof of Theorem 1

Let Ni be the number of elements of the set Ii. It is sufficient to prove the theorem
for m = 2 (the proof is the same for m > 2). Suppose {pα} are aligned , i.e., p1, ...,
pN1

∈ L1 and pN1+1, ..., pN ∈ L2.
Since the subspace L1 has dimension r1, the n × N1 matrix W 1 =(

p1 · · · pN1

)
has rank r1. Hence, W 1 defines a linear mapping of rank r1

from an N1-dimensional space RN1 to an n-dimensional space Rn; its null space N1

has dimension ν1 = N1 − r1. Let {n1, ..., nν1} be an arbitrary orthonormal basis
of N1, each ni being an N1-dimensional vector. Similarly, the n ×N2 matrix W 2

=
(

pN1
· · · pN

)
defines a linear mapping of rank r2 from RN2 to Rn; its null

space N2 has dimension ν2 = N−r2. Let {n′1, ..., n′ν2
} be an arbitrary orthonormal

basis of N2, each ni being an N2-dimensional vector.
Let {ñi}, i = 1,.., ν1, and {ñ′i}, i = 1,.., ν2, be the N -dimensional vectors

defined by padding {ni} and {n′i} with zero elements as follows:

ñi =
(

ni

0

)
, ñ′i =

(
0
n′i

)
. (1)

As a result, the N − r vectors {ñ1, ..., ñν1 , ñ′1, ..., ñ′ν2
} are an orthonormal system

of RN belonging to the null space N of the n × N observation matrix W defined
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by Eq.(14). Since W has rank r1 + r2 (= r) by assumption, its null space N has
dimension ν = N − r. Hence, {ñ1, ..., ñν1 , ñ′1, ..., ñ′ν2

} are an orthonormal basis
of the null space N .

Since Eq.(13) is equivalent to G = W>W , we see that {ñ1, ..., ñν1 , ñ′1, ...,
ñ′ν2

} are an orthonormal system of the eigenvectors of G for eigenvalue 0. If we
let {vr+1, ..., vN} be an arbitrary orthonormal system of the eigenvectors of G for
eigenvalue 0, there exists a ν × ν orthogonal matrix C such that

(
vr+1 · · · vN

)
=

(
ñ1 · · · ñν1 ñ′1 · · · ñ′ν2

)
C. (2)

Consider the N ×N matrix whose (αβ) element is the inner product of the αth and
βth rows of the N × ν matrix

(
vr+1 · · · vN

)
. We observe that

(
vr+1 · · · vN

) (
vr+1 · · · vN

)>

=
(

ñ1 · · · ñν1 ñ′1 · · · ñ′ν2

)
CC> (

ñ1 · · · ñν1 ñ′1 · · · ñ′ν2

)>

=
(

ñ1 · · · ñν1 ñ′1 · · · ñ′ν2

) (
ñ1 · · · ñν1 ñ′1 · · · ñ′ν2

)>

=
(

n1 · · · nν1 0 · · · 0
0 · · · 0 n′1 · · · n′ν2

)




n>1 0>
...

...
n>ν1

0>

0> n′1
>

...
...

0> n′ν2
>




=
( ∗ O

O †
)

, (3)

where ( ∗ ) and ( † ) are N1 × N1 and N2 × N2 submatrices, respectively. This
implies that the αth and βth rows of the matrix

(
vr+1 · · · vN

)
are mutually

orthogonal if pα and pβ belong to different subspaces.
Let {v1, ..., vr} be an arbitrary orthonormal system of the eigenvectors of

G for nonzero eigenvalues. Combining these with {vr+1, ..., vN}, we obtain an
orthonormal system of the eigenvectors of G for all the eigenvalues. It follows that
the N ×N matrix

V =
(

v1 · · · vr vr+1 · · · vN

)
(4)

is orthogonal. Hence, its N rows are pair-wise orthogonal. If we let vαi be the αth
element of vector vi, the αth and βth rows of V are (vα1, ..., vαN ) and (vβ1, ..., vβN ),
respectively. It follows that for α 6= β we have

vα1vβ1 + · · ·+ vαrvβr + vα(r+1)vβj(r+1) + · · ·+ vαNvβN = 0. (5)
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We have already shown that vα(r+1)vβ(r+1) + · · ·+vαNvβN = 0 if pα and pβ belong
to different subspaces. This means that if pα and pβ belong to different subspaces,
we have

vα1vβ1 + · · ·+ vαrvβr = 0. (6)

This implies that if pα and pβ belong to different subspaces, the αth and βth rows
of the N × r matrix

V r =
(

v1 · · · vr

)
(7)

are mutually orthogonal. The N×N matrix whose (αβ) element is the inner product
of the αth and βth rows of V r is given by

V rV
>
r =

(
v1 · · · vr

) (
v1 · · · vr

)> =
r∑

i=1

viv
>
i = Q. (8)

Hence, the (αβ) element of Q is zero if pα and pβ belong to different subspaces.
We have so far assumed that p1, ..., pN1

∈ L1 and pN1+1, ..., pN ∈ L2. It is
easy to see that the theorem holds if we arbitrarily permute p1, ..., pN . If pα and
pβ are interchanged, the αth and βth rows and the αth and βth columns of G are
simultaneously interchanged. As a result, its αth and βth eigenvectors are inter-
changed, and hence the αth and βth columns of the matrix V =

(
v1 · · · vr

)
are also interchanged. It follows that the αth and βth rows and the αth and βth
columns of Q are simultaneously interchanged. Since any permutation of p1, ...,
pN can be generated by pair-wise interchanges, the theorem holds for an arbitrary
permutation. The theorem can be straightforwardly extended to more than two
subspaces.
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